

Product Specification

PE43601

50 Ω RF Digital Attenuator 6-bit, 15.75 dB, 9 kHz - 6.0 GHz

Features

- HaRP™-enhanced UltraCMOS™ device
- Attenuation: 0.25 dB steps to 15.75 dB
- High Lineari y: Typical +58 dBm IIP3
 - equency perfo
- 5.0 Power Su
- tch settlina
 - - Direct Par

 - ssable: Program up to ight addresses 000 - 111
 - rial Two-Byte Protocol: Address and
 - ligh-attenuation state @ power-up (PUP)
- MOS Compatible
- No DC blocking capacitors required
 - Packaged in a 32-lead 5x5x0.85 mm QFN


Product Description

The PE43601 is a HaRP™-enhanced, high linearity, 6-bit RF Digital Step Attenuator (DSA). This highly versatile DSA covers a 15.75 dB attenuation range in 0.25 dB steps. The Peregrine 50Ω RF DSA provides a serial-addressable CMOS control interface. It maintains high attenuation accuracy over frequency and temperature and exhibits very low insertion loss and low power consumption. Performance does not change with V_{DD} due to on-board regulator. This next generation Peregrine DSA is available in a 5x5 mm 32-lead QFN footprint.

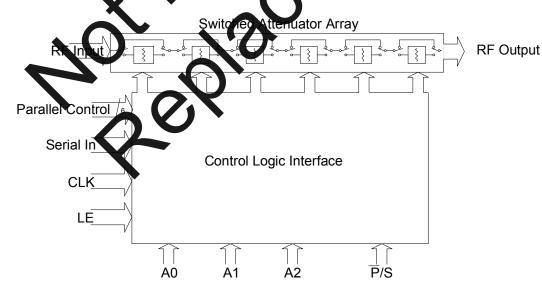

The PE43601 is manufactured on Peregrine's UltraCMOS™ process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of convention CMOS.

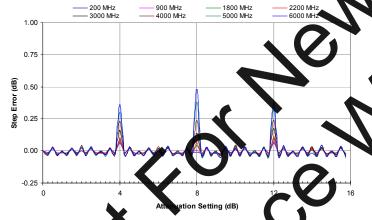
Figure 1. Package Type

32-lead 5x5x0.85 mm QFN Package

chematic Diag Figure 2. Functional

Document No. 70-0253-05 | www.psemi.com

©2008-2009 Peregrine Semiconductor Corp. All rights reserved.


Table 1. Electrical Specifications @ +25°C, V_{DD} = 3.3 V or 5.0 V

Parameter	Test Conditions	Frequency	Min	Typical	Max	Units
Frequency Range			9 kHz		6 GHz	
Attenuation Range	0.25 dB Step			0 – 15.75		dB
Insertion Loss		9 kHz ≤ 6 GHz		2.3	2.8	dB
Attenuation Error	0 dB - 15.75 dB Attenuation settings 0 dB - 15.75 dB Attenuation settings	9 kHz < 4 GHz 4 GHz ≤ 6 GHz			±(0.2 + 4%) ±(0.4 + 8%)	dB dB
Return Loss		9 kHz - 6 GHz		18		dB
Relative Phase	All States	9 kHz - 6 GHz		20		deg
P1dB (note 1)	Input	20 MHz - 6 GHz	30	32		dBm
IIP3	Two tones at +18 dBm, 20 MHz spacing	20 MHz - 6 GHz		57		d₽m
Typical Spurious Value		1 MHz	+	-110		dBm
Video Feed Through				10		mVpp
Switching Time	50% CTRL to 10% / 90% RF			650		ns
RF Trise/Tfall	10% / 90% RF			400		ns
Settling Time	RF settled to within 0.05 dB of final value RBW = 5 MHz, Averaging ON.	2		4		μs

Note 1. Please note Maximum Operating Pin (50Ω) of +23dBm as shown in Table 3.

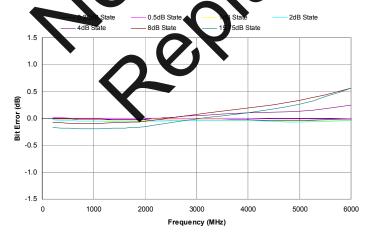

Performance Plots

Figure 3. 0.25 dB Step Error vs. Frequency*

*Monotonicity is held so long as step-error does not closs below -0.25

Figure 5. (25 dB Major State Bit Erro

©2008-2009 Peregrine Semiconductor Corp. All rights reserved.

Figure 4. 0.25 dB Amenuation vs. Attenuation State

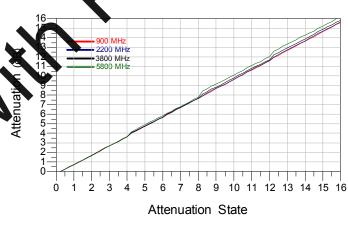


Figure 6. 0.25 dB Attenuation Error vs. Frequency

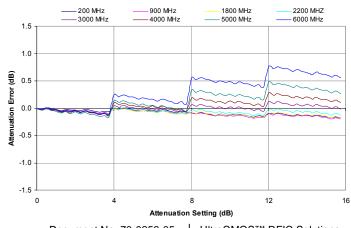


Figure 7. Insertion Loss vs. Temperature

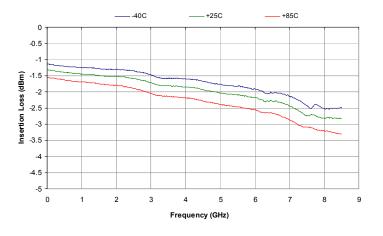


Figure 8. Input Return Loss vs. Attenuation:

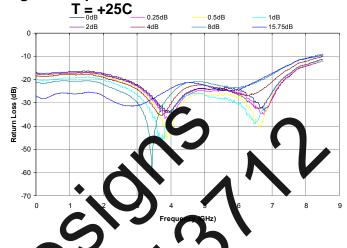
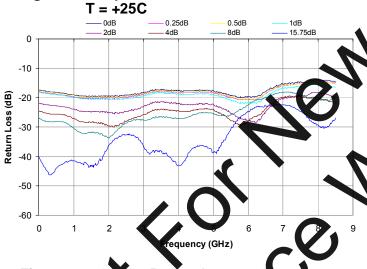



Figure 9. Output Return Loss vs. Attenuation:

oss vs. Temperature: State

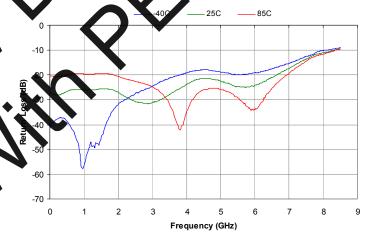


Figure 11. Output Return Loss mperature: **S**tate

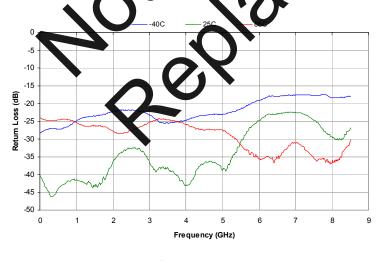
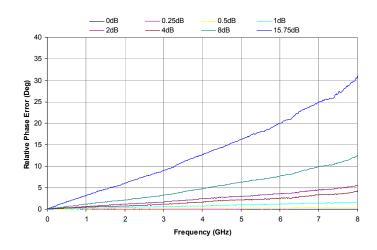



Figure 12. Relative Phase vs. Frequency

Document No. 70-0253-05 | www.psemi.com

©2008-2009 Peregrine Semiconductor Corp. All rights reserved.

Figure 13. Relative Phase vs. Temperature: 15.75 dB State

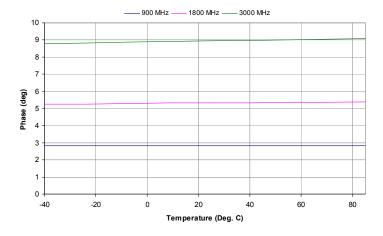


Figure 14. Attenuation Error vs. Attenuation Setting: 900 MHz

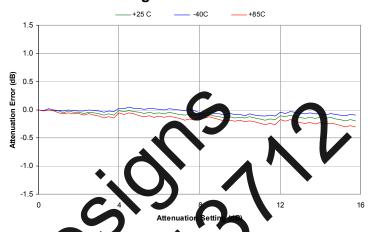
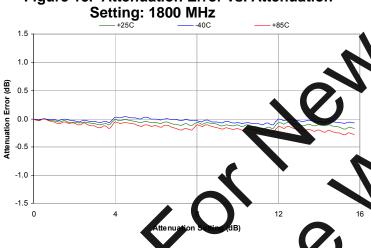



Figure 15. Attenuation Error vs. Attenuation

re 16. Attendation Frior Set ng: 3000 MHz vs. Attenuation

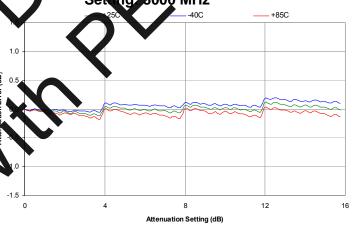
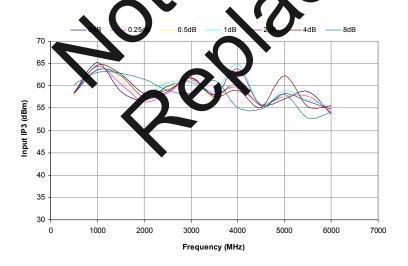



Figure 17. Input IP3 vs. Frequence

©2008-2009 Peregrine Semiconductor Corp. All rights reserved.

Document No. 70-0253-05

UltraCMOS™ RFIC Solutions

Figure 18. Pin Configuration (Top View)

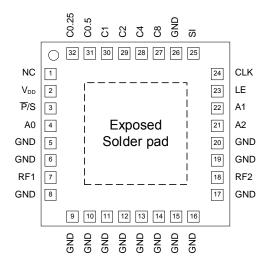


Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	N/C	No Connect
2	V_{DD}	Power supply pin
3	P/S	Serial/Parallel mode select
4	A0	Address bit Ab connection
5, 6, 8 - 17, 19, 20, 26	GND	Ground
7	RF1	RF po
18	RF2	RM2 port
21	A2	Address bit A2 connectio
22	A1	Address bit A1 con ection
23		Serial interface Latch Encole input
24	LK	Serial interface Clock input
25	SI	Seria Pinteria se Data input
27	C8 (D5)	Parallel control bit, 8 dB
28	C4 (D4)	Parallel control bit, 4 dB
29	£2 (D 1)	Parallel control bit, 2 dB
30	(D2)	Parallel control bit, 1 dB
31	C0.5 (1)	Parallel control bit, 0.5 dB
32	C0.25 (D0)	Parallel control bit, 0.25 dB
Paddle	GND	Ground for proper operation

Note: Ground C0.25, C0.5, C1 C2, C4, C8 if not in use.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS™ device, observe the same precautions that you would use with other ESDsensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional Q devices are immune

Moisture Se

the PE43601 in The Moist the 32-le N packag

Frequency

m 25 kHz switching rate. d to be the speed at which the hing rate is across attenuation states.

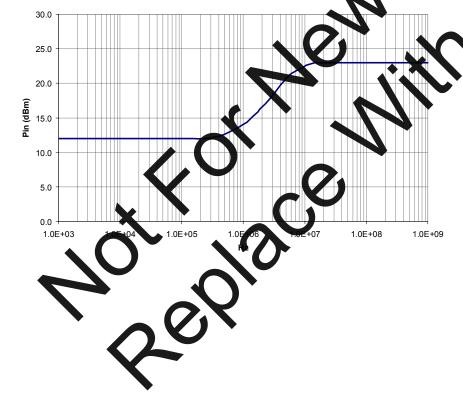
der Pad Connection Exposed 1

The exposed solder pad on the bottom of the package rounded for proper device operation.

Table 3. Operating Ranges

Parameter	Min	Тур	Max	Units
V _{DD} Power Supply Voltage	3.0	3.3		V
V _{DD} Power Supply Voltage		5.0	5.5	V
I _{DD} Power Supply Current		70	350	μΑ
Digital Input High	2.6		5.5	V
P _{IN} Input power (50Ω): 9 kHz ≤ 20 MHz 20 MHz ≤ 6 GHz			See fig. 19 +23	dBm dBm
T _{OP} Operating temperature range	-40	25	85	°C
Digital Input Low	0		1	V
Digital Input Leakage ¹			15	μΑ

Note 1. Input leakage current per Control pin


Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V_{DD}	Power supply voltage	-0.3	6.0	V
Vı	Voltage on any Digital input	-0.3	5.8	V
P _{IN}	Input power (50Ω) 9 kHz ≤ 20 MHz 20 MHz ≤ 3Hz		See fig. 19 +23	dBm dBm
T _{ST}	Storage temperature range	-65	150	°C
V _{ESD}	ESD voltage (NBM) ESD voltage (NR shin Model)	Λ	500 100	V V

Note: 1. Human Body Model HBM, MIL_STD 83 Method 3015.7)

Exceeding absolute maximum ratings may cause permanent danage. Operation should be restricted to the limits in the Operating ranges table. Operation between perating range natimum and absolute maximum for extended periods may reduce reliability.

Figure 19. Maximum Power Handling Capability: $\lambda_1 = 50 \Omega$

Table 5. Control Voltage

<u> </u>						
State	Bias Condition					
Low	0 to +1.0 Vdc at 2 μA (typ)					
High	+2.6 to +5 Vdc at 10 μA (typ)					

Table 6. Latch and Clock Specifications

Latch Enable	Shift Clock	Function	
X	1	Shift Register Clocked	
1	Х	Contents of shift register transferred to attenuator core	

Table 7. Parallel Truth Table

וּ	Attenuation Setting	Parallel Control Setting							
	RF1-RF2	D0	D1	D2	D3	D4	D5		
	Reference I.L.	L	L	L	L	L	L		
Ī	0.25 dB	Н	L	L	L	L	L		
],	0.5 dB	L	Н	L	L	L	L		
	1 dB	L	L	Н	L	L	L		
1	2 dB	L	L	L	Н	L	L		
1	4 18	L	L	L	L	Н	L		
Ī	8-9B	L	L	L	L	L	Н		
1	16.75 dB	Н	Н	Н	Н	Н	Н		

Table 8. Address Word Truth Table

	Address Word									
A7 (MSB)	A6	A5	A4	А3	A2	A 1	A0	Address Setting		
X	Χ	Х	Χ	Χ	L	L	L	000		
Х	Χ	Χ	Х	Х	L	L	Н	001		
Х	Χ	Х	Х	Х	L	Н	L	010		
Х	Х	Х	Х	Х	_	Н	Н	011		
X	Χ	Х	Х	Х	G	L	L	100		
Х	Χ	Χ	Х	X	Ħ	L	Н	101		
Х	Χ	Χ	X	X	A	Н		110		
X	Χ	Χ	X	X	Н	Н		111		

			At		Attenuation				
	Q	66	D5	D4	D3		D1	D0 (LSB)	Setting RF1-RF2
	L	L	L		R	L	L	L	Reference I.L.
		L		1	L	L	L	Η	0.25 dB
	٦	L	L	L	L	L	Н	L	0.5 dB
	٦	L	L	L	L	Н	L	L	1 dB
		(L	L	Η	L	L	L	2 dB
4		٦	L	Н	L	L	L	L	4 dB
•	7	ال	Н	L	L	L	L	L	8 dB
		L	Н	Н	Н	Н	Н	Н	15.75 dB

Table 10. Serial-Address Register Map

Bits an either be set to logic high or logic low Q6 and D7 must be set to logic low MSB (last in) LSB (first in) Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Α1 D7 D6 D5 D4 D3 D2 D1 D0

Attenuation Words derived directly from the attenuation value. For example, to program the 12.75 dB state at address 3:

Address Word: XXXXX011

Attenuation Word: Multiply by 4 and convert to binary \rightarrow 4 * 12.75 dB \rightarrow 51 \rightarrow 00110011

Serial Input: XXXXX01100110011

Attenuation Word

Programming Options

Parallel/Serial Selection

Either a parallel or serial-addressable interface can be used to control the PE43601. The \overline{P}/S bit provides this selection, with $\overline{P}/S=LOW$ selecting the parallel interface and P/S=HIGH selecting the serialaddressable interface.

Parallel Mode Interface

The parallel interface consists of six CMOScompatible control lines that select the desired attenuation state, as shown in Table 7.

The parallel interface timing requirements are defined by Fig. 21 (Parallel Interface Timing Diagram), Table 12 (Parallel Interface AC Characteristics), and switching speed (Table 1).

For *latched*-parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (per Fig. 21) to latch new attenuation state into device.

For direct parallel programming, the Latch En (LE) line should be pulled HIGH. Changing attenuation state control values will con state to new attenuation. Direct Mode ideal for manual control of the device (using hardwre, switches, or jumpers).

Serial-Addressable Inter

The serial-addressable interface is a 16-bit s parallel-out shift register buffered by a trans latch. The 16-bits make up two words comprised of 8-bits each. The irst word is the Att which controls to second word is the Addre ss Word, which is com pared to the static (or programmed) logic tates of the A0, A1 inputs. If the is an address match, A changes state its current state will remain unchanged 0 Nustrates an example timing diagram in programming a state. It is required that all parallel control inputs be grounded when the DSA is used in serialaddressable mode.

The serial-addressable interface is controlled using three CMOS-compatible signals: Serial-In (SI), Clock (CLK), and Latch Enable (LE). The SI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in LSB first, beginning with the Attenuation Word.

The shift register must be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data into the DSA. Agaress word and attenuation word truth tab are listed in T Table 9, respectively. A programming example Serial-Addressable re rister is illustrated The serial-addressa le i ming diagram is i in *Fig. 20.*

Power-u

initialize to the maximum B) on power-up for both a shed-parallel modes of ble and repain in this setting until the user rogramming word. In directcan be preset to any state parallel mode, the D within the 5.76 dB range by pre-setting the parallel control pins prior to power-up. In this mode, there is a 400-us delay between the time the DSA is vered up to the time the desired state is uring this power-up delay, the device attenuates to the maximum attenuation setting 5.75 dB) before defaulting to the user defined state. If the control pins are left floating in this mode during power-up, the device will default to the minimum attenuation setting (insertion loss state).

Dynamic operation between serial-addressable and parallel programming modes is possible.

If the DSA powers up in serial-addressable mode (\overline{P} / S = HIGH), all the parallel control inputs DI[6:0] must be set to logic low. Prior to toggling to parallel mode, the DSA *must* be programmed serially to ensure D[7] is set to logic low.

If the DSA powers up in either latched or directparallel mode, all parallel pins DI[6:0] must be set to logic low prior to toggling to serial-addressable mode $(\overline{P}/S = HIGH)$, and *held* low until the DSA has been programmed serially to ensure bit D[7] is set to logic low.

The sequencing is only required once on powerup. Once completed, the DSA may be toggled between serial-addressable and parallel programming modes at will.

DO[5:0]

Figure 20. Serial-Addressable Timing Diagram

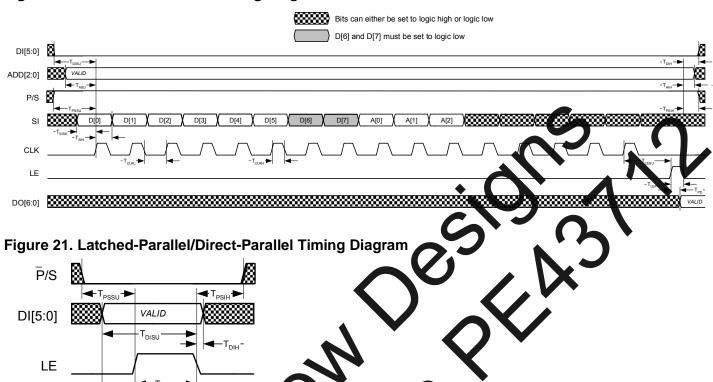


Table 11. Serial-Addressa AC Characteri

 $V_{DD} = 3.3 \text{ or } 5.0 \text{ V}, -40^{\circ}$ unless other

Symbol	Parameter	Min	Max	Unit
F _{CLK}	Serial clask frequency	÷	10	MHz
T _{CLKH}	Serial lock NSH time	30	ŀ	ns
T _{CLKL}	Serial clock LOW time	30		ns
, su	ast serial clock rising edge time to Latch End le rising edge	10	ı	ns
T _{LEPW}	Latch Enable mi prise vidti	30		ns
T _{SISU}	Serial data se up time	10		ns
T_{SIH}	Serial data held ime	10	-	ns
T _{DISU}	Parallel data setup time	100	-	ns
T _{DIH}	Parallel data hold time	100	-	ns
T _{ASU}	Address setup time	100	-	ns
T _{AH}	Address hold time	100	-	ns
T _{PSSU}	Parallel/Serial setup time	100	-	ns
T _{PSH}	Parallel/Serial hold time	100	-	ns
T_{PD}	Digital register delay (internal)	-	10	ns

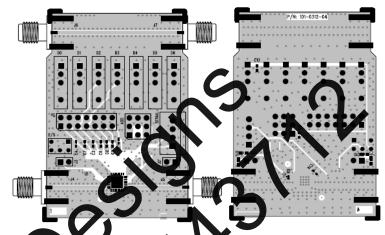
Table 12. Parallel and Direct Interface **AC Characteristics**

 V_{DD} = 3.3 or 5.0 V, -40° C < T_A < 85° C, unless otherwise specified

Symbol	Parameter	Min	Max	Unit
T_{LEPW}	Latch Enable minimum pulse width	30	-	ns
T _{DISU}	Parallel data setup time	100	-	ns
T _{DIH}	Parallel data hold time	100	-	ns
T _{PSSU}	Parallel/Serial setup time	100	-	ns
T _{PSIH}	Parallel/Serial hold time	100	-	ns
T _{PD}	Digital register delay (internal)	-	10	ns
T _{DIPD}	Digital register delay (internal, direct mode only)	-	5	ns

Evaluation Kit

The Digital Attenuator Evaluation Kit board was designed to ease customer evaluation of the PE43601 Digital Step Attenuator.

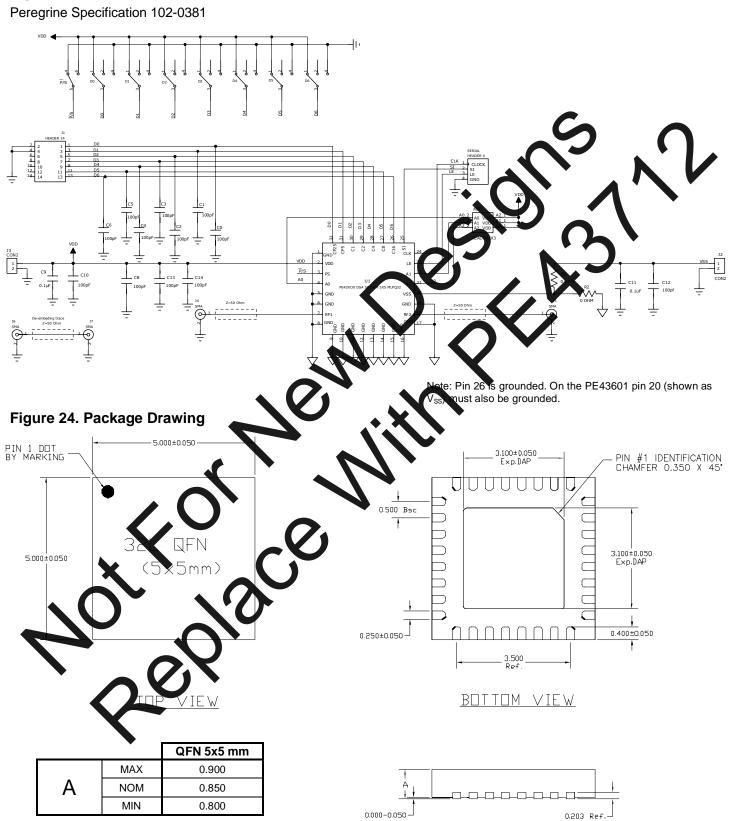

Direct-Parallel Programming Procedure
For automated direct-parallel programming, connect the test harness provided with the EVK from the parallel port of the PC to the J1 & Serial header pin and set the D0-D5 SP3T switches to the 'MIDDLE' toggle position. Position the Parallel/Serial (P/S) select switch to the Parallel (or left) position. The evaluation software is written to operate the DSA in either Parallel or Serial-Addressable Mode. Ensure that the software is set to program in Direct-Parallel mode. Using the software, enable or disable each setting to the desired attenuation state. The software automatically programs the DSA each time an attenuation state is enabled or disabled.

For manual direct-parallel programming, disconnect the test harness provided with th from the J1 and Serial header pins. Pasition Parallel/Serial (\overline{P}/S) select switch to the (or left) position. The LE pin on the must be tied to logic high. Switches 10-D5 are SP3T switches which enable the user to manually program the parallel bits. When any input D0-B is toggled 'UP', logic high is pr parallel input. When loggled 'D DWN', logic low is presented to the paraller input. Setting D0-05 the 'MIDDLE' toggle position presents a which forces an on-chip logic low. Table 7 depicts the parallel programming truth tab illustrates the parallel programmi diagran

Late red-Parallel Programs ing procedure
For automated latcher -perallel programming, the procedure is ideal, all of the direct-parallel method. The user only must ensure that Latched-Parallel is selected in the software.

Figure 22. Evaluation Board Layout

Peregrine Specification 101-0312


Note: Reference Fig. 23 for Evaluation Board Schematic

For manual latched-parallel programming, the procedure is identical to direct-parallel except now the LE pin on the Serial header must be logic low as the parallel bits are applied. The user must then pulse LE from 0V to V_{DD} and back to 0V to latch the programming word into the DSA. LE nust be logic low prior to programming the next word

Serial-Addressable Programming Procedure Position the Parallel/Serial (\overline{P}/S) select switch to the Serial (or right) position. Prior to programming, the user must define an address setting using the ADD header pin. Jump the middle pins on the ADD header A0-A2 (or lower) row of pins to set logic high, or jump the middle pins to the upper row of pins to set logic low. If the ADD pins are left open, then 000 become the default address. The evaluation software is written to operate the DSA in either Parallel or Serial-Addressable Mode. Ensure that the software is set to program in Serial-Addressable mode. Using the software, enable or disable each setting to the desired attenuation state. The software automatically programs the DSA each time an attenuation state is enabled or disabled.

Figure 23. Evaluation Board Schematic

SIDE VIEW

Figure 25. Tape and Reel Drawing

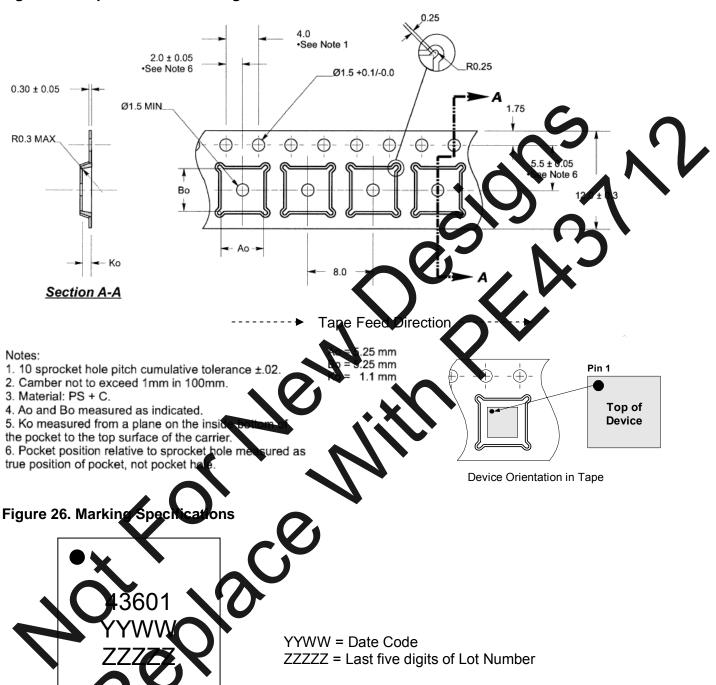


Table 13. Ordering Information

Order Code Part Marking		Description	Package	Shipping Method
PE43601MLI	43601	PE43601 G - 32QFN 5x5mm-75A	Green 32-lead 5x5mm QFN	Bulk or tape cut from reel
PE43601MLI-Z	43601	PE43601 G – 32QFN 5x5mm-3000C	Green 32-lead 5x5mm QFN	3000 units / T&R
EK43601-01	43601	PE43601 – 32QFN 5x5mm-EK	Evaluation Kit	1 / Box

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9380 Carroll Park Drive San Diego, CA 92121 Tel: 858-731-9400 Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F-92380 Garches, France Tel: +33-1-4741-9173 Fax: +33-1-4741-9173

High-Reliability and Defense Products

Americas San Diego, CA, USA Phone: 858-731-9475 Fax: 848-731-9499

Europe/Asia-Pacific Aix-En-Provence Cedex 3, France Phone: +33-4-4239-3361

Fax: +33-4-4239-3361

For a list of representatives in your area, please refer to our We site a www.psemi.com

Data Sheet Identification

Advance Information

The product is in a formative or design stage. The data sheet contains design target specifications for product development. Specifications and features may change in any manner without notice.

Preliminary Specification

The data sheet contains pleiningly data. Additional data may be added at a later date. Peregrine reserves the right to change specimations at any time without notice in order to supply the best possible product.

Product Specification

The data sheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form).

Peregrine Semiconductor, Asia Pacific (APAC)

Shanghai, 200040, P.R. China Tel: +86-21-5836-8276 Fax: +86-21-5836-7652

Peregrine Semiconductor Rorea

#B-2607, Kolon Tripolis, 276 Geumgok-dong, Bundatt-gu, Seongnam-si

Gyeonggi-do, 463-94 South Korea

Tel: +82-31-728-3 39 Fax: +82-31-728-3 40

Peregrine Semiconductor K.K., Japan

Teikoku Huli Plower 1018-6 1-1-1-10-kisainur-cho, Chiyotla-ku Tokyo 100-1011 Japan 181-1-3 3502-5211

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp.