

Product Specification

PE9601

2200 MHz UltraCMOS[®] Integer-N PLL Radiation Tolerant for Space Applications

Features

- 2200 MHz operation
- ÷10/11 dual modulus prescaler
- Internal phase detector with charge
 pump
- Serial, parallel or hardwired programmable
- Low power –25 mA at 3.0V
- Targeted at Q3236 PLL replacement
- 100 kRad (Si) total dose
- 44-lead CQFJ

Product Description

Peregrine's PE9601 is a high-performance integer-N PLL capable of frequency synthesis up to 2200 MHz. The device is designed for superior phase noise performance while providing an order of magnitude reduction in current consumption, when compared with existing commercial space PLLs.

The PE9601 features a \div 10/11 dual modulus prescaler, counters and a phase comparator as shown in *Figure 1*. Counter values are programmable through either a serial or parallel interface and can also be directly hardwired.

The PE9601 is optimized for commercial space applications. Single event latch-up (SEL) is physically impossible and single event upset (SEU) is better than 10⁻⁹ errors per bit/day.

The PE9601 is manufactured on Peregrine's UltraCMOS[®] process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering excellent RF performance and intrinsic radiation tolerance.

Figure 1. Block Diagram

Table 1. Pin Descriptions

Pin #	Pin Name	Interface Mode	Туре	Description
1	V _{DD}	ALL	Note 1	Power supply input. Input may range from 2.85–3.15V. Bypassing recommended.
2	R ₀	Direct	Input	R counter bit0 (LSB).
3	R ₁	Direct	Input	R counter bit1.
4	R ₂	Direct	Input	R counter bit2.
5	R₃	Direct	Input	R counter bit3.
6	GND	ALL	Note 1	Ground.
7	D ₀ Parallel Input			Parallel data bus bit0 (LSB).
/	7 M ₀ Direct Input		Input	M counter bit0 (LSB).
8	D ₁	Parallel	Input	Parallel data bus bit1.
	M ₁	Direct	Input	M counter bit1.
9	D ₂	Parallel	Input	Parallel data bus bit2.
	M ₂	Direct	Input	M counter bit2.
10	D ₃	Parallel	Input	Parallel data bus bit3.
	M ₃	Direct	Input	M counter bit3.
11	V _{DD}	ALL	Note 1	Power supply input. Input may range from 2.85–3.15V. Bypassing recommended.
12	V _{DD}	ALL	Note 1	Power supply input. Input may range from 2.85–3.15V. Bypassing recommended.

Table 1. Pin Descriptions (cont.)

Pin #	Pin Name	Interface Mode	Туре	Description					
	S_WR	Serial	Input	Serial load enable input. While S_WR is "low", SDATA can be serially clocked. Primary register data are transferred to the secondary register on S_WR or Hop_WR rising edge.					
13	D ₄	Parallel	Input	Parallel data bus bit4.					
	M ₄	Direct	Input	M counter bit4.					
	SDATA	Serial	Input	Binary serial data input. Input data entered MSB first.					
14	D ₅	Parallel	Input	Parallel data bus bit5.					
	M ₅	Direct	Input	M counter bit5.					
	SCLK	Serial	Input	Serial clock input. SDATA is clocked serially into the 20-bit primary register (E_WR "low") or the 8-bit enhancement register (E_WR "high") on the rising edge of SCLK.					
15	D ₆	Parallel	Input	Parallel data bus bit6.					
	M ₆	Direct	Input	M counter bit6.					
	FSELS	Serial	Input	Selects contents of primary register (FSELS=1) or secondary register (FSELS = 0) for programming of internal counters while in Serial Interface Mode.					
16	D ₇	Parallel	Input	Parallel data bus bit7 (MSB).					
	PRE_EN	Direct	Input	Prescaler enable, active "low". When "high", F_{IN} by passes the prescaler.					
17	GND	ALL		Ground.					
18	FSELP	Parallel	Input	Selects contents of primary register (FSELP = 1) or secondary register (FSELP = 0) for programming of internal counters while in Parallel Interface Mode.					
	A ₀	Direct	Input	A counter bit0 (LSB).					
		Serial	Input	Enhancement register write enable. While E_WR is "high", SDATA can be serially clocked into the enhancement register on the rising edge of SCLK.					
19	E_WR	Parallel		Enhancement register write. D[7:0] are latched into the enhancement register on the rising edge of E_WR.					
	A ₁	Direct	Input	A counter bit1.					
20	M2_WR	Parallel	Input	M2 write. D[3:0] are latched into the primary register (R[5:4], M[8:7]) on the rising edge of M2_WR.					
	A ₂	Direct	Input	A counter bit2.					
21	Smode	Serial, Parallel	Input	Selects serial bus interface mode (Bmode = 0, Smode = 1) or Parallel Interface Mode (Bmode = 0, Smode = 0).					
	A ₃	Direct	Input	A counter bit3 (MSB).					
22	Bmode	ALL	Input	Selects direct interface mode ($\overline{Bmode} = 1$).					
23	V _{DD}	ALL	Note 1	Power supply input. Input may range from 2.85–3.15V. Bypassing recommended.					
24	M1_WR	Parallel	Input	M1 write. D[7:0] are latched into the primary register (PRE_EN, M[6:0]) on the rising edge of M1_WR.					
25	A_WR	Parallel	Input	A write. D[7:0] are latched into the primary register (R[3:0], A[3:0]) on the rising edge of A_WR.					
26	Hop_WR	Serial, Parallel	Input	Hop write. The contents of the primary register are latched into the secondary register on the rising edge of Hop_WR.					
27	F _{IN}	ALL	Input	Prescaler input from the VCO. Input voltage = 223 mV RMS for guaranteed operation.					
28	F _{IN}	ALL	Input	Prescaler complementary input. A 22pF bypass capacitor should be placed as close as possible to this pin and be connected in series with a 50Ω resistor to ground.					
29	GND	ALL		Ground.					

Table 1. Pin Descriptions (cont.)

Pin #	Pin Name	Interface Mode	Туре	Description
30	f _P	ALL	Output	Monitor pin for main divider output. Switching activity can be disabled through enhancement register programming or by floating or grounding V_{DD} pin 31.
31	V _{DD} -f _P	ALL	Note 2	V _{DD} for f _P .
32	D _{OUT}	Serial, Parallel	Output	Data out. The MSEL signal and the raw prescaler output are available on D_{OUT} through enhancement register programming.
33	V _{DD}	ALL	Note 1	Power supply input. Input may range from 2.85–3.15V. Bypassing recommended.
34	C _{EXT}	ALL	Output	Logical "OR" of PD_U and PD_D terminated through an on chip, 2 kW series resistor. Connecting C_{EXT} to an external capacitor will low pass filter the input to the inverting amplifier used for driving LD.
35	V _{DD}	ALL	Note 1	Power supply input. Input may range from 2.85–3.15 V. Bypassing recommended.
36	CP	ALL	Output	Charge pump output.
37	NC	ALL	Note 3	No connection.
38	V_{DD} -f _C	ALL	Note 2	V_{DD} for f_{C} .
39	f _C	ALL	Output	Monitor pin for reference divider output. Switching activity can be disabled through enhancement register programming or by floating or grounding V_{DD} pin 38.
40	GND	ALL		Ground.
41	GND	ALL		Ground.
42	f _R	ALL	Input	Reference frequency input.
43	LD	ALL	Output, OD	Lock detect and open drain logical inversion of C_{EXT} . When the loop is in lock, LD is high impedance, otherwise LD is a logic low ("0").
44	ENH	Serial, Parallel	Input	Enhancement mode. When asserted low ("0"), enhancement register bits are functional.

1. V_{DD} pins 1, 11, 12, 23, 33 and 35 are connected by diodes and must be supplied with the same positive voltage level. V_{DD} pins 31 and 38 are used to enable test mode and should be left floating. 2. All digital input pins have 70 k Ω pull-down resistors to ground. 3. No connect pins can be left open or floating. Notes:

Figure 4. Looking Into the Device PIN 42 – f_R

Table 2.	Absolute	Maximum	Ratings
----------	----------	---------	---------

Symbol	Parameter/Condition	Min	Max	Unit
V _{DD}	Supply voltage	-0.3	4.0	V
VI	Voltage on any input	-0.3	V _{DD} + 0.3	V
I	DC into any input	-10	+10	mA
Ιo	DC into any output	-10	+10	mA
Θ _{JC}	Theta JC		15	°C/W
TJ	Maximum junction temperature		+125	°C
T _{stg}	Storage temperature range	-65	+150	°C

Table 3. Operating Ratings

Symbol	Parameter/Condition	Min	Max	Unit
V_{DD}	Supply voltage	2.85	3.15	V
T _A	Operating ambient temperature range	-40	85	°C

Exceeding absolute maximum ratings may cause permanent device damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating ranges maximum and absolute maximum for extended periods may reduce reliability.

Table 4. ESD Ratings¹

Symbol	Parameter/Condition	Level	Unit
V _{ESD}	ESD voltage (Human Body Model) ²	1000	V

Notes: 1. Periodically sampled, not 100% tested. Tested per MIL-STD 883 M3015 C2. 2. Human Body Model (MIL-STD 883 Method 3015).

Electrostatic Discharge (ESD) Precautions When handling this UltraCMOS device, observe

the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in *Table 4*.

Latch-up Immunity

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

ELDRS

UltraCMOS devices do not include bipolar minority carrier elements and therefore do no exhibit enhanced low dose rate sensitivity.

Table 5. DC Characteristics @ V_{DD} = 3.0V, -40 $^\circ\text{C}$ < T_A < 85 $^\circ\text{C},$ unless otherwise specified

Symbol	Parameter	Parameter Test Program Name Condition		Min	Тур	Max	Unit
I _{DD}	Operational supply current; Prescaler enabled 2 GHz center frequency with 10 MHz reference input	IDD_T_oper_at_2 GHz	V _{DD} = 2.85–3.15V		24		mA
Digital inputs:	All except f_R , R_0 , F_{IN} , \overline{F}_{IN}						
V _{IH}	High level input voltage	LEVELS_"xxx"_VIH(V) where "xxx" is name of pin being tested	V _{DD} = 2.85–3.15V	$0.7 \times V_{DD}$			V
VIL	Low level input voltage	LEVELS_"xxx"_VIL(V) where "xxx" is name of pin being tested	V _{DD} = 2.85–3.15V			$0.3 \times V_{DD}$	V
IIH	High level input current (Pull-down resistor on input)	IIH_"xxx"_(A) where "xxx" is name of pin being tested	$V_{\rm IH} = V_{\rm DD} = 3.15 V$			+100	μA
IIL	Low level input current	IIL_"xxx"_(A) where "xxx" is name of pin being tested	$V_{IL} = 0, V_{DD} = 3.15V$	-1			μA
Reference div	ider input: f _R						
I _{IHR}	High level input current	IIH_FR_(A)	$V_{\rm IH} = V_{\rm DD} = 3.15 V$			+50	μA
I _{ILR}	Low level input current	IIL_FR_(A)	$V_{IL} = 0, V_{DD} = 3.15V$	-50			μA
R0 input (pull-	up resistor): R ₀						
I _{IHR}	High level input current (Pull-down resistor on input)	IIH_R0_(A)	$V_{IH} = V_{DD} = 3.15V$			+100	μA
I _{ILR}	Low level input current	IIL_R0_(A)	$V_{IL} = 0, V_{DD} = 3.15V$	-3			μA
Counter and p	whase detector outputs: f_{C} , f_{P}						
V _{OLD}	Output voltage LOW	LEVELS_"xxx"_VOL(V) where "xxx" is name of pin being tested	I _{OUT} = 6 mA			0.4	V
V _{OHD}	Output voltage HIGH	LEVELS_"xxx"_VOH(V) where "xxx" is name of pin being tested	I _{OUT} = -3 mA	V _{DD} -0.4			V
Lock detect or	utputs: C _{EXT} , LD						
V _{OLC}	Output voltage LOW, C _{EXT}	LEVELS_CEXT_VOL(V)	$I_{OUT} = 0.1 \text{ mA}$			0.4	V
V _{OHC}	Output voltage HIGH, CEXT	LEVELS_CEXT_VOH(V)	I _{OUT} = -0.1 mA	$V_{DD} - 0.4$			V
V _{OLLD}	Output voltage LOW, LD	LEVELS_LD_VOL(V)	I _{OUT} = 6 mA			0.4	V
Charge pump	output: CP						
I _{CP} – Source	Drive current	CP_src_at_0.5 VDD (A)	$V_{CP} = V_{DD} / 2$	-2.6	-2	-1.4	mA
I _{CP} – Sink	Drive current	CP_snk_at_0.5 VDD (A)	$V_{CP} = V_{DD} / 2$	1.4	2	2.6	mA
I _{CPL}	Leakage current	CP_lkg_PD_DX (A)	1.0V < V _{CP} < V _{DD} - 1.0V	-1		1	μA
I _{CP} – Source vs I _{CP} Sink	Sink vs source mismatch	CP_srcvsnk_at_0.5 VDD	$V_{CP} = V_{DD} / 2,$ $T_A = 25 \text{ °C}$			25	%
I_{CP} vs V_{CP}	Output current magnitude variation vs voltage	CP_snk_var, CP_src_var	1.0V < V _{CP} < V _{DD} - 1.0V T _A = 25 °C			25	%

Table 6. AC Characteristics @ V_{DD} = 3.0V, –40 °C < T_A < 85 °C, unless otherwise specified

Symbol	Parameter	Test Program Name	Condition	Min	Max	Unit
Control interfac	e and latches (see Figure 5 and Fig	ure 6)				
f _{CLK}	Serial data clock frequency ¹				10	MHz
t _{CLKH}	Serial clock HIGH time	t_clk_H (s)		30		ns
t _{CLKL}	Serial clock LOW time	t_clk_L (s)		30		ns
t _{DSU}	SDATA set-up time after SCLK rising edge, D[7:0] set-up time to M1_WR, M2_WR, A_WR, E_WR rising edge	t_dsu_"xxx" (s) where "xxx" is name of pin being tested		10		ns
t _{DHLD}	SDATA hold time after SCLK rising edge, D[7:0] hold time to M1_WR, M2_WR, A_WR rising edge	t_dhid_"xxx" (s) where "xxx" is name of pin being tested		10		ns
t _{PW}	S_WR, M1_WR, M2_WR, A_WR, E_WR pulse width	t_pw_"xxx" (s) where "xxx" is name of pin being tested		30		ns
t _{CWR}	SCLK rising edge to S_WR rising edge. S_WR, M1_WR, M2_WR, A_WR falling edge to Hop_WR rising edge	t_cwr_"xxx" (s) where "xxx" is name of pin being tested		30		ns
t _{CE}	SCLK falling edge to E_WR transition	t_ce (s)		30		ns
t _{wRC}	S_WR falling edge to SCLK rising edge. Hop_WR falling edge to S_WR, M1_WR, M2_WR, A_WR rising edge	t_wrc_"xxx" (s) where "xxx" is name of pin being tested		30		ns
t _{EC}	E_WR transition to SCLK rising edge	t_ec (s)		30		ns
Main divider (pr	rescaler enabled)					
F _{IN}	Operating frequency	RF_sens		200	2200	MHz
P _{F_IN}	Input level range	RF_sens	External AC coupling	0	5	dBm
Main divider (pr	escaler bypassed)					
F _{IN}	Operating frequency			20	220	MHz
P _{F_IN}	Input level range		External AC coupling	-5	5	dBm
Reference divid	er					
F _R	Operating frequency ³	Fc_sens			100	MHz
P _{FR}	Reference input power ²	Fc_sens	Single ended input	-2		dBm
Phase detector						
f _c	Comparison frequency		Note 3		20	MHz

 F_{CLK} is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify F_{CLK} specification.
 CMOS logic levels can be used to drive reference input if DC coupled. For sine wave inputs, amplitude needs to be a minimum of 0.5 V_{pp}.
 Parameter is guaranteed through characterization only and is not tested. Notes:

Functional Description

The PE9601 consists of a prescaler, counters, a phase detector, a charge pump and control logic. The dual modulus prescaler divides the VCO frequency by either 10 or 11, depending on the value of the modulus select. Counters "R" and "M" divide the reference and prescaler output, respectively, by integer values stored in a 20-bit register. An additional counter ("A") is used in the modulus select logic. The phase-frequency

detector generates up and down frequency control signals, which are implemented as a pulse width modulated current by the charge pump. The control logic includes a selectable chip interface. Data can be written via serial bus, parallel bus or hardwired direct to the pins. There are also various operational and test modes and lock detect.

Figure 5. Functional Block Diagram

Main Counter Chain

The main counter chain divides the RF input frequency (F_{IN}) by an integer derived from the user defined values in the "M" and "A" counters. It is composed of the 10/11 dual modulus prescaler, modulus select logic, and 9-bit M counter. Setting Pre_en "low" enables the 10/11 prescaler. Setting Pre_en "high" allows F_{IN} to bypass the prescaler and powers down the prescaler.

The output from the main counter chain, f_P , is related to the VCO frequency, F_{IN} , by the following equation:

 $f_P = F_{in} / [10 \times (M+1) + A]$ (1) where $A \le M + 1, M^1 0$

When the loop is locked, F_{IN} is related to the reference frequency, f_{R} , by the following equation:

$$F_{IN} = [10 \times (M+1) + A] \times [f_R / (R+1)]$$
(2)
where $A \le M + 1, M^1 0$

A consequence of the upper limit on A is that F_{IN} must be greater than or equal to $90 \times [f_R / (R+1)]$ to obtain contiguous channels. Programming the M counter with the minimum value of "1" will result in a minimum M counter divide ratio of "2".

In direct interface mode, main counter inputs M_7 and M_8 are internally forced low.

Reference Counter

The reference counter chain divides the reference frequency, $f_{\rm R}$, down to the phase detector comparison frequency, $f_{\rm C}$.

The output frequency of the 6-bit R counter is related to the reference frequency by the following equation:

$f_C = f_R / (R+1)$	(3)
where R <u>></u> 0	

Note that programming R equal to "0" will pass the reference frequency, f_R , directly to the phase detector.

In direct interface mode, R counter inputs R_4 and R_5 are internally forced low ("0").

Register Programming

Parallel Interface Mode

Parallel interface mode is selected by setting the Bmode input "low" and the Smode input "low".

Parallel input data, D[7:0], are latched in a parallel fashion into one of three, 8-bit primary register sections on the rising edge of M1_WR, M2_WR, or A_WR per the mapping shown in *Table 7*. The contents of the primary register are transferred into a secondary register on the rising edge of Hop_WR according to the timing diagram shown in *Figure 6*. Data are transferred to the counters as shown in *Table 7*.

The secondary register acts as a buffer to allow rapid changes to the VCO frequency. This double buffering for "ping-pong" counter control is programmed via the FSELP input. When FSELP is "high", the primary register contents set the counter inputs. When FSELP is "low", the secondary register contents are utilized.

The FSELP input is synchronized with the loading of the counters in order to minimize glitches in the "ping -pong" case. Due to this attribute, applications using a single register should use the secondary register (i.e., tie FSELP "low") to avoid problems with the prescaler powering up in the disabled state.

Parallel input data, D[7:0], are latched into the enhancement register on the rising edge of E_WR according to the timing diagram shown in *Figure 6*. This data provides control bits as shown in *Table 8* with bit functionality enabled by asserting the $\overline{\text{ENH}}$ input "low".

Direct Interface Mode

Direct interface mode is selected by setting the Bmode input "high".

Counter control bits are set directly at the pins as shown in *Table 7*. In direct interface mode, main counter inputs M_7 and M_8 , and R counter inputs R_4 and R_5 are internally forced low ("0").

Serial Interface Mode

Serial interface mode is selected by setting the Bmode input "low" and the Smode input "high".

While the E_WR input is "low" and the S_WR input is "low", serial input data (SDATA input), B_0 to B_{19} , are clocked serially into the primary register on the rising edge of SCLK, MSB (B_0) first. The contents from the primary register are transferred into the secondary register on the rising edge of either S_WR or Hop_WR according to the timing diagram shown in *Figure 6* and *Figure 7*. Data are transferred to the counters as shown in *Table 7*.

©2010-2015 Peregrine Semiconductor Corp. All rights reserved.

The double buffering provided by the primary and secondary registers allows for "ping-pong" counter control using the FSELS input. When FSELS is "high", the primary register contents set the counter inputs. When FSELS is "low", the secondary register contents are utilized.

While the E_WR input is "high" and the S_WR input is "low", serial input data (SDATA input), B_0 to B_7 , are clocked serially into the enhancement register on the rising edge of SCLK, MSB (B_0) first. The enhancement register is double buffered to prevent inadvertent control changes during serial loading, with buffer capture of the serially entered data performed on the falling edge of E_WR according to the timing diagram shown in *Figure 7*. After the falling edge of E_WR, the data provide control bits as shown in *Table 8* with bit functionality enabled by asserting the ENH input "low".

Table 7. Primary Register Programming

Interface Mode	ENH	Bmode	Smode	R₅	R ₄	M ₈	M7	Pre_en	M ₆	M₅	M4	M ₃	M ₂	M ₁	Mo	R₃	R ₂	R ₁	R ₀	A ₃	A ₂	A 1	A ₀
Parallel	1	0	0	M2_	WR ri loa	sing edge M1_WR rising edge load							ng edge M1_WR rising edge load A_WR rising edge load										
				D_3	D ₂	D_1	D_0	D ₇	D_6	D_5	D_4	D_3	D ₂	D ₁	D_0	D ₇	D_6	D_5	D_4	D_3	D_2	D_1	D_0
Serial*	1	0	1	B ₀	B ₁	B ₂	B ₃	B ₄	B ₅	B ₆	B ₇	B ₈	B ₉	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅	B ₁₆	B ₁₇	B ₁₈	B1 9
Direct	1	1	Х	0	0	0	0	Pre_en	M_6	M_5	M_4	M_3	M_2	M_1	M_0	R ₃	R_2	R ₁	R ₀	A_3	A_2	A_1	A ₀

Note: * Serial data clocked serially on SCLK rising edge while E_WR "low" and captured in secondary register on S_WR rising edge.

MSB (first in)

(last in) LSB

Table 8. Enhancement Register Programming

Interface Mode	ENH	Bmode	Smode	Reserved	Reserved	Reserved	Power down	Counter Ioad	MSEL output	Prescaler output	$f_c, f_p \overline{OE}$			
Develo	_	X			E_WR rising edge load									
Parallel	0	X	0	D ₇	D_6	D_5	D_4	D_3	D ₂	D ₁	D ₀			
Serial*	0	Х	1	B ₀	B ₁	B ₂	B ₃	B ₄	B_5	B ₆	B ₇			

Note: * Serial data clocked serially on SCLK rising edge while E_WR "high" and captured in the double buffer on E_WR falling edge.

(last in) LSB

Figure 7. Serial Interface Mode Timing Diagram

Enhancement Register

The functions of the enhancement register bits are shown below with all bits active "high".

Bit Function		Description		
Bit 0	Reserve*	Reserved.		
Bit 1	Reserve*	Reserved.		
Bit 2	Reserve*	Reserved.		
Bit 3	Power down	Power down of all functions except programming interface.		
Bit 4	Counter load	Immediate and continuous load of counter programming as directed by the Bmode and Smode inputs.		
Bit 5	MSEL output	Drives the internal dual modulus prescaler modulus select (MSEL) onto the D _{OUT} output.		
Bit 6	Prescaler output	Drives the raw internal prescaler output (f _{MAIN}) onto the D _{OUT} output.		
Bit 7	$f_p, f_c \overline{OE}$	f_p , f_c outputs disabled.		

Table 9. Enhancement Register Bit Functionality

Note: * Program to 0.

Phase Detector

The phase detector is triggered by rising edges from the main Counter (f_p) and the reference counter (f_c). It has two outputs, namely PD_U, and PD_D. If the divided VCO leads the divided reference in phase or frequency (f_p leads f_c), PD_D pulses "high". If the divided reference leads the divided VCO in phase or frequency (f_R leads f_p), PD_U pulses "high". The width of either pulse is directly proportional to phase offset between the two input signals, f_p and f_c .

The signals from the phase detector couple directly to a charge pump. $PD_{\overline{U}}$ controls a current source at pin CP with constant amplitude and pulse duration approximately the same as $PD_{\overline{U}}$.

 $PD_{\overline{D}}$ similarly drives a current sink at pin CP. The current pulses from pin CP are low pass filtered externally and then connected to the VCO tune voltage. $PD_{\overline{U}}$ pulses result in a current source, which increases the VCO frequency and $PD_{\overline{D}}$ results in a current sink, which decreases VCO frequency.

A lock detect output, LD is also provided, via the pin C_{EXT} . C_{EXT} is the logical "OR" of PD_U and PD_D waveforms, which is driven through a series 2 k Ω resistor. Connecting C_{EXT} to an external shunt capacitor provides integration. C_{EXT} also drives the input of an internal inverting comparator with an open drain output. Thus LD is an "NOR" function of PD_U and PD_D.

Figure 8. Package Drawing 44-lead CQFJ

All dimensions are in mils

Figure 9. Top Marking Specifications

Table 10. Ordering Information

Order Code	Description	Package	Shipping Method
9601–01*	Engineering samples	44-pin CQFJ	40 units / tray
9601–11	Flight units	44-pin CQFJ	40 units / tray
9601–00	Evaluation board		1 / box

Note: * The PE9601–01 devices are engineering sample (ES) prototype units intended for use as initial evaluation units for customers of the PE9601–11 flight units. The PE9601–01 device provides the same functionality and footprint as the PE9601–11 space-qualified device, and intended for engineering evaluation only. They are tested at +25 °C only and processed to a non-compliant flow (eg, no burn-in, non-hermetic, etc). These units are non-hermetic and are not suitable for qualification, production, radiation testing or flight use.

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

<u>Advance Information</u>: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. <u>Preliminary Specification</u>: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. <u>Product Specification</u>: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

©2010-2015 Peregrine Semiconductor Corp. All rights reserved.

No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications. The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE

are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: <u>http://patents.psemi.com</u>.

Document No. DOC-26314-2 | UltraCMOS[®] RFIC Solutions