

Reliability Report

SGA/SGC Series in SOT-86 Package

SnPb Plated

SGA-2186 SGA-2286 SGA-2386 SGA-2486	SGA-3286 SGA-3386 SGA-3486 SGA-3586	SGA-4186 SGA-4286 SGA-4386 SGA-4486	SGA-5286 SGA-5386 SGA-5486 SGA-5586	SGA-6286 SGA-6386 SGA-6486
		SGA-4586		

Matte Sn, RoHS Compliant

SGA-2186Z SGA-2286Z SGA-2386Z SGA-2486Z	SGA-3286Z SGA-3386Z SGA-3486Z SGA-3586Z	SGA-4186Z SGA-4286Z SGA-4386Z SGA-4486Z	SGA-5286Z SGA-5386Z SGA-5486Z SGA-5586Z	SGA-6286Z SGA-6386Z SGA-6486Z	SGC-2386Z SGC-2486Z SGC-4386Z SGC-4486Z	
		SGA-4586Z			SGC-6386Z	

303 S. Technology Ct, Broomfield CO, 80021

Phone: (800) SMI-MMIC

http://www.sirenza.com

Document RQR-105584 Rev A

I. Overview

This reliability report describes the reliability test conditions and results for the SGA and SGC series of Transistors and Gain Blocks. The data is comprised of initial qualification tests and reliability monitoring tests. These tests include humidity (autoclave), extreme hot and cold environments (temperature cycling), moisture sensitivity (MSL-1 and solder reflow testing).

II. Introduction

Sirenza Microdevices' SGA family are Silicon Germanium (SiGe) Gain Blocks that offer benefits not attainable with conventional silicon bipolar technologies. This family of products offer lower power consumption, high output power at high efficiency, high integration levels, at low cost.

Sirenza Microdevices SGC family of products are low cost, high performance SiGe HBT gain blocks. These Darlington designs contain a patented active bias network that provides stable current over temperature and process variations.

III. Fabrication Technology

These amplifiers are manufactured using a Silicon Germanium Heterojunction Bipolar Transistor (HBT) technology. This self-aligned emitter, double poly HBT process has been in production by our foundry since 1998. The process has been successfully used for a wide range of RFIC products including GSM PAs, DECT front end transceivers, LNAs & VCOs. This process offers comparable performance to GaAs HBTs with the added advantages of mature and high producible Silicon wafer processing.

IV. Package Type

These SGA/SGC products are packaged in a plastic encapsulated SOT-86 package that is assembled using a highly reproducible automated assembly process. The "Z' designates a lead-free lead frame using matte Tin plated leads and Green molding compound. The die is mounted using an industry standard thermally and electrically conductive silver epoxy.

V. Qualification Methodology

The Sirenza Microdevices qualification process consists of a series of tests designed to stress various potential failure mechanisms. This testing is performed to ensure that Sirenza Microdevices products are robust against potential failure modes that could arise from the various die and package failure mechanisms stressed. The qualification testing is based on JEDEC test methods common to the semiconductor industry. A FMEA approach is used to determine the test methods to be included in the qualification plan. The manufacturing test specifications are used as the PASS/FAIL criteria for initial and final DC/RF tests.

VI. Qualification Family

The SGA/SGC products use the same IC technology, process and materials, as well as the assembly process and materials. All parts numbers listed on the cover page are categorized as on qualification family and are qualified by association when one family member successfully completes qualification.

VII. Operational Life Testing

Sirenza Microdevices defines operational life testing as a DC biased elevated temperature test performed at the maximum operational junction temperature limit. For the SGA/SGC family, the maximum operational temperature limit is 150°C. The purpose of the operational life test is to statistically show that the product operated at its maximum operational ratings will be reliable by operating several hundred devices for a total time of 1000 hours. The results for this test are expressed in device hours that are calculated by multiplying the total number of devices passing the test by the number of hours tested.

VIII. Moisture Sensitivity Level - MSL Level 1 Device

The SGA/SGC family of products have successfully completed 168 hours of moisture soak (85°C/85%RH), followed by three passes through a convection reflow oven at 270°C (Z versions), or at 235°C (non-Z versions). The successful completion of this test classifies the part as JESD 22-A113B Moisture Sensitivity Level 1 (MSL-1). MSL-1 indicates that no special dry pack requirements or time limits from opening of static bag to reflow exist for these products. MSL-1 is highest level of moisture resistance that a device can be classified according to the above mentioned standard.

IX. Electrostatic Discharge Classification

Sirenza Microdevices classifies Human Body Model (HBM) electrostatic discharge (ESD) according to the JESD22-A114 convention. All pin pair combinations were tested. Each pin pair is stressed at one static voltage level using 1 positive and 1 negative pulse polarity to determine the weakest pin pair combination. The weakest pin pair is tested with 3 devices below and above the failure voltage to classify the part. The Pass/Fail status of a part is determined by the manufacturing test specification. The ESD class quoted indicates that the device passed exposure to a certain voltage, but does not pass the next higher level. The following table indicates the JESD ESD sensitivity classification levels.

Class	Passes	Fails
0	0 V	<250 V
1A	250 V	500 V
1B	500 V	1000 V
1C	1000 V	2000 V
2	2000 V	4000 V

Part Number	ESD Rating
SGA-2186/2186Z	1A
SGA-2386/2386Z	0
SGA-2486/2486Z	0
SGA-3x86/3x86Z	0
SGA-4186/4186Z	1A
SGA-4286/4286Z	1A
SGA-4486/4486Z	1A
SGA-4586/4586Z	1A
SGA-5286/5286Z	1A
SGA-5486/5486Z	1B
SGA-6486/6486Z	1A
SGA-6586/6586Z	1A

X. Operational Life Test Results

Date	Test Duration	Junction Temperature	Quantity	Device Hours
Q1-00	1000 hrs	125°C	398	398,000
Q3-00	1000 hrs	150°C	42	42,000
Q4-00	1000 hrs	150°C	60	60,000
Q2-02	1000 hrs	150°C	42	42,000
Q4-02	1000 hrs	150°C	42	42,000
Q3-03	1000 hrs	150°C	20	20,000
Q4-04	1000 hrs	150°C	40	40,000
Q4-04 (Z)	1000 hrs	150°C	80	80,000

XI. Qualification Test Results						
Group	Test Name	Test Condition/ Standard	Sample Size	Results		
В	Preconditioning ⁽¹⁾	MSL1 Reflow @ 235°C Peak JESD22-A113C (Non-Z version)	1480	Pass		
		MSL1 Reflow @ 270°C Peak JESD22-A113C (Z version)	305	Pass		
B1a	Temperature Cycling	Air to Air, Soldered on PCB -65°C to 150°C 10 min dwell, 1 min transition 1000 cycles JESD22-A104B (Non-Z version)	13 ⁽²⁾	Pass		
		Air to Air, Soldered on PCB -65°C to 150°C 10 min dwell, 1 min transition 1000 cycles JESD22-A104B (Z version)	40	Pass		
В3	Temperature Cycle	-65°C to +150°C 10 min dwell, 1 min transition 500 cycles JESD22-A104B (Non-Z version)	371	Pass		
		-65°C to +150°C 10 min dwell, 1 min transition 1000 cycles JESD22-A104B (Z version)	30	Pass		

⁽¹⁾ Preconditioning for Test Groups Bxx

^{(2) 1} unit removed for bond defect (FA04173)

XI. Qualification Test Results					
Group	Test Name	Test Condition/ Standard	Sample Size	Results	
B1b	High Temperature Operating Life	Tj = 150°C ⁽³⁾ 1000 hours JESD22-A108B (Non-Z version)	644	Pass	
		Tj = 150°C 1000 hours JESD22-A108B (Z version)	80	Pass	
B1c	HAST	Tamb=110°C, 85%RH Biased, 264 hours JESD22-A110B (Non-Z version)	10	Pass	
Віс		Tamb=110°C, 85%RH Biased, 264 hours JESD22-A110B (Z version)	25	Pass	
B2	Autoclave	Tamb=121°C, 100%RH Un-Biased, 96 hours JESD22-A102C (Non-Z version)	269	Pass	
		Tamb=121°C, 100%RH Un-Biased, 96 hours JESD22-A102C (Z version)	30	Pass	

^{(3) 398} units were done at Tj=125C

XI. Qualification Test Results						
Group	Test Name	Test Condition/ Standard	Sample Size	Results		
B1d	Power Temperature Cycle	-40°C to +85°C Cycled bias (5' on/5'off) 1000 cycles JESD22-A109A (Non Z version)	10	Pass		
		-40°C to +85°C Cycled bias (5' on/5'off) 1000 cycles JESD22-A109A (Z version)	30	Pass		
С	Low Temperature Storage	Tamb=-40°C 1000 hours (Non Z version)	20	Pass		
		Tamb=-40°C 1000 hours (Z version)	40	Pass		
D	High Temperature Storage	Tamb=150°C 1000 hours JESD22-A103B (Non Z version)	218	Pass		
		Tamb=150°C 1000 hours JESD22-A103B (Z version)	40	Pass		

XI. Qualification Test Results							
Group	Test Name	Test Condition/ Standard	Sample Size	Results			
F	Tin Whisker	Tamb=60°C, 90%RH 2600 hours	10	Pass			
		Dip & Look Steam Age Condition C Dip Condition A, 215°C JESD22-B102C (Non-Z version)	59	Pass			
К	Solderability	Dip & Look Steam Age Condition C Dip Condition A, 215°C JESD22-B102C (Z version)	15	Pass			
		Dip & Look Steam Age Condition C Dip Condition B, 245°C JESD22-B102C (Z version)	15	Pass			

XII. Junction Temperature Determination

One key issue in performing qualification testing is to accurately determine the junction temperature of the device. Sirenza Microdevices uses a 3um spot size emissivity corrected infrared camera measurement to resolve the surface temperature of the device at the maximum operational power dissipation. Results are displayed below for the SGA-6486 and SGA-6586Z.

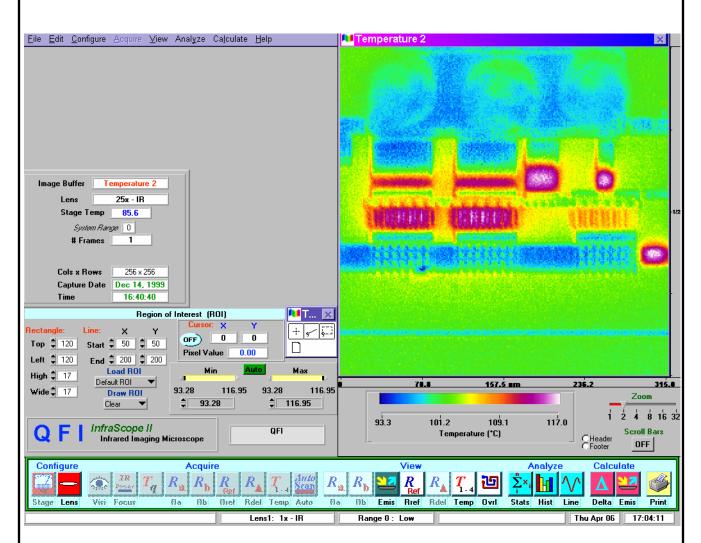


Figure 1: Infrared Thermal Image of SGA-6486, Vd = 4.65V, Id = 80.3mA, Tlead = 85.5°C

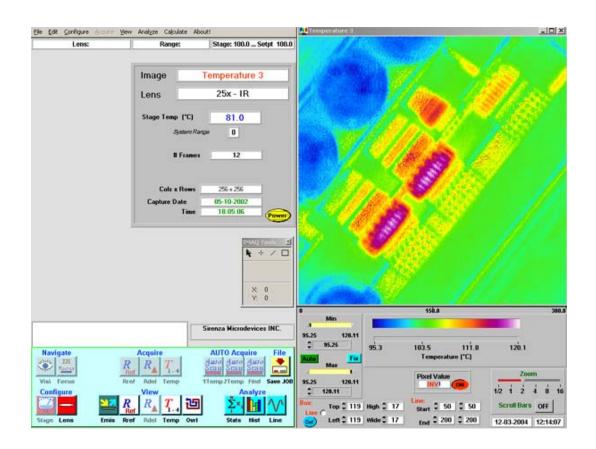


Figure 2: Infrared Thermal Image of SGA-6586Z, Vd = 4.50V, Id = 80.2mA, Tlead = 84.5°C

