

Product Description

Product Specification

PE9704

3000 MHz UltraCMOS[®] Integer-N PLL Radiation Tolerant for Space Applications

Features

- 3000 MHz operation
- ÷10/11 dual modulus prescaler
- Phase detector output
- Serial interface or hardwired programmable
- Ultra-low phase noise
- SEU < 10⁻⁹ errors / bit-day
- 100 kRad(Si) total dose
- 44-lead CQFJ

space PLLs. The PE9704 features a ÷10/11 dual modulus prescaler, counters, and a phase comparator as shown in *Figure 1*. Counter values are programmable through a serial interface,

Peregrine's PE9704 is a high-performance integer-N PLL

is designed for superior phase noise performance while providing an order of magnitude reduction in current

consumption, when compared with existing commercial

capable of frequency synthesis up to 3000 MHz. The device

The PE9704 is optimized for commercial space applications. Single event latch up (SEL) is physically impossible and Single event upset (SEU) is better than 10⁻⁹ errors per bit / day. It is manufactured on Peregrine's UltraCMOS[®] process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering excellent RF performance and intrinsic radiation tolerance.

Figure 1. Block Diagram

and can also be directly hard wired.

Table 1. Pin Descriptions

Pin No.	Pin Name	Interface Mode	Туре	Description
1	V _{DD}	Both	Note 1	Power supply input. Input may range from 2.85–3.15V. Bypassing recommended.
2	R ₀	Direct	Input	R counter bit0.
3	R ₁	Direct	Input	R counter bit1.
4	R ₂	Direct	Input	R counter bit2.
5	R_3	Direct	Input	R counter bit3.
6	GND	Both	Note 1	Ground.
7	R_4	Direct	Input	R counter bit4.
8	R₅	Direct	Input	R counter bit5 (MSB).
9	Mo	Direct	Input	M counter bit0.
10	M ₁	Direct	Input	M counter bit1.
11	V _{DD}	Both	Note 1	Same as pin 1.
12	V _{DD}	Both	Note 1	Same as pin 1.
13	M ₂	Direct	Input	M counter bit2.
14	M ₃	Direct	Input	M counter bit3.
15	S_WR	Serial	Input	Frequency register load enable input. Buffered data is transferred to the frequency register on S_WR rising edge.
	M ₄	Direct	Input	M counter bit4.
16	DATA	Serial	Input	Binary serial data input. Data is entered LSB first, and is clocked serially into the 20-bit frequency control register (E_WR "low") or the 8-bit enhancement register (E_WR "high") on the rising edge of CLOCK.
	M_5	Direct	Input	M counter bit5.

Table 1. Pin Descriptions (continued)

Pin No.	Pin Name	Interface Mode	Туре	Description
17	GND	Both		Ground.
18	CLOCK	Serial	Input	Clock input. Data is clocked serially into either the 20-bit primary register (E_WR "low") or the 8-bit enhancement register (E_WR "high") on the rising edge of CLOCK.
	M ₆	Direct	Input	M counter bit6.
19	M7	Direct	Input	M counter bit7.
20	M ₈	Direct	Input	M counter bit8 (MSB).
21	A ₀	Direct	Input	A counter bit0.
22	D _{MODE}	Both	Input	Selects direct interface mode (D _{MODE} =1) or serial interface mode (D _{MODE} =0).
23	V _{DD}	Both	Note 1	Same as pin 1.
24	E_WR	Serial	Input	Enhancement register write enable. While E_WR is "high", DATA can be serially clocked into the enhancement register on the rising edge of CLOCK.
	A ₁	Direct	Input	A counter bit1.
25	A ₂	Direct	Input	A counter bit2.
26	A ₃	Direct	Input	A counter bit3 (MSB).
27	F _{IN}	Both	Input	RF prescaler input from the VCO. 3.0 GHz maximum frequency.
28	GND	Both		Ground.
29	GND	Both		Ground.
30	N/C			No connect.
31	С	Both	Note 1	Same as pin 1.
32	D _{OUT}	Serial	Output	Data Out. The main counter output, R counter output, or dual modulus prescaler select (MSEL) can be routed to D_{OUT} through enhancement register programming.
33	С	Both	Note 1	Same as pin 1.
34	N/C			No connect.
35	GND	Both		Ground.
36	PD_D	Both	Output	$PD_{\overline{D}}$ pulses down when f_p leads f_c .
37	PD_U	Both		$PD_{-}\overline{U}$ pulses down when f_c leads f_p .
38	V _{DD}	Both	Note 1	Same as pin 1.
39	C _{EXT}	Both	Output	Logical "NAND" of PD_U and PD_D, passed through an on-chip, 2 k Ω series resistor. Connecting C _{EXT} to an external capacitor will low pass filter the input to the inverting amplifier used for driving LD.
40	GND	Both		Ground.
41	GND	Both		Ground.
42	F _R	Both	Input	Reference frequency input.
43	ENH	Both	Output, OD	Enhancement mode. When asserted low ("0"), enhancement register bits are functional.
44	LD	Serial	Output	Lock detect output, the open-drain logical inversion of C _{EXT} . When the loop is locked, LD is high impedance; otherwise LD is a logic low ("0").

Notes: 1. V_{DD} pins 1, 11, 12, 23, 31, 33, 35 and 38 are connected by diodes and must be supplied with the same positive voltage level. 2. All digital input pins have 70 k Ω pull-up resistors to V_{DD} .

Table 2. Absolute Maximum Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V _{DD}	Supply voltage	-0.3	4.0	V
Vi	Voltage on any input	-0.3	V _{DD} + 0.3	V
I _I	DC into any input	-10	+10	mA
Ιo	DC into any output	-10	+10	mA
T _{STG}	Storage temperature range	-65	+150	°C

Table 3. Operating Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V _{DD}	Supply voltage	2.85	3.15	V
T _A	Operating ambient temperature range	-40	+85	°C

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating ranges maximum and absolute maximum for extended periods may reduce reliability.

Table 4. ESD Ratings

Symbol	Parameter/Condition	Level	Unit
V _{ESD}	ESD voltage (Human Body Model)*	1000	V

Note: * Periodically sampled, not 100% tested. Tested per MIL-STD-883, M3015 C2.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating in *Table 4*.

Latch-Up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

ELDRS

UltraCMOS devices do not include bipolar minority carrier elements and therefore do not exhibit enhanced low dose rate sensitivity.

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
I _{DD}	Operational supply current; Prescaler disabled Prescaler enabled	V _{DD} = 2.85–3.15V		10 24	31	mA mA	
Digital inputs	s: all except F_{R} , F_{IN} (all digital inputs have	e 70 kΩ pull-up resistors)					
V _{IH}	High level input voltage	V _{DD} = 2.85–3.15V	0.7 x V _{DD}			V	
V _{IL}	Low level input voltage	V _{DD} = 2.85–3.15V			$0.3 \times V_{DD}$	V	
I _{IH}	High level input current	$V_{IH} = V_{DD} = 3.15V$			1	μA	
I _{IL}	Low level input current	$V_{IL} = 0, V_{DD} = 3.15V$	-70			μA	
Reference di	vider input: F _R		i i				
I _{IHR}	High level input current	$V_{IH} = V_{DD} = 3.15V$			+100	μA	
I _{ILR}	Low level input current	$V_{IL} = 0, V_{DD} = 3.15V$	-100			μA	
Counter and	phase detector outputs: f _c , f _p .		I				
V _{OLD}	Output voltage LOW	I _{OUT} = 6 mA			0.4	V	
V _{OHD}	Output voltage HIGH	I _{ОUT} = –3 mA	V _{DD} -0.4			V	
ock detect	outputs: C _{EXT} , LD		i i				
V _{OLC}	Output voltage LOW, C _{EXT}	I _{OUT} = 100 μA			0.4	V	
V _{OHC}	Output voltage HIGH, C _{EXT}	I _{OUT} = −100 μA	V _{DD} -0.4			V	
V _{OLLD}	Output voltage LOW, LD	I _{OUT} = 6 mA			0.4	V	

Table 5. DC Characteristics: V_{DD} = 3.0V, -40 °C < T_A < +85 °C, unless otherwise specified

^{©2010-20115} Peregrine Semiconductor Corp. All rights reserved.

Table 6. AC Characteristics: V_{DD} = 3.0V, -40 °C < T_A < +85 °C, unless otherwise specified

Symbol	Parameter	Condition	Min	Max	Unit
Control interfa	ace and latches (see <i>Figures 1</i> and <i>3</i>)				1
f _{Clk}	CLOCK Serial data clock frequency	Note 1		10	MHz
t _{ClkH}	CLOCK Serial clock HIGH time		30		ns
t _{ClkL}	CLOCK Serial clock LOW time		30		ns
t _{DSU}	DATA set-up time after CLOCK rising edge		10		ns
t _{DHLD}	DATA hold time after CLOCK rising edge		10		ns
t _{PW}	S_WR pulse width		30		ns
t _{CWR}	CLOCK rising edge to S_WR rising edge		30		ns
t _{CE}	CLOCK falling edge to E_WR transition		30		ns
t _{WRC}	S_WR falling edge to CLOCK rising edge		30		ns
t _{EC}	E_WR transition to CLOCK rising edge		30		ns
t _{MDO}	MSEL data out delay after FIN rising edge	C _L = 12 pf		8	ns
Main divider (i	including prescaler)				1
F _{IN}	Operating frequency		500	3000	MHz
P _{F_IN}	Input level range	External AC coupling	-5	5	dBm
Main divider (prescaler bypassed)				1
F _{IN}	Operating frequency		50	300	MHz
P _{F_IN}	Input level range	External AC coupling	-5	5	dBm
Reference div	ider		-	1	l
F _R	Operating frequency	Note 3		100	MHz
P_{F_R}	Reference input power (Note 2)	Single-ended input	-2		dBm
Phase detecto	br		- 1	1	J.
f _c	Comparison frequency	Note 3		20	MHz

Notes: 1. f_{clk} is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify f_{clk} specification.

2. CMOS logic levels can be used to drive reference input if DC coupled. Voltage input needs to be a minimum of 0.5 V_{p-p}.

3. Parameter is guaranteed through characterization only and is not tested.

Functional Description

The PE9704 consists of a prescaler, counters, a phase detector and control logic. The dual modulus prescaler divides the VCO frequency by either 10 or 11, depending on the value of the modulus select. Counters "R" and "M" divide the reference and prescaler output, respectively, by integer values stored in a 20-bit register. An additional counter ("A") is used in the modulus select logic. The phase-frequency detector generates up and down frequency control signals. The control logic includes a selectable chip interface. Data can be written via a serial bus or hardwired directly to the pins. There are also various operational and test modes and a lock detect output.

Main Counter Chain

Normal Operating Mode

Setting the PB control bit "low" enables the $\div 10/11$ prescaler. The main counter chain then divides the RF input frequency (F_{IN}) by an integer derived from the values in the "M" and "A" counters.

In this mode, the output from the main counter chain (f_p) is related to the VCO frequency (F_{IN}) by the following equation:

$f_p = F_{IN} / [10 \times (M+1) + A]$	(1)
where A ≤ M + 1, 1 ≤ M ≤ 511	

When the loop is locked, F_{IN} is related to the reference frequency (F_R) by the following equation:

 $F_{IN} = [10 \times (M+1) + A] \times [F_R / (R+1)]$ (2) where $A \le M + 1$, $1 \le M \le 511$

A consequence of the upper limit on A is that F_{IN} must be greater than or equal to $90 \times [F_R / (R+1)]$ to obtain contiguous channels. The A counter can accept values as high as 15, but in typical operation it will cycle from 0 to 9 between increments in M.

Programming the M counter with the minimum allowed value of "1" will result in a minimum M counter divide ratio of "2".

Prescaler Bypass Mode

Setting the enhancement register bit PB "high" allows F_{IN} to bypass the $\div 10/11$ prescaler. In this mode, the prescaler and A counter are powered down, and the input VCO frequency is divided by the M counter directly. This mode is only available when using the serial port to set the frequency control bits. The following equation relates F_{IN} to the reference frequency F_{R} :

 $F_{IN} = (M+1) \times [F_R / (R+1)]$ (3) where $1 \le M \le 511$

Reference Counter

The reference counter chain divides the reference frequency F_R down to the phase detector comparison frequency f_c .

The output frequency of the 6-bit R counter is related to the reference frequency by the following equation:

$$f_c = F_R / (R+1)$$
 (4)
where $0 \le R \le 63$

Note that programming R with "0" will pass the reference frequency (F_R) directly to the phase detector.

Register Programming

Serial Interface Mode

Serial Interface mode is selected by setting the D_{MODE} input "low".

While the E_WR input is "low", serial data (DATA input), B_0 to B_{19} , is clocked into a buffer register on the rising edge of CLOCK, LSB (B_0) first. The contents from this buffer register are transferred into the frequency control register on the rising edge of S_WR according to the timing diagram shown in *Figure 4*. This data controls the counters as shown in *Table 7*.

While the E_WR input is "high", serial data (DATA input), B_0 to B_7 , is clocked into a buffer register on the rising edge of CLOCK, LSB (B_0) first. The contents from this buffer register are transferred

into the enhancement register on the falling edge of E_WR according to the timing diagram shown in Figure 4. After the falling edge of E_WR, the data provides control bits as shown in *Table 8*. These bits are active when the ENH input is "low".

Direct Interface Mode

Direct Interface Mode is selected by setting the D_{MODE} input "high". In this mode, the counter values are set directly at external pins as shown in *Table 7* and *Figure 2*. All frequency control register bits are addressable except PB (it is not possible to bypass the \div 10/11 dual modulus prescaler in Direct mode).

Table 7. Frequency Register Programming

Interface Mode	ENH	D _{MODE}	R₅	R ₄	M ₈	M ₇	x	M ₆	M5	M4	M₃	M ₂	M ₁	Mo	R₃	R ₂	R ₁	R ₀	A ₃	A ₂	A 1	A ₀
Serial*	1	0	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	B ₉	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	B ₁₆	B ₁₇	B ₁₈	B ₁₉
Direct	1	1	R₅	R_4	M ₈	M ₇	ō	M_6	M_5	M_4	M ₃	M ₂	M ₁	Mo	R ₃	R ₂	R ₁	R ₀	A ₃	A ₂	A ₁	A ₀

Note: * Data is clocked serially on CLOCK rising edge while E_WR is "low" and transferred to frequency register on S_WR rising edge.

(last in) LSB

Table 8. Enhancement Register Programming

Interface Mode	ENH	D _{MODE}	Reserved ¹	Reserved ¹	fp output	Power down	Counter Ioad	MSEL output	fc output	РВ
Serial ²	0	х	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇

Notes: 1. Program to 0.

2. Data is clocked serially on CLOCK rising edge while E_WR is "low" and transferred to frequency register on S_WR rising edge.

(last in) LSB

Figure 4. Serial Interface Mode Timing Diagram

Enhancement Register

The functions of the enhancement register bits are shown below. All bits are active high. Operation is undefined if more than one output is sent to D_{OUT} .

Table 9. Enhancement	Register Bit	Functionality
----------------------	---------------------	---------------

	Bit Function	Description
Bit 0	Reserved*	
Bit 1	Reserved*	
Bit 2	f _p output	Drives the M counter output onto the D _{OUT} output.
Bit 3	Power down	Power down of all functions except programming interface.
Bit 4	Counter load	Immediate and continuous load of counter programming.
Bit 5	MSEL output	Drives the internal dual modulus prescaler modulus select (MSEL) onto the D _{OUT} output.
Bit 6	f _c output	Drives the R counter output onto the D _{OUT} output
Bit 7	PB	Allows Fin to bypass the 10/11 prescaler

Note: * Program to 0

Phase Detector Outputs

The phase detector is triggered by rising edges from the main counter (f_p) and the reference counter (f_c). It has two outputs, PD_U, and PD_D. If the divided VCO leads the divided reference in phase or frequency (f_p leads f_c), PD_D pulses "low". If the divided reference leads the divided VCO in phase or frequency (f_c leads f_p), PD_U pulses "low". The width of either pulse is directly proportional to phase offset between the two input signals, f_p and f_c . The phase detector gain is 430 mV/radian.

 PD_U and PD_D are designed to drive an active loop filter which controls the VCO tune voltage. PD_U pulses result in an increase in VCO frequency and

©2010-20115 Peregrine Semiconductor Corp. All rights reserved.

 $PD_{\overline{D}}$ results in a decrease in VCO frequency. Software tools for designing the active loop filter can be found at Peregrine's web site: www.psemi.com

Lock Detect Output

A lock detect signal is provided at pin LD, via the pin C_{EXT} (see *Figure 1*). C_{EXT} is the logical "NAND" of PD_U and PD_D waveforms, driven through a series 2 k Ω resistor. Connecting C_{EXT} to an external shunt capacitor provides integration of this signal.

The C_{EXT} signal is then sent to the LD pin through an internal inverting comparator with an open drain output. Thus LD is an "AND" function of PD_U and PD_D.

Document No. DOC-24614-2 | UltraCMOS[®] RFIC Solutions

Figure 6. Top Marking Specification

Table 10. Ordering Information

Order Code	Description	Package	Shipping Method
9704-01	Engineering samples	44-pin CQFJ	40 units / Tray
9704-11	Flight units	44-pin CQFJ	40 units / Tray
9704-00	Evaluation kit		1 / Box

Note: * The PE9704-01 devices are ES (Engineering Sample) prototype units intended for use as initial evaluation units for customers of the PE9704-11 flight units. The PE9704-01 device provides the same functionality and footprint as the PE9704-11 space qualified device, and intended for engineering evaluation only. They are tested at +25 °C only and processed to a non-compliant flow (e.g. No burn-in, non-hermetic, etc). These units are non-hermetic and are not suitable for qualification, production, radiation testing or flight use.

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

<u>Advance Information</u>: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. <u>Product Specification</u>: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

©2010-20115 Peregrine Semiconductor Corp. All rights reserved.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: <u>http://patents.psemi.com</u>.

Document No. DOC-24614-2 | UltraCMOS[®] RFIC Solutions