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1 Introduction
The Freescale MC13224 for the 2.4 GHz IEEE® 
802.15.4 Standard is a 32-bit ARM7 core based device 
with an onboard 128 Kbyte serial FLASH memory. At 
system boot, the binary program code for the ARM7 
CPU core gets transferred from the serial FLASH to the 
MCU SRAM (96Kbytes total available), and then 
application execution transfers to the SRAM and runs 
from there. The target application image that resides in 
the FLASH is typically loaded into the MC13224 before 
board assembly or is loaded as part of the manufacturing 
process. 

Once in the field, it may become necessary to load a new 
image into the onboard FLASH. A new FLASH image 
can either be loaded via the standard ARM7 JTAG-based 
debug tools or via the MC13224 boot process. Use of the 
debug/development tools is addressed elsewhere.

This application note describes how an new executable 
binary image can be loaded into the onboard serial 
FLASH of the MC1322x using the boot process and 
provides tools to assist that process. The tools consist of 
two separate pieces.
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• The primary function is a target application (Second Stage Loader) for the ARM7 that gets loaded 
at boot time. This utility application is then used to load a new target application binary image into 
the onboard serial FLASH using the UART1 serial port.

• The secondary function is an example PC application (Console Loader) that communicates to the 
MC1322x UART1 port using a PC COM port. This PC app supports the protocol to the target 
Second Stage Loader to load the binary image to the MC1322x which is then written to the serial 
FLASH.

NOTE
• Using the SSL is a two stage process, where the MC1322x onboard 

serial FLASH must first be erased before it can be reloaded. See 
Section 2.2, “Clearing (Erasing) FLASH.

• To use a PC to communicate with the MC1322x, auxiliary hardware 
must be provided connecting the 22x UART1 port to either a standard 
PC serial COM port using RS232 translators or to a PC USB port using 
a UART <> USB serial interface IC creating a virtual COM port (VCP). 
This is left to the user, however, Freescale provides examples of both 
hardware designs

The applications are provided as executables as well as source. They are useful in their executable form, 
but they can also be adapted to other scenarios or platforms, such as a Linux-based host, manufacturing 
test environment, or a primary MCU host.

This application note first describes the background requirements for loading a new FLASH image. 
Second, the applications are described to allow a “quick start” use of these tools. Finally, detailed 
information is given on the implementation of the tools such that the user can adapt them to the individual 
target application. This document is intended for users of MC1322x that need to update the executable 
stored in the internal FLASH from a separate host processor, during production or after the product has 
been deployed.

NOTE
• Users must be familiar with the MC1322x platform. See the MC1322x 

Reference Manual (MC1322xRM).
• The MC1322x can be used with or without (normal operation) operation 

of its optional onboard buck voltage regulator. See AN3962, MC13244 
Configuration and Operation with the Buck Regulator. The Second 
Stage Loader application works with either configuration.

• Users must also be familiar with the BeeKit Wireless Connectivity 
ToolKit.

• While the sample applications have been tested and are believed to be 
correct, users are responsible for their applications and that they meet 
the reliability requirements of the specific project. Thoroughly testing 
the process before deployment is recommended.

• Source code and application code is available on the Freescale website 
as a link related to this application note.
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2 MC1322x Boot Process
It is important to understand the MC1322x boot process as background to using the load utility. Figure 1 
shows a very simplified view of the boot flow. The boot process must first be used to clear/erase the 
FLASH before the load utility can be used with the boot process to write a new image to the FLASH

NOTE
For additional detailed information on the boot process, refer to the 
MC1322x Reference Manual (MC1322xRM), Chapter 3 and Appendix C.

2.1 Bootstrap Flow Overview
Upon exiting reset, the MC1322x executes an application stored in the ROM – called the bootstrap – that:

1. Determines if FLASH is to be cleared (erased)
2. Determines if a valid FLASH image is present
3. If a valid FLASH image is not present, alternatively, determines a secondary boot source
4. Fetches the needed execution binary bytes from the determined boot source and loads them into 

the MCU RAM
5. Lastly, starts execution of the application from the bottom of RAM.
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Figure 1. Simplified Bootstrap Flow

Observing Figure 1, the device initialization flow algorithm is:
1. After reset exit, go to execution from RAM immediately if the reset condition was from a low 

power state, else go to Step 2.
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2. Clear RAM
3. Turn-on FLASH (power it up)
4. Clear FLASH?: if external signals ADC_VREFH = 0 AND ADC2_VREHL = 1, then clear (erase) 

the FLASH and wait, else go to Step 5

NOTE
• This is an important step - the boot routine cannot be used to load a new 

FLASH image if an existing valid FLASH image is present. More is said 
later on how this impacts use of the loader tool

• The FLASH is a 128Kbyte device. When it is cleared, the upper most 
4kbyte segment is not touched as it is reserved, so only the lower 
124kbytes are erased.

5. Is the FLASH a “secure” valid image?: if the first 4 bytes of FLASH content = “SECU” (ASCII), 
then go to Step 8, else go to Step 6.

NOTE
This test is done first, because if the image is secured, the boot process does 
not enable the debug ports so that a user cannot gain entry to the device and 
copy the image.

6. Is the FLASH an un-secured valid image?: if the first 4 bytes of FLASH content = “OKOK” 
(ASCII), then go to Step 7, else go to external boot source.

NOTE
Going to an external boot source enables use of the loader tool to supply the 
FLASH image. This part of the process is discussed later.

7. Enable debug ports
8. Boot from FLASH: transfer binary executable image from FLASH to RAM (starting at lowest 

RAM address 0x0040_0000)
9. Turn-off FLASH (power it down)
10. Start execution from bottom of RAM (CPU address 0x0040_0000)

2.2 Clearing (Erasing) FLASH
As previously stated, a new FLASH image cannot be loaded via the boot process if an existing valid 
FLASH image is present. As a result, the boot process needs to be run one time to clear the image before 
actually going through the load boot process using an external port to supply the boot image.

Freescale provides a number of MC1322x development boards and reference design circuits, and Figure 2 
illustrates a typical FLASH erase hardware detail. In this example, shorting bars must be placed on two 
separate headers and must be present for a boot cycle. The boot flow will test these pins and clear the 
FLASH accordingly.
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A user must provide a similar hardware capability on a target board if the application ever requires 
reloading of a secure FLASH image or reloading of a FLASH image via the boot flow versus a debug port.

Figure 2. MC1322x FLASH Erase Circuit

NOTE
Figure 2 is an example of one possible circuit implementation. Refer to the 
appropriate hardware reference manual and the specific schematic for a 
given Freescale board or design.

2.3 Valid FLASH Boot Image
The boot image stored in FLASH follows the format of Table 1. The image includes the following 
contents:

1. Signature - initial 4-byte parameter is read by the boot program to determine a valid image. 
Contents must be either “SECU” or “OKOK” in ASCII.

2. Length - second 4-byte binary parameter that equals the number of valid bytes of executable code 
that follows in FLASH. Maximum number is 98,296dec (limited by MC1322x RAM size)

3. Binary executable bytes - number of bytes matches the value of the Length variable

Table 1. Valid FLASH Boot Image

Byte Order Byte Content Value

0 Signature
(ASCII)

“S”/”O”

1 “E”/”K”

2 “C”/”O”

3 “U”/”K”

 

ADC2_VREFH -> "0"
ADC2_VREFL -> "1"

Recovery Mode

1
2

J19

HDR_2X1 1
2

J20

HDR_2X1

R103
10K

C2
100nF

TP103

TP3

R104
10K

VCC

VCC

ADC2_VREFL

ADC2_VREFH
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2.4 Booting From FLASH (Normal Flow)
Booting from a valid FLASH image is the normal operational flow. Reviewing the algorithm in 
Section 2.1, “Bootstrap Flow Overview” for booting from FLASH:

1. The FLASH is not cleared
2. A valid signature is found (either “SECU” or “OKOK”) and the debug ports are enabled if the 

signature is “OKOK”
3. The length variable is read to know how many code bytes to transfer
4. The executable binary code bytes are serially accessed and transferred to RAM starting at lowest 

RAM address
5. The ROM boot flow jumps execution to the bottom of RAM (address 0x0040_0000)

The following items apply:
• Any specified check that fails results in the bootstrap moving to the next alternative boot source to 

be used – the UART1 port.
• If the FLASH has been erased, it aborts this process to the next alternative boot source
• Be aware that some MC1322x GPIO are affected by the boot process. See the MC1322x Reference 

Manual (MC1322xRM), Chapter 3, Section3.11.7.

2.5 Alternative External Boot Sources
If the normal flow fails, i.e., a valid FLASH image is not found, the boot flow seeks an alternate source of 
boot code from an external port, see Figure 3. The possible external boot sources include (listed in the 
order in which they are checked):

4 Length
(binary)

LSB

5

6

7 MSB

81 Executable
(binary)

9

10

11

*

*

Length
1 For any 32-bit code word the first byte resides at the 

lowest byte rail in memory (little endian)

Table 1. Valid FLASH Boot Image

Byte Order Byte Content Value
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• UART1 serial port
• SPI port with MC1322x as slave, attached to a master device
• SPI port with MC1322x as master, attached to an external serial EEPROM or FLASH
• I2C port with MC1322x as master, attached to an external serial EEPROM or FLASH

Figure 3. External Sources Boot Flow

The external source is expected to provide properly formatted data (Section 2.6, “Booting From UART1) 
to load into RAM. The boot process from an external source does not load an image directly into FLASH, 
rather, using the defined format, the binary executable data is loaded directly into RAM and then execution 
flow is transferred to RAM.

The boot flow first seeks a source from the UART1 port.
• The UART1 flow control input UART1_RTS must be driven low to enable the boot flow to seek 
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• This mode tends to be most commonly used.
• The data flow to the UART1 port must meet timing and protocol requirements (baud rate is 

detected by the boot flow).

As seen in Figure 3, the other ports are checked relevant to the states of the UART1_RTS and SPI_SS 
signals. The user is directed to the MC1322x Reference Manual (MC1322xRM), Appendix C for a detailed 
discussion of these other boot ports.

NOTE
As supplied, the Second Stage Loader uses the UART1 port as the boot 
source. The tool can be modified by the user to support one of these other 
sources because source code is provided.

2.6 Booting From UART1
Boot from UART1 is described in more detail because the Second Stage Loader uses this port.

NOTE
• UART1_RTS control input must be held low by hardware before the 

boot flow is entered; the signal must be in the proper state before its 
mode is tested. There is no synchronization event/signal possible.

• The executable data format consists of the 4-byte Length parameter and 
the actual executable binary, similar to that described in Table 1 minus 
the 4-byte Signature.

The following steps are performed by the bootstrap while executing UART1 boot mode:
1. Test UART1_RTS - this pin must be driven low to indicate that a host is ready to provide the 

executable code to load into RAM. If UART1_RTS = 0, go to Step 2, else go to SPI_SS test.
2. Select UART baud rate (up to 2Mbaud) -the host sends the ASCII character number ‘\0’. After the 

baud rate is detected, go to Step 3.

NOTE
The host should repeatedly send character ‘\0’ until it receives the response 
of Step 3.

3. Send the string “CONNECT” (ASCII) - this is the response to the host using the baud rate 
determined at Step 2. The connection is now established and confirmed. 

4. Wait for the Length parameter from the host - 4 bytes (32-bit binary number) are sent by the host 
that is the Length parameter for the following transfer. The first byte sent is the LSB.

5. Receive executable data bytes - image bytes are received as they are sent by the host and copied 
into RAM. The first byte received is placed into the bottom of RAM, and the RAM data are built 
from this point as data bytes are received. The process continues until the number of bytes equal 
to the Length parameter are received.

NOTE
No confirmation response is send to the host, nor is there any CRC check.



Quick Start Guide for Using Second Stage Loader with PC Host App “Console Loader”

MC1322x Flash Loader Utility (Second Stage Loader) Application Note, Rev. 1.0

10 Freescale Semiconductor
 

6. Jump to RAM address 0x0040_0000 - ROM-based boot flow ends; execution transfers to the 
RAM-based app.

Figure 4 shows the event flow for the UART1 boot.

Figure 4. UART1 Boot Flow

Additional items:
• It is recommended that the host attempt multiple sequences of sending the ‘\0’ byte and waiting to 

receive the “CONNECT” message, until success.
• When booted through UART1 and starting execution from RAM, the bootstrap will leave the 

following signals configured as used during the boot process:
— GPIO_38 (ADC2_VRefH) - GPIO mode, input, read from pad, pullup enabled
— GPIO_39 (ADC2_VRefL) - GPIO mode, input, read from pad, pulldown enabled
— GPIO_14 (UART1_TX) - Function1 mode
— GPIO_15 (UART1_RX) - Function1 mode, pullup enabled
— GPIO_16 (UART1_CTS) - Function1 mode
— GPIO_17 (UART1_RTS) - Function1 mode, pullup enabled

3 Quick Start Guide for Using Second Stage Loader with 
PC Host App “Console Loader”

After review of the boot process, it becomes evident that one possible approach to update the FLASH 
image is to load an application in RAM and then to use the application to load FLASH. The sequence to 
update the FLASH image is:

• Erase the existing FLASH image
• Load a target application through UART1 that can receive a new FLASH image from the host
• Use the target application to:

— Receive the new FLASH image from the host
— Write the image to FLASH
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Quick Start Guide for Using Second Stage Loader with PC Host App “Console Loader”

MC1322x Flash Loader Utility (Second Stage Loader) Application Note, Rev. 1.0

Freescale Semiconductor 11
 

— Write the required FLASH header (Signature and Length) so that subsequent resets cause the 
MC1322x to boot from FLASH

Freescale provides two software utilities to implement this flow:
• Second Stage Loader (SSL) - is an embedded MC1322x application that can write, read and 

commit images to FLASH. All of these operations are performed under the control of a host by 
executing commands received through UART1.

• Console Loader (CL) - is a PC application that acts as host to the MC13224 that can:
1. Connect to UART1 during the boot flow
2. Send the SSL application binary (during boot)
3. Connect/communicate with the SSL (through the SSL command interface)
4. Load the desired FLASH image
5. Write the FLASH header

NOTE
• The Console Loader is provided as a PC application because the PC is 

the most convenient environment to demonstrate this flow. Freescale 
offers several MC1322x development boards that can be connected to a 
PC through a USB-based virtual COM port interface to UART1 of the 
MC1322x.

• SSL and CL are both available as executables and as source
• SSL is described in Section 4, “Second Stage Loader (SSL)
• CL is described in Section 5, “Console Loader (CL)

3.1 Preparing Software for Use
To execute a FLASH update sequence, three software files must be present on the PC:

• SSL executable - “ssl.bin”
• CL executable - “ConsoleLoader.exe”
• MC1322x FLASH image - “myApp.bin”

Files ssl.bin and ConsoleLoader.exe must reside in the same directory; for our example this is:

c:\CL.

The FLASH image binary can reside in a separate directory and can be called by the CL application 
command line.

3.2 Updating the FLASH Image in the MC1322x
The following section describes the step-by-step procedure to load FLASH using the SSL and CL tools. 
The target for this description can be either of the Freescale MC1322x Network Node or MC1322x Sensor 
Node development boards.
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3.2.1 Erase the FLASH
Before trying to update the internal FLASH of the MC1322x, the user must ensure that the onboard 
FLASH is erased. As described in Section 2.2, “Clearing (Erasing) FLASH”, the bootstrap must be run 
with the hardware jumpers (shorting bars) in place to enable FLASH erase.

Two common development boards for the MC1322x are the Network Node (MC1322NN) and Sensor 
Node (MC1322xSN). Using these two boards as examples, the required locations for mounting jumpers 
are shown in Figure 5 and Figure 6.

Figure 5. MC1322x Network Node FLASH Erase Jumper Location

Figure 6. MC1322x Sensor Node FLASH Erase Jumper Location

NOTE
For a user’s target board, the required jumpers must similarly be in place.

To erase the FLASH, perform the following sequence:
1. Turn-off power to board.

J15
1 4

J15
1

4
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2. Place required shorting bars.
3. Turn-on power and wait a short period.
4. Turn-off power to board.
5. Remove the two shorting bars
6. Turn-on power when ready to boot from an external source

3.2.2 Connect the Hardware
The target board must be connected to the PC, and communication uses a standard serial COM port or a 
USB based virtual COM port:

• For the example MC1322xNN and MC1322xSN modules - these boards provide USB<>UART1 
connection through a USB-serial interface chip. The USB virtual COM drivers must be present.

• For target boards without either RS232 buffers or a USB<>UART interface device - a translator 
board will be required to connect the PC to the target module. This is left as a requirement to the 
user.

NOTE
The SSL is programmed for a 115200 baud rate. The CL PC application is 
also programmed for this rate.

3.2.3 Run the Tools (Load SSL and Update FLASH)
The hardware is now ready to support running the tools:

• Be sure the jumpers are removed from the module
• Power-up the target module.

The suggested procedure is described:
1. Determine the COM port associated with the target board - this may be the USB virtual COM 

connection between the PC and the development board or a true serial COM port. The Windows 
“Device Manager” allows users to see the connection. Figure 7 shows the “Ports (COM&LPT)” 
group and the “USB Serial Port (COMxxx)” name.
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Figure 7. Device Manager Window COM Port

2. When powered the MC132xx module device will exit reset and execute a bootstrap sequence 
where it will be waiting for boot input from the UART1 port.

NOTE
As previously noted, the UART1 flow control input UART1_RTS must be 
driven low to before initiating the boot sequence.

3. The CL application is now launched - first open a Cmd Window. The CL application is called via 
a command line that needs three command line parameters:

ConsoleLoader.exe <COM #> <Security Option> <PATH\myApp.bin>

— COM # - the COM number is the port that communicates to the target board
— Security Option - this is the security option for the image to be written to FLASH: 

– ‘u’ or ‘U’ for unsecured
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– ‘s’ or ‘S’ for secured
— PATH\myApp.bin - this is the path to the binary that will be written to the FLASH

As a requirement, the binary of the SSL application must reside in the same directory as the CL 
executable.

As a command line example, a call to write the image c:\myApp.bin (secured) to the internal 
FLASH of the MC1322x board connected to COM132, appears as follows:
c:\CL\ConsoleLoader.exe 132 S c:\myApp.bin

Alternatively, a call to write the same image (unsecured) appears as follows:
c:\CL\ConsoleLoader.exe 132 U c:\myApp.bin

If all the initial application checks on the input parameters are passed (see Section 5.3, “CL 
Application Processing for details), users are asked to press the reset button on the MC1322x 
board. Pressing reset allows the CL to initiate communication with the MC1322x and download 
the SSL into the RAM, and subsequently the user specified binary in the internal FLASH.

Figure 8 shows a successful update session on the PC terminal.

Figure 8. Running the Console Loader

NOTE
An unsuccessful session will report an appropriate error message.

4. The FLASH will now have a valid image for normal boot after a reset or power cycle.

4 Second Stage Loader (SSL)
The Second Stage Loader (SSL) utility is an MC1322x embedded application that can write, read and 
commit images to FLASH.
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• When the MC1322x boots from an external source, any application can be loaded and then take 
control of the CPU. SSL gets loaded at boot through UART1 and then facilitates transferring a 
target FLASH image from the host to writing/committing it to FLASH

• Because SSL in loaded through UART1, all its operations are performed under the control of a host 
by executing commands received through the UART.

• Source is available for SSL, and as a result, the user can modify this application to make use of an 
alternate boot source for a similar function.

NOTE
The SSL is programmed for a 115200 baud rate by default. Any host 
application must also support this baud rate. Also when supplying the ssl.bin 
during the boot process, the same baud rate should be utilized.

This chapter details the capabilities and details of the SSL.

4.1 SSL UART Command Interface
The SSL executes a set of predefined commands, received through the UART1 interface. The commands 
are encapsulated in a generic UART frame of variable length, as presented in Table 2.

The frame is composed of the following elements:
Start Of Frame (SOF) Always 0x55. Signals the beginning of a frame.
Length 2 bytes, little endian number. This is the length of the command contained within 

the frame, without the SOF, length and CRC. It is equal to N for the presented 
frame.

Command The command contained by the frame.
CRC One byte sum of the byte values of the N bytes of the command field

This frame format is used for commands received by the SSL as well as for confirms or responses sent by 
the SSL to the host.

4.2 SSL UART Commands
Table 3 presents a UART command summary

• All commands start with a field identifying the command followed by specific command fields.
• Multi-byte fields are always written in little endian format.
• The command structure, identification field values and status values are defined in the Engine.h 

file.

Table 2. SSL UART Command Format

Byte 0 Byte 1 Byte 2 Byte 3 Byte . . . . Byte N+2 Byte N+3

SOF Length Command (N Bytes) CRC
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4.2.1 Read Request
The read request triggers a read of FLASH data starting at the “Start address” in the internal FLASH of 
“Length” bytes to be performed.

• If the command is received and interpreted correctly by the MC1322x, the host receives a read 
response that contains the data read during the operation.

• If the command was not received correctly, a confirm message is sent back to the host.

Table 4 shows the command format.

4.2.2 Read Response
The read response is sent by the MC1322x to the host as a response to a read request received and correctly 
interpreted.

• “Status” field (0x00 = success, 0x01= failure) - denotes the success status of the requested read 
operation.

• If the status is success, then the response holds “Length” bytes in the “Data” section, read from the 
start address specified in the read request.

Table 5 shows the command structure.

Table 3. SSL UART Command Summary

Command Name Cmd ID Description

Read Request 0x01 Host requests a read of FLASH contents; provides start address and length

Read Response 0x02 SSL response to Host “Read Request”; returns status, length and data

Write Request 0x03 Host requests a write of FLASH contents; provides start address, length, and 
data

Commit Request 0x04 Host requests a write of the FLASH Length and Signature fields; provides 
Length and Signature choice

Erase Request 0x05 Host requests an erase of FLASH contents; provides address

Confirm 0xF0 SSL response to Host command(s)

Table 4. Read Request Cmd Format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

ID (0x01) Start Address Length (N)

Table 5. Read Response Cmd Format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte . . . Byte N+3

ID (0x02) Status Length (N) Data (N bytes)



Second Stage Loader (SSL)

MC1322x Flash Loader Utility (Second Stage Loader) Application Note, Rev. 1.0

18 Freescale Semiconductor
 

4.2.3 Write Request
The write request triggers a write to the FLASH, starting from the specified “Start address” of “Length” 
bytes from the “Data” buffer received in the command. A confirm message is sent by the MC1322x after 
the command is received and executed. 

NOTE
Any byte written in the internal FLASH memory is verified prior to the 
confirm message for the command being sent to the host. Ensure that the 
FLASH area to be written is erased beforehand.

A confirm message is sent to the host by the MC1322x after the execution of the write request.

Table 6 shows the command structure.

4.2.4 Commit Request
The commit request is the final step in writing an image to the MC1322x internal FLASH. It writes the 
“Length” and “Secure” option to the FLASH header, thus marking the internal FLASH as bootable. 
Checks will be made for the following:

• A valid Length for the image - “Length” needs to be smaller than the FLASH available size. The 
FLASH available size is the total FLASH size minus the last 4 kbyte sector (used for production 
data) and the internal FLASH header size.

• “Secure” field must contain one of two values (these values are defined in the Engine.h file.):
— engSecured_c (0xC3) - causes “SECU” to be written to the Signature field
— engUnsecured_c (0x3C) - causes “OKOK” to be written to the Signature field

A confirm message is sent to the host by the MC1322x after the execution of the commit request.

Table 7 shows the command structure.

4.2.5 Erase Request
The erase request triggers a MC1322x internal FLASH erase (clear) function.

NOTE
• The MC1322x internal serial FLASH is a 128 kbyte device comprised 

of 32 uniform 4 kbyte sectors

Table 6. Write Request Cmd Format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte . . . Byte N+6

ID (0x03) Start Address Length (N) Data (N Bytes)

Table 7. Commit Request Cmd Format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

ID (0x04) Length (N) Secure



Second Stage Loader (SSL)

MC1322x Flash Loader Utility (Second Stage Loader) Application Note, Rev. 1.0

Freescale Semiconductor 19
 

• The last or top 4 kbyte sector of FLASH is reserved for production data 
and cannot be erased. 

The command execution erases the 4Kbyte sector to which the “Address” belongs. Exceptions include:
• If “Address” is equal to 0xFFFFFFFF, the entire internal FLASH is erased (excluding the reserved 

top sector).
• If the address is invalid (not within the FLASH address range), an error is returned in the confirm 

message that is sent to the host by the MC1322x after the execution of the erase request. 

A confirm message is sent to the host by the MC1322x after the execution of the erase request.

Table 8 shows the command structure.

4.2.6 Confirm Message
The confirm message is sent by the MC1322x to the host after executing one of the above enumerated 
commands. It contains only the “Status” of the previously executed command and the “ID” denoting the 
message identity.

The possible values of the “Status” field (found in the ENGCmdStatus_t enumeration of the Engine.h file):

Table 10 shows the Confirm command structure.

Table 8. Erase Request Cmd Format

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4

ID (0x05) Address

Table 9. Confirm Message Status Field Values

Name Value Description

gEngValidReq_c 0x00 Valid request command

gEngInvalidReq_c 0x01 Invalid request command

gEngSuccessOp_c 0x02 Request command success

gEngWriteError_c 0x03 Write request command error

gEngReadError_c 0x04 Read request command error

 gEngCRCError_c 0x05 Request command CRC error

gEngCommError_c 0x06 Request command communication error

gEngExecError_c 0x07 Request command execution error

Table 10. Confirm Message Cmd Format

Byte 0 Byte 1

ID (0xF0) Status
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4.3 SSL Application Modules
The SSL application contains three modules that implement the following functionality needed by the 
application: 

• Communication with the host
• Processing commands
• FLASH read
• FLASH write
• FLASH erase

Each module is presented in the following sections.

4.3.1 UART Module
The UART module is implemented by the UART.h and UART.c files, and covers the communication needs 
of the application. See the UART.h file for the interface exposed to the rest of the application modules, along 
with detailed explanation for usage, and UART.c for implementation details.

Functions available to the application:
• UART_Init(): configures the GPIO for UART1 usage. Configures the UART1 for host 

communication at 115200 baud rate from the 24M Hz system clock, 8-N-1.
• UART_ReceiveCmd(): receives a command on the UART, formatted as described in Section 4.1 of 

this document. It waits for the SOF, receives the length and the command, computes the CRC and 
verifies it against the received CRC.

• UART_SendCmd():Transmits a command on the UART, formatted as described in Section 4.1 of 
this document. The command is accompanied by the start of frame delimiter, the length of the 
command, the command itself and a very simple 8-bit CRC.

• UART_SendRawData(): transmits a raw data buffer over the UART.

4.3.2 NVM Module
The Non Volatile Memory (NVM) module is implemented by the NVM.h and NVM.c files. It allows the 
application to read, write and erase the FLASH memory present on the MC1322x. Macros for start and 
stop of the MC1322x onboard NVM voltage regulator are also present. See the NVM.h file for the interface 
exposed to the rest of the application modules, along with detailed explanation for usage, and NVM.c for 
implementation details.

Main functionality available to the application:
• NVM_Read (): read a specified number of bytes, starting at a specified address, in a buffer provided 

by the application.
• NVM_Write(): write a specified number of bytes, starting from a specified address, from a buffer 

provided by the application.  The data written are verified, and an error is returned at the first write 
error encountered.

• NVM_EraseSector(): erase a specified sector.
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• NVM_BlankCheck(): verify that a specified number of bytes, starting at a specified address, holds 
the value 0xFF. This means that the respective locations can be written successfully.

• NVM_StartNvmRegulator(): starts the NVM regulator. The bootstrap leaves the NVM regulator 
off, in order to save power. The NVM regulator needs to be turned on before the internal FLASH 
memory can be accessed.

• NVM_StopNvmRegulator(): stops the NVM regulator. This will save power, if the application no 
longer needs to access the internal FLASH memory.

4.3.3 Engine module
The Engine module is implemented by the Engine.h and Engine.c files. It receives, interprets, executes 
and confirms commands received from the host over the UART1 interface. It uses the UART module to 
receive the commands and send back to the host the responses and confirm messages. For access to the 
internal FLASH of the MC1322x, the NVM module is used. Important details of the communication 
protocol between the MC1322x and the host, described in Section 4.2 of this document, like command 
ID’s, status codes, command formats, are defined in the Engine.h file. Implementation details can be found 
in the Engine.c file.

There is only one function exposed to the application:
• ENG_Process(): wait for one command to be received from the host. Execute the command and 

send back a response to the host. The function should be called for as many messages as need to 
be handled by the MC1322x.

4.4 SSL application processing
As presented previously of this document, the SSL application will be loaded by the bootstrap starting at 
the beginning of the RAM, and then immediately given control of the MC1322x. The application performs 
the following actions in its main function, implemented in the Main.c file:

5. Start the NVM regulator - The bootstrap leaves the NVM off, as a measure to lower the power 
consumption. Since the application uses the NVM module to access the internal FLASH, the NVM 
regulator must be turned on.

NOTE
In order to support boards that use the buck regulator option, the buck must 
be bypassed prior to starting the NVM regulator. This is accomplished by 
setting the buckBypassEn bit in the CRM_VREG_CNTL Register to 1, then 
waiting at least 700us. The 1.8V NVM regulator can then be enabled.

6. Configure UART1 for usage - This is done through a call to the UART module initialization 
function.

7. Signal the host that the SSL application is ready to receive commands from the host - This is done 
by sending the “READY” string, unformatted. This is the single place where an unformatted 
message between the host and MC1322x is used through the application.

8. Enter an infinite loop where messages from the host are processed - This is done by calling the 
message processing function exposed by the Engine module in a while(1) infinite loop.
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The application shall be always terminated by the host through a reset. If all the steps needed to load an 
executable image into the MC1322x internal FLASH have been executed, the reset should cause the 
bootstrap to load and start executing the new image from the internal FLASH.

5 Console Loader (CL)
Once the FLASH has been erased enabling boot from UART1, an entity is required that plays the role of 
the host. As described previously, the host must do the following:

• Create the needed conditions for the MC1322x to boot from UART1
• Load the SSL application binary through UART1 
• Transmit the needed commands to the SSL for loading the desired FLASH image
• Correctly write the FLASH header so that a subsequent reset will have the MC1322x booting the 

image loaded into FLASH

The most convenient environment to demonstrate all these is the PC, as many MC1322x development 
boards offered by Freescale can be connected to a PC through a USB connection. The USB connection is 
mapped to a virtual COM port on the PC and to UART1 on the MC1322x development board. 

The CL PC application is able to perform all these actions as a host to load a binary image that the user 
specifies to the MC1322x internal FLASH. 

The CL has a command line interface that is detailed in Section 3.2.3, “Run the Tools (Load SSL and 
Update FLASH)”, list Item #3.

The following section details the capabilities and implementation details of the CL.

5.1 CL UART Interface and Commands
The UART interface and command formats used by the CL are identical to those used by the SSL as shown 
in Section 4.1, “SSL UART Command Interface and Section 4.2, “SSL UART Commands.

5.2 CL Modules
The CL has a number of modules that implement the needed application functionality: 

• Communication with the MC1322x
• Commands formation and processing. 

5.2.1 UART Module
The UART module is implemented by the UART.h and UART.cpp files, and covers the communication needs 
of the application. See the UART.h file for the interface exposed to the rest of the application modules, along 
with detailed explanation for usage, and UART.cpp for implementation details.

Functions available to the application:
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• UART_OpenCom(): tries to open and configure a specified PC COM port, for a specified baudrate, 
in 8-N-1 mode. If successful, it will return a handle that can be used to read and write data to the 
COM port.

• UART_SendCmd(): transmits a command on the specified COM port, properly formatted as 
required by the host to MC1322x interface. The command is accompanied by the start of frame 
delimiter, the length of the command, the command itself and a very simple 8-bit CRC.

• UART_ReceiveCmd(): receives a command on the specified COM port, in a specified application 
buffer. It waits for the SOF, receives the length and the command, computes the CRC and verifies 
it against the received CRC. 

5.2.2 Engine Module
The Engine module is implemented by the Engine.h and Engine.cpp files. It will create and send 
commands acting as the host, wait for the confirm messages of the execution on the MC1322x, and report 
the result to the caller. It uses the UART module to send the commands and receive the confirm messages 
from the SSL.

See the Engine.h file for the interface exposed to the application along with detailed explanation for usage, 
and Engine.cpp for implementation details.

NOTE
The command definitions and status codes from the Engine module of the 
CL application must be maintained in synch with the Engine module of the 
SSL application. Compiler peculiarities, related to structures packing and 
the enum base type in Visual C++, prevent the interface definition file from 
being shared between the CL and SSL applications.

Functions available to the application:
• ENG_Erase(): send the command to erase a sector or all sectors of the MC1322x. The last sector 

of the internal FLASH of the MC1322x holds production data and is never erased.
• ENG_Write(): send the command to write data from application-provided data into the internal 

FLASH of the MC1322x. All of the written bytes in FLASH are read back and verified by the SSL 
before returning the confirm message for the write operation.

• ENG_Read(): send the command to read data from the internal FLASH of the MC1322x in an 
application provided buffer.

• ENG_Commit():  commit the image written to the internal FLASH of the MC1322x by writing the 
FLASH header with the image descriptor. The length and security option is provided by the 
application.
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5.3 CL Application Processing
The main function of the CL application is _tmain() and resides in the ConsoleLoader.cpp file. All the 
processing that will end up in an image being loaded into the MC1322x internal FLASH is executed in this 
function in the following order:

1. Parse the input arguments for the executable, and open all the needed handles in the process for the 
files accessed in the application and the COM port - This is accomplished with a call to the 
ParseArguments() function. If the function returns success, move to the next step.

2. Try to connect the MC1322x coming out of reset. - This is done by calling the Connect() function 
that sends 0x00 for baudrate detection and then waits for the "CONNECT" string from the 
MC1322x. The process is repeated a number of times, waiting for the user to reset the MC1322x. 
On success, it moves to the next step, as the MC1322x is ready to receive a binary image through 
UART1.

3. Downloads the SSL image to MC1322x through UART1, then waits the “READY” string from the 
SSL executing on the MC1322x. - This is done by the DownloadSSL() function.

4. Downloads the user specified binary image to the MC1322x internal FLASH by calling the 
DownloadBin() function - At this point, the SSL is running on the MC1322x waiting for commands 
from the host to execute on the MC1322x. The binary image will be partitioned into data packets 
of the maximum supported size by the SSL and sent to the SSL to be written into FLASH. After 
the file is transmitted, the binary is committed by writing the MC1322x FLASH header indicating 
the presence in the FLASH of a valid executable. This is the last step of the application.

As a general approach, if at any step an error occurs, the application prints a relevant error message to the 
user and the application help text, then it closes all opened handles and exits.

6 Compiling the Applications
To compile the SSL application, IAR EWARM v5.20 or above is required. The user needs to open the 
following project file:
..\SSL\ssl.eww

By default, the “Release” configuration is selected. This can be changed from the top of the “Workspace” 
window.

The SSL application can be built by pressing ‘F7” or by selecting from the menu “Project->Make”. 
Depending on the selected project configuration, the SSL binary is found in one of two locations:

• For the “Release” configuration, in ..\SSL\Release\Exe\ssl.bin
• For the “Debug” configuration, in ..\SSL\Debug\Exe\ssl.bin

To compile the ConsoleLoader application, Visual C++ 2003 or higher is required. The user needs to open 
the following project file:
..\ConsoleLoader\ConsoleLoader.sln

The “Release” configuration is selected by default. The “Debug” configuration can be selected using the 
“Configuration Manager”, opened through the menu entry “Build->Configuration Manager”.
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Depending on the selected project configuration, the ConsoleLoader executable is found in one of two 
locations:

• For the “Release” configuration, in ..\ConsoleLoader\Release\ConsoleLoader.exe
• For the “Debug” configuration, in ..\ConsoleLoader\Debug\ConsoleLoader.exe

Before running the ConsoleLoader.exe application, make sure that the ssl.bin file is copied in the same 
directory as the ConsoleLoader.exe.
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