

Integrated Synthesizer/Mixer/Modulator Family Register Map Description

RFMD's second-generation integrated synthesizer/mixer products.

RFMD Multi-Market Products Group

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLABIS[™] TOTAL RADIO[™] and UtimateBlue[™] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks are the property of their respective owners. ©2012, RF Micro Devices, Inc.

REVISION HISTORY

Version	Date	Description of change(s)	Author(s)
1.5	12-Jul-12	Section 4.2 Default register settings updated. Details of chip	Eric Schonthal
		revision mrev_id added. IQ modulator references added.	
1.4	01-Mar-12	Update to Register Map on Page 10 and to Register Content	Eric Schonthal
		Description on Pages 11 to 19. Addition of section 4.2.	
1.3	06-June-11	Correction to Register Content Description on Page 17	Eric Schonthal
1.2	05-May-11	Addition of new sections and drawings	Eric Schonthal
1.1	07-Dec-10	Correction to p2presc Path2 VCO PLL feedback path divider	Barbara Cox
		setting on Page 15	
1.0	25-0ct-10	First publication	Robert Pipkin
0.4	22-0ct-10	Publication prep	Robert Pipkin
0.3	29-Sep-10	Slight changes before submitting to MarCom	Chris Shepherd
0.2	06-Aug-10	Correct the number of address bits given in section 2 (should be	Chris Shepherd
		seven, not six) and update timing diagram.	
0.1	01-Jul-10	Second draft.	Chris Shepherd
0.0	24-Jun-10	Initial Draft for second version of chips	Chris Shepherd

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity[®], PowerStar[®], POLARIS[®] TOTAL RADIO[®] and UtimateBlue[®] are trademarks of RFMD, LLC, BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. © 2012, RF Micro Devices, Inc.

CONTENTS

1.	Introduction							
2.	Timi	ng		6				
	2.1	Write O	peration	6				
	2.2	Read O	perations	6				
		2.2.1	Three-Wire Bus Read Operation	6				
		2.2.2	Four-Wire Bus Read Operation	6				
3.	Devi	ce Setup)	8				
	3.1	Standb	/ States	8				
	3.2	Frequer	ncy Modulation	8				
		3.2.1	Continuous Modulation	8				
		3.2.2	Binary FSK	8				
	3.3	Genera	Purpose Outputs	8				
		3.3.1	Serial Bus Control	8				
		3.3.2	MultiSlice Operation	8				
		3.3.3	Frequency Modulation Input	9				
		3.3.4	Lock Detect Output	9				
		3.3.5	Four-Wire Bus Operation	9				
4.	REG	ISTER M	AP	10				
	4.1	Registe	r Content Description	11				
		4.1.1	LF - Loop Filter Configuration (00h)	11				
		4.1.2	XO - Crystal Oscillator Configuration (01h)	11				
		4.1.3	CAL_TIME - Calibration Timing (02h)	11				
		4.1.4	VCO_CTRL - Calibration Control (03h)	12				
		4.1.5	CT_CAL1 - Path 1 Coarse Tuning Calibration (04h)	12				
		4.1.6	CT_CAL2 - Path 2 Coarse Tuning Calibration (05h)	12				
		4.1.7	PLL_CAL1 - Path 1 PLL Calibration (06h)	13				
		4.1.8	PLL_CAL2 - Path 2 PLL Calibration (07h)	13				
		4.1.9	VCO_AUTO - Auto VCO select control (08h)	13				
		4.1.10	PLL_CTRL - PLL Control (09h)	13				
		4.1.11	PLL_BIAS - PLL Bias Settings (OAh)	14				
		4.1.12	MIX_CONT - Mixer Control (0Bh) [RFFC parts only]	14				
		4.1.13	P1_FREQ1 - Path 1 Frequency 1 (0Ch)	14				
		4.1.14	P1_FREQ2 - Path 1 Frequency 2 (0Dh)	14				
		4.1.15	P1_FREQ3 - Path 1 Frequency 3 (0Eh)	14				
		4.1.16	P2_FREQ1 - Path 2 Frequency 1 (0Fh)	15				
		4.1.17	P2_FREQ2 - Path 2 Frequency 2 (10h)	15				
		4.1.18	P2_FREQ3 - Path 2 Frequency 3 (11h)	15				
		4.1.19	FN_CTRL - Frac-N Control (12h)	15				
		4.1.20	EXT_MOD - Frequency modulation control 1 (13h)	16				
		4.1.21	FMOD - Frequency modulation control 2 (14h)	16				
		4.1.22	SDI_CTRL - SDI Control (15h)	16				
		4.1.23	GPO - General Purpose Outputs (16h)	16				

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLARIS[™] TOTAL RADIO[™] and UtimateBlue[™] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and redistered trademarks are the property of their respective owners, t02012, RF Micro Devices, Inc.

Integrated Synthesizer/Mixer/Modulator Family Register Map Description

5.	Refe	erences		22
	4.2	Default	register settings	. 21
		4.1.32	READBACK – Readback Register (1Fh) [RFMD208x only]	. 20
		4.1.31	TEST - Test register (1Eh)	. 20
		4.1.30	DEV_CTRL - Readback register and RSM Control (1Dh)	. 19
		4.1.29	TEMPC_CTRL - Temperature compensation control (1Ch)	. 18
		4.1.28	IQMOD4- Modulator Core Control (1Bh) [RFMD2080 only]	. 18
		4.1.27	IQMOD3 - Modulator Buffer Control (1Ah) [RFMD2080 only]	. 17
		4.1.26	IQMOD2 - Modulator Control (19h) [RFMD208x only]	. 17
		4.1.25	IQMOD1 – Modulator Calibration (18h) [RFMD208x only]	. 17
		4.1.24	T_VCO - Temperature Compensation VCO Curves (17h)	. 17

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], POUARIS[®] TOTAL RADIO[®] and UtimateBlue[®] are trademarks of RFMD, LLC, BLUETOOTH is a trademark owned by Bluetooth SiG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks are the property of their respective owners, 02012, RF Micro Devices, Inc.

1. INTRODUCTION

This guide contains instructions on how to program RFMD's second-generation integrated synthesizer/mixer/modulator devices. It includes a description of the proprietary serial interface as well as detailed information on the register map.

For more information, see "References" or visit <u>http://www.rfmd.com</u>.

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity[®], PoweStar®, POLARIS[®] 1074L RADIO[®] and UtimateBlue[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners, 02012, RF Micro Devices, Inc.

2. TIMING

2.1 WRITE OPERATION

To perform a write operation the ENX line should be pulled low. The SCLK line is then used to clock the data into the chip. The first bit is undefined; this is followed by the R/W bit set low, then the seven address bits and the 16 data bits. The address and data bits are read on the rising edge of the clock signal. When the register write is complete the ENX line should be pulled high.

Figure 1. Timing Diagram for Write Operation

2.2 READ OPERATIONS

2.2.1 Three-Wire Bus Read Operation

To perform a read operation the ENX line should be pulled low. The SCLK line is then used to clock the data into the chip. The first bit is undefined; this is followed by the R/W bit set high, then the seven address bits. The address bits are read on the rising edge of the clock signal. After 1.5 clock cycles delay the 16 data bits are clocked out of the chip on the falling edge of the clock. When the register read is complete the ENX line should be pulled high.

2.2.2 Four-Wire Bus Read Operation

If the 4wire bit in the SDI_CTRL register has been set the data output stream is diverted to GPO4¹. To perform a read operation the ENX line should be pulled low. The SCLK line is then used to clock the data into the chip. The first bit is undefined; this is followed by the R/W bit set high, then the seven address bits. The address bits are read on the rising edge of the clock signal. After 1.5 clock cycles delay the 16 data bits are clocked out of the chip on the falling edge of the clock and are available on the DOUT line. When the register read is complete the ENX line should be pulled high.

Note: ¹ If GPO4 is also configured as a LOCK output the data output signal is only available from this pin when the ENBL line is low.

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLARIS[®] 10TAL RADIO[®] and UltimateBlue[®] are trademarks of RFMD, LLC. BLEFOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks are the property of their respective owners. 6/2012, RF Micro Devices, Inc.

Figure 3. Timing Diagram for Four-Wire Bus Read Operation

Figure 4. Critical Timing Diagram

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity®, PowerStar®, POLARIS™ TOTAL RADIO^w and UtimateBlue^{tw} are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2012, RF Micro Devices, Inc.

3. DEVICE SETUP

3.1 STANDBY STATES

It is possible to configure the device so that the frequency synthesizer and VCO remain operating when the device is disabled. The *pllst* bit in the *PLL_CTRL* register should be set.

3.2 FREQUENCY MODULATION

The modulation frequency is $F_{ref} * modulation / 2^{(24 - modstep)}$ where *modulation* is in 2's complement format and is found in the *FMOD* register and *modstep* is found in the *EXT_MOD* register. The maximum allowable value for *modstep* is 8.

3.2.1 Continuous Modulation

If the *modsetup* bits in the *EXT_MOD* register are set to 01 it is possible to change the frequency of the VCO by writing to the *modulation* bits in the *FMOD* register. By continuously writing these bits it is possible to continuously vary the deviation frequency of the VCO thus implementing a simple form of analogue modulation.

3.2.2 Binary FSK

If the *modsetup* bits in the *EXT_MOD* register are set to 11 the frequency of the VCO can be switched in a binary fashion either side of the carrier by the frequency programmed into the *modulation* bits of the *FMOD* register.

3.3 GENERAL PURPOSE OUTPUTS

Up to six General Purpose Outputs are available on the device, depending on configuration. The output state is configured using the *GPO* register. The output is dependent on the state of the **MODE** and **ENBL** signals. The *p1gpo* bits determine the output when **MODE** is low and *p2gpo* when **MODE** is high. The device can be configured so that the output remains active when the device is enabled only or always according to the state of the *gate* bit; if the *gate* bit is not set the outputs will go high impedance when the device is disabled.

All of the GPOs have multiple functions depending on the configuration of the device, this is discussed further below.

3.3.1 Serial Bus Control

Setting the *sipin* bit in the *SDI_CTRL* register to one allows the device to be controlled by the *enbl*, *mode* and *reset* bits in the *SDI_CTRL* register. When the *sipin* bit is set the *MODE* and *ENBL* pins become available as *GPO5* and *GPO6*.

3.3.2 MultiSlice Operation

It is possible to control up to four chips from a single three-wire bus. If the *addr* bit in the *SDI_CTRL* register is set **GPO1** and **GPO2** are configured as inputs and their state is read by the chip and used to determine the value of address bits A5 and A6. From the point at which the *addr* bit is set, until the chip is reset or the bit cleared, the chip must be written or read using its extended six bit address.

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PoweStar[®], POLARIS[™] 10TAL RADIO[™] and UtimateBlue[™] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. 6:2012, RF Micro Devices, Inc.

3.3.3 Frequency Modulation Input

If the *modsetup* bits in the *EXT_MOD* register are set to 11 then **GPO3** is configured as an input and controls the modulation of the carrier. When high the frequency set in the *FMOD* and *EXT_MOD* registers is added to the synthesizer frequency, if it is low the frequency is subtracted.

3.3.4 Lock Detect Output

If the *lock* bit in the *GPO* register is set the lock flag is sent to **GPO4** where it is available to control an LED or similar. If the *lock* bit and the *4wire* bit are both set the lock signal is sent to **GPO4** when the device is enabled and the data when the device is disabled.

3.3.5 Four-Wire Bus Operation

If the *4wire* bit in the *SDI_CTRL* register is set the device is configured as a four-wire bus with the data output from as read operation being diverted to *GPO4* instead of the *SDATA* pin. If the *lock* bit and the *4wire* bit are both set the lock signal is sent to *GPO4* when the device is enabled and the data when the device is disabled.

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLARIS^W TOTAL RADIO^W and UltimateBlue[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. © 2012, RF Micro Devices, Inc.

4. REGISTER MAP

#	Reg name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
00	LF	lfact		I	p2c	odef				p1cpdef					plicpl		
01	хо	xoch xoc			ос		xocf				suwait						
02	CAL_TIME	wait tct				n/a				tkv1			tkv2				
03	VCO_CTRL	xtvco ctavg ctpol			clkpl	kva	avg	kvrng	kvpol	xoi1	xoi2	xoi3	refst	іср	up	n/a	
04	CT_CAL1	p1ctgain					p1ctv			p1ct		p1ctdef					
05	CT_CAL2	k	p2ctgain	n			p2ctv			p2ct				p2ctdef	:		
06	PLL_CAL1	p1kv					p1dn					ŀ	o1kvgair	า	p1sgn	n/a	
07	PLL_CAL2	p2kv					p2dn					F	o2kvgair	า	p2sgn	n	/a
08	VCO_AUTO	auto				ctmax							ctmin				n/a
09	PLL_CTRL	divby		clkdiv		pllst			tvco		-	lden	ldlev	relok	aloi	pll	dy
0 A	PLL_BIAS	n/a		p1	loi			p1vcoi		n/a		p2	loi			p2vcoi	
0B	MIX_CONT	fulld	Ŕ	o1mixido	t	k	o2mixido	ł					n/a				
0C	P1_FREQ1					p1n						p1lodiv		p1p	resc	p1vc	osel
0D	P1_FREQ2								p1n	msb							
0E	P1_FREQ3				p1r	nlsb					1		n,	/a			
0F	P2_FREQ1					p2n						p2lodiv		p2p	resc	p2vc	osel
10	P2_FREQ2					p2n	msb										
11	P2_FREQ3			-	p2r	ilsb n					n,	/a	r				
12	FN_CTRL	fnz	dithr	sd	lm	phaln phsalngain			phsa	Indly	mode	dith	fm	dmode	tzps	n/a	
13	EXT_MOD	mods	setup		mod	step n/a				'a							
14	FMOD					modulation											
15	SDI_CTRL	sipin	enbl	mode	4wire	addr					n/a					reset	n/a
16	GPO				p2gpio					p1gpio				gate	lock		
17	T_VCO	curv	e_def_\	/co1	curv	/e_def_\	/co2	curv	/e_def_\	/co3				n/a			
18	IQMOD1	ctrl	bbgm	txlo	mod	modiv		modbias	S	lob	las	calon	calnul	calbik	divbias	but	
19	IQMOD2		bba	tten			rctune					cala	tten	m m	od	moc	lbut
1A 1 D				but						bufdacq				dacen		n/a	: 2
18				mod		6	6:14	-		moa	dacq			DUTC		מזעמ	lasz
10		tc_	en		_sei	TC_en	TIIT_	ctri	ret_sei	ext_filt	ιαο_by	v_test	and	daa	n/a	hunga	<i>n</i> /a
10	DEV_CIRE	ton	read	trouv		to		lfor	lform		Iferan	cpu	сри	lfort	rahun	nopun	n/a
10	DEADBACK	ten		unux		ro	ei adback /	dopopd		ting of [etime	21)	lisit	ignyh	тсвур	11/a
11						Te	auback	dev id	is on set			L.I eaus	=1)			rov id	
		lock				ct cal		uev_iu				cn	cal			ctfail	0
readsel=0010				νO	cal						ւր_	<u>v1</u>	cal		ctian	0	
readsel=0011			r	cm ctat		_cai	for	rflag					0				
readsel=0100				Sin_stat	<u> </u>												
rea																	
	adsel=0110	calfbi	calfbo						•00_0	0x0	000						
real	adsel=0111	VCO	sel	VC	o to cui	ve				0.00		0x000					
re	adsel=other					-			0x0	000							

Not all registers are active in every device in this series of parts.

RF MICRO DEVICES®, RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PoweStar[®], POLARIS[®] 101AL RADIO[®] and UtilimateBlue[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and tegistered trademarks are the property of their respective owners. t52012, RF Micro Devices, Inc.

4.1 REGISTER CONTENT DESCRIPTION

4.1.1 LF - Loop Filter Configuration (00h)

Field Name	Bit Field	Function
lfact p2cpdef	15 14:9	active loop filter enable, 1=active 0=passive Charge pump setting. If p2_kv_en=1 this value sets charge pump current during KV compensation measurement. If p2_kv_en=0, this value is used at all times. Default value is 93µA.
p1cpdef	8:3	Charge pump setting. if p1_kv_en=1 this value sets charge pump current during KV compensation measurement. If p1_kv_en=0, this value is used at all times. Default value is 93µA.
plicpl	2:0	charge pump leakage settings

4.1.2 XO - Crystal Oscillator Configuration (01h)

Field Name	Bit Field	Function
xoch	15	XO additional fixed capacitance
XOC	14:11	XO coarse tune
xocf	10	XO additional fixed capacitance
suwait	9:0	XO settling timer: 1LSB=128 reference clocks or 2.46µs at 52MHz

4.1.3 CAL_TIME - Calibration Timing (02h)

Field Name	Bit Field	Function
wait	15	If high then the RF sections are not enabled until the PLL calibrations complete
tct n/a	14:10 9:8	Duration of CT acquisition
tkv1 tkv2	7:4 3:0	Timer for first KV settling Timer for second KV settling

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLARIS[®] 1071AL RADIO[®] and UtimateBlue[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFNID. All other trade names, trademarks are the property of their respective owners. 62012, RF Micro Devices, Inc.

4.1.4 VCO_CTRL - Calibration Control (03h)

Field Name	Bit Field	Function
xtvco	15	Enable external VCO
ctavg	14:13	Number of samples averaged to compute final value
		during CT Calibration: $0 = average 16 \text{ samples}; 1 =$
		average 32 samples; 2 = average 64 samples; 3 =
	40	average 128 samples
ctpol	12	polarity of VCO coarse-tune word
		U = Increasing ct_val increases vco freq
alkal	11	$I = Increasing cl_var decreases vco freq$
Скрі	11	coarse turning clock polarity = in phase with reference. 1 – antiphase with reference.
kvava	10.0	Number of samples averaged to compute final value
Riding	10.0	during KV compensation: $0 = average 16$ samples: $1 =$
		average 32 samples: 2 = average 64 samples: 3 =
		average 128 samples
kvrng	8	KV Range - Sets accuracy of Voltage measurement
C C		during KV cal
kvpol	7	VCO KV polarity:
		0 = positive, VCO freq increases with increasing tuning
		voltage
		1 = negative, VCO freq decreases with increasing tuning
		voltage
xoi1	6	XO current setting 1
XOI2	5	XO current setting 2
XOI3	4	XU current setting 3
ionun	3 2.1	Reference oscillator standby mode
n/a	2.1	Overnue deladit charge pump-up settings
11/a	U	

4.1.5 CT_CAL1 - Path 1 Coarse Tuning Calibration (04h)

Field Name	Bit Field	Function
p1ctgain	15:13	Path 1 calibration loop gain. Each step changes gain by a factor of 2.
p1ctv	12:8	Path 1 VCO tuning target voltage
p1ct	7	VCO coarse tune enable, path 1 mode
p1ctdef	6:0	VCO coarse tuning default value, path 1 mode

4.1.6 CT_CAL2 - Path 2 Coarse Tuning Calibration (05h)

Field Name	Bit Field	Function
p2ctgain	15:13	Path 2 calibration loop gain. Each step changes gain by a factor of 2.
p2ctv	12:8	Path 2 VCO tuning target voltage
p2ct	7	VCO coarse tune enable, path2 mode
p2ctdef	6:0	VCO coarse tuning default value, path 2 mode

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity®, PowerStar®, POLARIS™ 10TAL RADIO™ and UltimateBue™ are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. @2012, RF Micro Devices, Inc.

4.1.7 PLL_CAL1 - Path 1 PLL Calibration (06h)

Field Name	Bit Field	Function
	Dit i leiu	
p1kv	15	VCO tuning gain calibration enable, path 1 mode
p1dn	14:6	Change in N-divider value to give frequency step during
		KV compensation measurement in path 1 mode.
p1kvgain	5:3	Controls loop gain during KV compensation
p1sgn	2	Controls whether or not p1dn is added/subtracted in Path
		1 mode. If 0 then subtract, otherwise add.
n/a	1:0	

4.1.8 PLL_CAL2 - Path 2 PLL Calibration (07h)

Field Name	Bit Field	Function
p2kv	15	VCO tuning gain calibration enable, path 2 mode
p2dn	14:6	Change in N-divider value to give frequency step during
		KV compensation measurement in path 2 mode
p2kvgain	5:3	Controls loop gain during KV compensation.
p2sgn	2	Controls whether or not p2dn is added/subtracted in Path
		2 mode. If 0 then subtract, otherwise add
n/a	1:0	

4.1.9 VCO_AUTO - Auto VCO select control (08h)

Field Name	Bit Field	Function
auto	15	If high then the PLL state machine attempts to find the the correct VCO needed to lock to the desired frequency
ctmax	14:8	Maximum CT value for coarse tuning allowed. Used as the jump over threshold in auto VCO select mode
ctmin	7:1	Minimum CT value for coarse tuning allowed. Used as the jump over threshold in auto VCO select mode
n/a	0	

4.1.10 PLL_CTRL - PLL Control (09h)

Rit Field	Function
15	Force reference divider to divide by 1
14.12	Reference divider divide value
11	PLL standby mode (if high the PLL is always on)
10.6	VCO warm-up time, warm-up time [s] = $tyco * 1/[fref*256]$
5	Enable lock detector circuitry
4	Modify lock range for lock detector
3	Self Clearing Bit. When this bit is set high it triggers a
	relock of the PLL and then clears
2	If low, the LO path current is automatically determined
	according to frequency. If high, the LO current is set
	according to the value of p2loi or P1loi in PLL_BIAS
	depending on mode
1:0	PLL reset delay
	Bit Field 15 14:12 11 10:6 5 4 3 2 1:0

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLARIS[™] 10TAL RADIO[™] and UtimateBlue[™] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. © 2012, RF Micro Devices, Inc.

4.1.11 PLL_BIAS - PLL Bias Settings (OAh)

Field Name	Bit Field	Function
n/a	15	
p1loi	14:11	LO path current setting, path 1 mode
p1vcoi	10:8	Path 1 VCO bias setting : 000=Min Current, 111=Max
		Current
n/a	7	
p2loi	6:3	LO path current setting, path 2 mode
p2vcoi	2:0	Path 2 VCO bias setting : 000=Min Current, 111=Max
•		Current

4.1.12 MIX_CONT - Mixer Control (OBh) [RFFC parts only]

Field Name	Bit Field	Function
fulld	15	Full duplex mode (dual mixer version only): 0 = half duplex, either path1 or path2 is enabled according to mode pin. 1 = full duplex, Path 1 and Path 2 are enabled.
p1mixidd	14:12	Path 1 mixer current: 000=min current, 111=max current
p2mixidd n/a	11:9 8:0	Path 2 mixer current: 000=min current, 111=max current

4.1.13 P1_FREQ1 - Path 1 Frequency 1 (0Ch)

Field Name	Bit Field	Function
p1n	15:7	Path 1 N-divider integer value
p1lodiv	6:4	Path 1 LO path divider setting: divide by 2 ⁿ (i.e. divide
		by 1 to divide by 32). 110 and 111 are reserved
p1presc	3:2	Path 1 VCO PLL feedback path divider setting: 01 =
		divide by 2, 10 = divide by 4 (00 and 11 are reserved)
p1vcosel	1:0	Path 1 VCO band select: $00 = vco1$, $01 = vco2$, $10 = vco2$
		vco3 (11 is reserved)

4.1.14 P1_FREQ2 - Path 1 Frequency 2 (0Dh)

Field Name	Bit Field	Function
p1nmsb	15:0	Path 1 N-divider numerator value, most significant 16 bits

4.1.15 P1_FREQ3 - Path 1 Frequency 3 (OEh)

Field Name	Bit Field	Function
p1nlsb	15:8	Path 1 N divider numerator value, least significant 8 bits
n/a	7:0	

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PoweStar[®], POLARIS[®] 10TAL RADIO[®] and UtimateBlue[®] are trademarks of RFMD, LLC. BLUETOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks are the property of their respective owners. ©2012, RF Micro Devices, Inc.

4.1.16 P2_FREQ1 - Path 2 Frequency 1 (0Fh)

Field Name	Bit Field	Function
p2n	15:7	Path 2 VCO divider integer value.
p2lodiv	6:4	Path2 LO path divider setting: divide by 2 ⁿ (i.e. divide
		by 1 to divide by 32). 110 and 111 are reserved
p2presc	3:2	Path 2 VCO PLL feedback path divider setting: 01 =
		divide by 2, 10 = divide by 4 (00 and 11 are reserved)
p2vcosel	1:0	Path 2 VCO band select: $00 = vco1$, $01 = vco2$, $10 = 0$
•		vco3 (11 is reserved)

4.1.17 P2_FREQ2 - Path 2 Frequency 2 (10h)

Field Name	Bit Field	Function
p2nmsb	15:0	Path 2 N divider numerator value, most significant 16 bits

4.1.18 P2_FREQ3 - Path 2 Frequency 3 (11h)

Field Name	Bit Field	Function
p2nlsb n/a	15:8 7:0	Path 2 N divider numerator value, least significant 8 bits

4.1.19 FN_CTRL - Frac-N Control (12h)

Field Name	Bit Field	Function
fnz	15	If programmed high the modulator to the fractional dividers is disabled. Test mode.
dithr	14	If high then the target frequency (reference of freq_det) is dither by the sigma delta
sdm	13:12	PLL sigma-delta modulator order: 00=first order accumulator, 01=2nd order MASH 1-1, 10=3rd order MASH 1-1-1 and 11=DSM modulator as defined by mode, dith, fm and dmode fields
phaln	11	Enable zero phase start
phsalngain	10:8	Gain Setting for zero phase start (N counts/LSB): 000=1/32, 001=1/16, 010=1/8, 011=1/4, 100=1/2, 101=1, 110=2 and 111: 4
phsalndly	7:6	Controls amount of synchronization(delay) of the BangBang PFD: 00=no synchronization, 01=1 cycle of delay, 10=2 cycles of delay and 11=bang bang PFD is off (no correction)
mode	5	DSM Modulator: 0=3rd order, and 1=5th order
dith	4	DSM modulator dither 1=dither enabled
fm	3	DSM modulator FM modulation (dithering option)
dmode	2	DSM modulator dithering mode 0 = stronger dithering, 1=distributed modulation
tzps	1	Loop filter pre-charge for zero-phase start (experimental)
n/a	0	

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity¹⁰, Powestar⁶, POLARIS^{IN} TOTAL RADIO^{IN} and UltimateBlue^{1M} are trademarks of RFMD, LLC. BLUETOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2012, RF Micro Devices, Inc.

4.1.20 EXT_MOD - Frequency modulation control 1 (13h)

	Dit Einld	Function
Field Name	BITFIEID	Function
modsetup	15:14	Control how modulation is applied to frac-N: 00/10=modulation off, 01=modulation is analog, on every update of modulation the frac-N responds by adding value to frac-N and 11=modulation is binary when modpin is high modulation is added to frac-N
modstep	13:10	Modulation scale factor. Modulation is multiplied by 2 [^] modstep before being added to frac-N. Maximum usable value is 8
n/a	9:0	

4.1.21 FMOD - Frequency modulation control 2 (14h)

Field Name	Bit Field	Function
modulation	15:0	Frequency Deviation applied to frac-N, functionallity determined by modstep and mod_setup

4.1.22 SDI_CTRL - SDI Control (15h)

Field Name	Bit Field	Function
sipin	15	1=ENBL and MODE pins are ignored and become available as GPO5 and GPO6
enbl	14	If sipin=1 this field will replace the functionality of the ENBL pin
mode	13	If sipin_ctrl=1 this field will replace the functionality of the MODE pin
4wire	12	1=4-wire SDI, i.e. SDATA is unidirectional and SDATA_out is routed to GPO4
addr	11	1=GPIO1,GPIO2 are inputs that map the register map to the address {GPO2,GPO1,SDI address}; this gives 4 possible addresses for the registers.
n/a	10:2	
reset	1	When this bit is taken high the part is reset
n/a	0	

4.1.23 GPO - General Purpose Outputs (16h)

Field Name	Bit Field	Function
p2gpo	15:9	GPOs for Path 2, 1=high, 0 = low. The mode pin or SDI field controls whether the value in p2gpo or p1gpo is used.
p1gpo	8:2	GPOs for Path 1, 1=high, 0 = low. The mode pin or SDI field controls whether the value in p2gpo or p1gpo is used.
gate	1	If low GPO's are ANDed with enable (forced to zero when the enable is low, if high the GPO's are available when enable is low
lock	0	Sends LOCK flag to GPO4

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[™], PowerStar[®], POLARIS[™] 10TAL RADIO[™] and UtimateBlue[™] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. © 2012, RF Micro Devices, Inc.

4.1.24 T_VCO - Temperature Compensation VCO Curves (17h)

Field Name	Bit Field	Function
curve_vco1	15:13	VCO1 temperature compensation curve
-		
curve_vco2	12:10	VCO1 temperature compensation curve
0	07	
curve_vco3	9:7	VCO3 temperature compensation curve
n/n	6.0	
n/a	6.0	

4.1.25 IQMOD1 - Modulator Calibration (18h) [RFMD208x only]

Field Name	Bit Field	Function
ctrl	15:11	Individual circuit block power control
modbias	10:8	Modulator internal node DC bias
lobias	7:6	LO buffer bias current
calon	5	Calibration enable
calnul	4	
calblk	3	Isolates buffer and core during calibration
divbias	2	Reduces LO path gain, may be required at low LO
		frequencies
bufdc	1:0	Bias restoration in LO buffer

4.1.26 IQMOD2 – Modulator Control (19h) [RFMD208x only]

Field Name	Bit Field	Function
bbatten	15:12	Baseband attenuation [RFMD2080 only]
rctune	11:6	Input low pass filter bandwidth [RFMD2080 only]
calatten	5:4	Modulator attenuation during calibration
mod	3:2	Modulator attenuation
modbuf	1:0	Modulator buffer enable (usually the same as mod)

4.1.27 IQMOD3 - Modulator Buffer Control (1Ah) [RFMD2080 only]

Field Name	Bit Field	Function
bufdaci	15:10	I-channel buffer DC offset control
bufdacq	9:4	Q-channel buffer DC offset control
dacen	8	Enable DC offset control DACs

RF MICRO DEVICES[®], RPMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PoweStar[®], POLARIS[™] 107AL RADIO[™] and UttimateBlue[™] are trademarks of RPMD, LLC. BLUETOTH is a trademark owned by Bluetooth SiG, Inc., U.S.A. and licensed for use by RPMD. All other trade names, trademarks are the property of their respective owners. ©2012, RF Micro Devices, Inc.

4.1.28 IQMOD4- Modulator Core Control (1Bh) [RFMD2080 only]

Field Name	Bit Field	Function
moddaci	15:10	I-channel mixer core DC offset control
moddacq	11:6	I-channel mixer core DC offset control
bufbias1	5:4	Buffer bias 1
bufbias2	3:2	Buffer bias 2

4.1.29 TEMPC_CTRL – Temperature compensation control (1Ch)

Field Name	Bit Field	Function
tc_en	15:14	Temp comp enable and mode
		2'b00: disable temp comp
		2'b01: enable closed loop temp comp
		2'b10: enable open loop temp comp - manual mode
		2'b11: enable open loop temp comp - automatic mode
tbl_sel	13:12	Temp comp table selection
		2'b00: table 0
		2'b01: table 1
		2'b10: table 2
		2'b11: table 3
fc_en	11	Temp comp fast charge (0=enabled, 1=disabled)
filtr_ctrl	10:9	Temp comp filter control
		2'b0x: filter state automatically controlled
		2'b10: filter always connected
		2'b11: filter always bypassed
ref_sel	8	Reference selection for closed loop mode (0=fixed,
	-	1=variable)
ext_filt	1	External filter cap option (0=no external cap, 1=external
		cap connected)
ldo_by	6	lemp comp voltage regulator control (0=regulator
	_	engaged, 1=regulator bypassed)
v_test	5	Temp comp test mode (U=disabled 1=enabled)

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLARIS[®] 107AL RADIO[®] and UtimateBlue[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks are the property of their respective owners. 6:2012, RF Micro Devices, Inc.

4.1.30 DEV_CTRL - Readback register and RSM Control (1Dh)

Field Name	Bit Field	Function
readsel	15:12	Controls what is readback through the READBACK register: 0000 > dev_id,mrev_id 0001 > lock,ct_cal,cp_cal,ct_failed 0010 > v0_cal,v1_cal 0011 > rsm_state,freqerrflag 0100 > vco_count_l[15:0] 0101 > vco_count_h[31:16] 0110 > cal_fbi,cal_fbq 0111 > vco_sel, tc_curve other > 0
rsmst	11	When this bit is high the PLL state machine stops in the state rsmstopstate
rsmstopst	10:6	This field defines the state we stop the state machine in when rsmst=1
сри	5	Charge pump to pump up: 0=normal operation, 1=pump
cpd	4	Charge pump to pump down: 0=normal operation, 1=pump down
dac	3	DAC test
ctclk	2	1=ct_clk is forced to always on, 0=clock turns on/off with state machine
bypas	1	If high, offsets mixer so that LO signal can be viewed at mixer output
n/a	0	

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLARIS[®] 10TAL RADIO[®] and UtimateBlue[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and loensed for use by RFMD. All other trade names, trademarks are the property of their respective owners. 6:2012, RF Micro Devices, Inc.

4.1.31 TEST - Test register (1Eh)

Field Name	Bit Field	Function
ten	15	Enables test mode
tmux	14:12	Test mux
tsel	11:10	
lfsr	9	Test mode, when high LFSR sclk is forced to always on and Ifsr is enabled, when low it turns on/off with state machine
lfsrp	8	When high the phase (polarity) of lfsr_sclk is inverted relative to fr_clk
lfsrgatet	7:4	This sets the duration of the LFSR test timer (for production test), the number of fr_clk cycles=2^(10+lfsr_test_gate_time) (2^10 to 2^26 cycles). Intended for production test it could be used as a very accurate, but slow, lock detect
lfsrt	3	Self Clearing Bit. When this bit is set high LFSR BIST/Frequency Counter runs, and is self cleared when complete
rgbyp	2	Internal regulator bypass 1=bypassed
rcbyp	1	VCO Bias RC filter bypass 1=bypassed
lfsrd	0	LFSR detect mode

4.1.32 READBACK - Readback Register (1Fh)

Function
DEV_CTRL:readsel=0000
Device identification
Chip revision
DEV_CTRL: readsel=0001
Synthesizer lock bit, can be routed to GPO4
Course tune calibration value
KV calibration charge pump current value
Coarse tune calibration flag (1=CT cal failed)
DEV_CTRL: readsel=0010
Min tuning voltage during cal
Max tuning voltage during cal
DEV_CTRL: readsel=0011
State machine operating state
Flag indicating incorrect frequency
DEV_CTRL: readsel=0100
DEV_CTRL: readsel=0101
DEV_CTRL: readsel=0110 [RFMD208x only]
I-channel DC offset calibration complete flag
Q-channel DC offset calibration complete flag
DEV_CTRL:readsel=0111
Selected VCO
Selected temperature compensation curve

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLARIS[™] TOTAL RADIO[™] and UtimateBlue[™] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2012, RF Micro Devices, Inc.

4.2 DEFAULT REGISTER SETTINGS

#	Reg name	Revision 1	Revision 2
00	LF	OxBEFA	OxBEFA
01	хо	0x4064	0x4064
02	CAL_TIME	0x9055	0x9055
03	VCO_CTRL	0x2D02	0x2D02
04	CT_CAL1	0xB0BF	OxACBF
05	CT_CAL2	0xB0BF	OxACBF
06	PLL_CAL1	0x0028	0x0028
07	PLL_CAL2	0x0028	0x0028
08	VCO_AUTO	0xFC06	0xFF00
09	PLL_CTRL	0x8220	0x8220
0A	PLL_BIAS	0x0202	0x0202
0B	MIX_CONT	0x4800	0x4800
0C	P1_FREQ1	0x2324	0x1A94
0D	P1_FREQ2	0x6276	0xD89D
0E	P1_FREQ3	0x2700	0x8900
0F	P2_FREQ1	0x2F16	0x1E84
10	P2_FREQ2	0x3B13	0x89D8
11	P2_FREQ3	0xB100	0x9D00
12	FN_CTRL	0x2A80	0x2A80
13	EXT_MOD	0x0000	0x0000
14	FMOD	0x0000	0x0000
15	SDI_CTRL	0x0000	0x0000
16	GPO	0x0000	0x0000
17	T_VCO	n/a	0x4900
18	IQMOD1	0x0283	0x0281
19	IQMOD2	0xF00F	0xF00F
1A	IQMOD3	0x0000	0x0000
1B	IQMOD4	0x000F	0x0005
1C	T_CTRL	n/a	0xC840
1D	DEV_CTRL	0x1000	0x1000
1E	TEST	0x0001	0x0005

Revision 1 devices (mrev_id = 001): RFFC2071/2072/5071/5072, RFMD2080/2081 Revision 2 devices (mrev_id = 010): RFFC2071A/2072A/5071A/5072A

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PoweStar[®], POLABIS[™] 10TAL RADIO[™] and UtimateBlue[™] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2012, RF Micro Devices, Inc.

5. REFERENCES

- 1. RFMD company web site (<u>http://www.rfmd.com</u>)
- 2. RFMD Integrated Synthesizer and Mixer web site (http://rfmd.com/products/IntSynthMixer/)
- 3. Integrated Synthesizer/Mixer Evaluation Board and GUI User Guide
- 4. Integrated Synthesizer/Mixer Programming Guide
- 5. Integrated Synthesizer and Modulator web site (http://www.rfmd.com/products/IntSynthModulator/)
- 6. IQ Modulator Programming Guide (RFMD2080/2081)

RF MICRO DEVICES[®], RFMD[®], Optimum Technology Matching[®], Enabling Wireless Connectivity[®], PowerStar[®], POLARIS[®] TOTAL RADIO[®] and UtimateBlue[®] are trademarks of RFMD. LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2012, RF Micro Devices, Inc.