RFMD IN

BROADBAND MEDIUM POWER (HIGH ISOLATION) SPDT SWITCH

Package Style: QFN, 6-pin, 2mmx1.3mm

RF1128

- Excellent Linearity:
 IIP2 > 108dBm (Typ.)
 IIP3 > 67dBm (Typ.)
- P0.1dB:32dBm (Typ.)
- Compact Footprint (2.0mmx1.3mmx0.35mm, 6-pin QFN)

Applications

- Cellular Handset Applications
- Antenna Tuning Applications
- Multi-mode GSM, W-CDMA Applications
- WLAN Applications

Functional Block Diagram

Product Description

The RF1128 is a single-pole double-throw (SPDT) switch designed for general purpose switching applications which require very low insertion loss and high power handling capability. The RF1128 is ideally suited for battery operated applications requiring high performance switching with very low DC power consumption. The RF1128 features very low insertion loss, broadband isolation and excellent linearity performance, and is operable from 1.8V to 3.3V control voltage. It is fabricated with 0.5 μ m GaAs pHEMT process, and is packaged in a very compact 2mmx1.3mm, 6-pin, leadless QFN package.

Ordering Information

RF1128Broadband Medium Power (High Isolation) SPDT SwitchRF1128PCBA-410Fully Assembled Evaluation Board

Optimum Technology Matching® Applied

🗌 GaAs HBT	□ SiGe BiCMOS	🗹 GaAs pHEMT	🗌 GaN HEMT
GaAs MESFET	Si BiCMOS	Si CMOS	□ RF MEMS
🗌 InGaP HBT	SiGe HBT	🗌 Si BJT	

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^M, PowerStar®, POLARIS^M TOTAL RADIO^M and UltimateBlue^M are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. @2006. RF Micro Devices. Inc.

7628 Thorndike Road, Greensboro, NC 27409-9421. For sales or technical support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.

Absolute Maximum Ratings

Parameter	Rating	Unit
Voltage	6.0	V
Maximum Input Power (0.6GHz to 3.5GHz), RF1, RF2, 50Ω	+34	dBm
Operating Temperature	-30 to +85	°C
Storage Temperature	-65 to +100	°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

RoHS status based on EUDirective2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Devementer	Specification		Unit	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition	
					VRF1, VRF2=High=3V, VRF1=VRF2=Low=0V, Temp=25°C	
Operating Frequency	600		3500	MHz		
Insertion Loss						
RFC - RF1, RFC - RF2		0.25	0.35	dB	RF ON, 50 MHz to 600 MHz	
		0.35	0.50	dB	RF ON, 824 MHz to 960 MHz	
		0.40	0.55	dB	RF ON, 1850 MHz to 1990 MHz	
		0.45	0.60	dB	RF ON, 2170 MHz to 2500 MHz	
		0.55	0.70	dB	RF ON, 3500 MHz	
RF Isolation						
RF1 - RF2 and RF2 - RF1	27	29		dB	RF ON, 600MHz	
	25	27		dB	RF ON, 824 MHz to 960 MHz	
	29	31		dB	RF ON, 1850MHz to 1990MHz	
	32	34		dB	RF ON, 2170MHz to 2500MHz	
RFC - RF1, RFC - RF2	27	29		dB	RF ON, 600MHz	
	25	27		dB	RF ON, 824 MHz to 960 MHz	
	28	30		dB	RF ON, 1850 MHz to 1990 MHz	
	31	33		dB	RF ON, 2170MHz to 2500MHz	
RF Port Return Loss						
VSWR			1.5:1			
880MHz Harmonics						
Second Harmonic	70	91		dBc	P _{IN} =26dBm; F ₀ =880MHz	
Third Harmonic	70	91		dBc	P _{IN} =26dBm; F ₀ =880MHz	
1880 MHz Harmonics						
Second Harmonic	70	85		dBc	P _{IN} =26dBm; F ₀ =1880MHz	
Third Harmonic	70	88		dBc	P _{IN} =26dBm; F ₀ =1880MHz	
2500 MHz Harmonics						
Second Harmonic	70	82		dBc	P _{IN} =26dBm; F ₀ =2500MHz	
Third Harmonic	70	86		dBc	P _{IN} =26dBm; F ₀ =2500MHz	

Baramatar		Specification		linit	Condition
Farameter	Min.	Тур.	Max.	Unit	Condition
IIP2					
RF1, RF2 - ANT Cell	104	111		dBm	Tone 1: 836.5MHz @ 16dBm, Tone 2: 1718MHz @ -20dBm, Receive Freq: 881.5MHz
RF1, RF2 - ANT AWS	105	111		dBm	Tone 1: 1732.5MHz @ 16dBm, Tone 2: 3865MHz @ -20dBm, Receive Freq: 2132.5MHz
RF1, RF2 - ANT PCS	104	108		dBm	Tone 1: 1880MHz @ 16dBm, Tone 2: 3840MHz @ -20dBm, Receive Freq: 1960MHz
IIP3					
RF1, RF2 - ANT Cell	65	68		dBm	Tone 1: 836.5MHz @ 16dBm, Tone 2: 791.5MHz @ -20dBm, Receive Freq: 881.5MHz
RF1, RF2 - ANT IMT	65	67		dBm	Tone 1: 1950 MHz @ 16dBm, Tone 2: 1760 MHz @ -20dBm, Receive Freq: 2140 MHz
Input Power at 0.1dB					
Compression Point					
		32		dBm	
Switching Speed					
			600	ns	50% to 90% RF ON, 50% to 10% RF OFF
DC Supply					
VRF1 and VRF2 (H)	2.85	3.0	3.30	V	
VRF1 and VRF2 (L)	0.00		0.40	V	
Control Current			6.00	uA	

Control Logic

	Control	Signals	Signal Paths		
	VRF1	VRF2	RF1-RFC	RF2-RFC	
Valid States	1	0	ON	OFF	
	0	1	OFF	ON	
Invalid States	0	0	Indeterminate State*		
	1	1	Indeterminate State*		

0: Logic level low, 0V~0.4V

1: Logic level high, 2.85V~3.3V

Note: In indeterminate states, both signal paths are ON with degraded performance.

For low power applications, RF1128 is operable at 1.8V control voltage with no significant change to the Insertion Loss, Return Loss, and Isolation performance.

Pin	Function	Description
1	RF1	RF Port 1.
2	GND	Ground.
3	RF2	RF Port 2.
4	VRF1	Control 1.
5	RFC	Antenna.
6	VRF2	Control 2.
Pkg	GND	Ground.
Base		

Package Drawing

Notes:

Evaluation Board Schematic

Typical Performance Data on Evaluation Board

Note: Fixture losses have been de-embedded (Temp=25°C, VRF1=VRF2=High=3V, VRF1=VRF2=Low=0V)

Antenna-to-Port Isolation (Temperature=25°C, VRF(H)=3V)

