High Reliability Varistors ### **Agency Approvals** - DSSC Approved - QPL Listed - CECC Certified - ISO Approved - UL Recognized - CSA Certified ## **Description** Littelfuse High Reliability Varistors offer the latest in increased product performance, and are available for applications requiring quality and reliability assurance levels consistent with military or other standards (MIL-STD-19500, MIL-STD-750, Method 202). Additionally, Littelfuse Varistors are inherently radiation hardened compared to Silicon Diode suppressors as illustrated in Figure 1. Littelfuse High-Reliability Varistors involve five categories: - 1 DSSC Qualified Parts List (QPL) MIL-R-83530 (4 items presently available) - 2 Littelfuse High Reliability Series TX Equivalents (29 items presently available) - 3 Custom Types Processed to customer-specific requirements - (SCD) or to Standard Military Flow 4 Commercial Item Descriptors (CID) identified for Government use: CID AA-55564-3 - Littelfuse ZA Series CID AA-55564-2 - Littelfuse DA, DB Series # Varistor Products High Reliability Varistors ## 1) DSSC Qualified Parts List (QPL) MIL-R-83530 This series of varistors are screened and conditioned in accordance with MIL-R-83530 as outlined in Table 2. Manufacturing system conforms to MIL-I-45208; MIL-Q-9858. ## Table 1. MIL-R-83530/1 Ratings and Characteristics | Part | Nominal
Varistor | Tolerance | ĬΛ | Rating
/) | Energy | Clamping Voltage Capacitance | | Capacitance Voltage | | Nearest | |-------------------|---------------------|-----------|-------|--------------|---------------|------------------------------|--------------|----------------------------------|---------------------|--------------------------| | Number
M83530/ | Voltage
(V) | (%) | (RMS) | (DC) | Rating
(J) | at 100A
(V) | at 1MHz (pF) | At Peak
Current
Rating (V) | I _{TM} (A) | Commercial
Equivalent | | 1-2000B | 200 | -/+10 | 130 | 175 | 50 | 325 | 3800 | 570 | 6000 | V130LA20B | | 1-2200D | 220 | +10, -5 | 150 | 200 | 55 | 360 | 3200 | 650 | 6000 | V150LA20B | | 1-4300E | 430 | +5, -10 | 275 | 369 | 100 | 680 | 1800 | 1200 | 6000 | V275LA40B | | 1-5100E | 510 | +5, -10 | 320 | 420 | 120 | 810 | 1500 | 1450 | 6000 | V320LA40B | ## Table 2. Mil-R-83530 Group A, B, and C Inspections | Inspection | | AQL
(Percent
Defective) | Major | Minor | Number
of Sample
Units | Failures
Allowed | | | | |------------|--|-------------------------------|------------------|------------------|------------------------------|---------------------|--|--|--| | Group A | SUBGROUP 1 | | | | | | | | | | | High Temperature Life (Stabilization Bake) | 100% | - | - | - | - | | | | | | Thermal Shock | 100% | - | - | - | - | | | | | | Power Burn-In | 100% | - | - | - | - | | | | | | Clamping Voltage | 100% | - | - | - | - | | | | | | Nominal Varistor Voltage | 100% | - | - | - | - | | | | | | SUBGROUP 2 | | | | | | | | | | | Visual and Mechanical Examination | - | 1.0% AQL 7.6% LQ | 25% AQL 13.0% LQ | Per Plan | - | | | | | | Body Dimensions | - | | | Per Plan | - | | | | | | Diameter and Length of Leads | - | | | Per Plan | - | | | | | | Marking | - | | | Per Plan | - | | | | | | Workmanship | - | | | Per Plan | - | | | | | | SUBGROUP 3 | | | | | | | | | | | Solderability | - | - | - | Per Plan | - | | | | | Group B | SUBGROUP 1 | | | | | | | | | | | Dielectric Withstanding Voltage | - | - | - | Per Plan | - | | | | | | SUBGROUP 2 | | | | | | | | | | | Resistance to Solvents | - | - | - | Per Plan | - | | | | | | SUBGROUP 3 | | | | | | | | | | | Terminal Strength (Lead Fatigue) | - | - | - | Per Plan | - | | | | | | Moisture Resistance | - | - | - | Per Plan | - | | | | | | Peak Current | - | - | - | Per Plan | - | | | | | | Energy | - | - | - | Per Plan | - | | | | | Group C | EVERY 3 MONTHS | | | | | | | | | | | High Temperature Storage | - | - | - | 10 | 0 | | | | | | Operating Life (Steady State) | - | - | - | 10 | 0 | | | | | | Pulse Life | - | - | - | 10 | 0 | | | | | | Shock | - | - | - | 10 | 0 | | | | | | Vibration | - | - | - | 10 | 0 | | | | | | Constant Acceleration | - | - | - | 10 | 0 | | | | | | Energy | - | - | - | 10 | 0 | | | | ## 2) Littelfuse High Reliability Series TX Equivalents ## **TABLE 5. Available TX Model Types** | TX Model | Model Size | Device
Mark | (See Section
4) Nearest
Commercial
Equivalent | |----------|------------|----------------|--| | V8ZTX1 | 7mm | 8TX1 | V8ZA1 | | V8ZTX2 | 10mm | 8TX2 | V8ZA2 | | V12ZTX1 | 7mm | 12TX1 | V12ZA1 | | V12ZTX2 | 10mm | 12TX2 | V12ZA2 | | V22ZTX1 | 7mm | 22TX1 | V22ZA1 | | V22ZTX3 | 14mm | 22TX3 | V22ZA3 | | V24ZTX50 | 20mm | 24TX50 | V24ZA50 | | V33ZTX1 | 7mm | 33TX1 | V33ZA1 | | V33ZTX5 | 14mm | 33TX5 | V33ZA5 | | V33ZTX70 | 20mm | 33TX70 | V33ZA70 | | V68ZTX2 | 7mm | 68TX2 | V68ZA2 | | V68ZTX10 | 14mm | 68TX10 | V68ZA10 | | V82ZTX2 | 7mm | 82TX2 | V82ZA2 | | V82ZTX12 | 14mm | 82TX12 | V82ZA12 | | TX Model | Model Size | Device
Mark | (See Section
4) Nearest
Commercial
Equivalent | |------------|------------|----------------|--| | V130LTX2 | 7mm | 130TX | V130LA2 | | V130LTX10A | 14mm | 130TX10 | V130LA10A | | V130LTX20B | 20mm | 130TX20 | V130LA20A | | V150LTX2 | 7mm | 150TX | V150LA2 | | V150LTX10A | 14mm | 150TX10 | V150LA10A | | V150LTX20B | 20mm | 150TX20 | V150LA20B | | V250LTX4 | 7mm | 250TX | V250LA4 | | V250LTX20A | 14mm | 250TX20 | V250LA20A | | V250LTX40B | 20mm | 250TX40 | V250LA40B | | V420LTX20A | 14mm | 420TX20 | V420LA20A | | V420LTX40B | 20mm | 420TX40 | V420LA40B | | V480LTX40A | 14mm | 480TX40 | V480LA40A | | V480LTX80B | 20mm | 480TX80 | V480LA80B | | V510LTX40A | 14mm | 510TX40 | V510LA40A | | V510LTX80B | 20mm | 510TX80 | V510LA80B | The TX Series of varistors are 100% screened and conditioned in accordance with MIL-STD-750. Tests are as outlined in Table 6. QA ACCEPTANCE **INSPECTION LOTS** REVIEW OF DATA LOTS PROPOSED SAMPLE PER 100% SCREENING FORMED AFTER > > > TX PREPARATION > FOR TX TYPES APPLICABLE DEVICE **ASSEMBLY** FOR DELIVERY SPECIFICATION ## **TABLE 6.TX Equivalents Series 100% Screening** | | MIL-STD-105
LEVEL AQL | | LTPD | | |---|--------------------------|-----|------|--| | | | | | | | Electrical (Bidirectional) $V_{N(DC)}$, V_{C} (Per Specifications Table) | II | 0.1 | - | | | Dielectric Withstand Voltage MIL–STD–202, Method 301, 2500V Min. at $1.0\mu A_{DC}$ | - | - | 15 | | | Solderability MIL–STD–202, Method 208, No Aging, Non-Activated | - | - | 15 | | ## **TABLE 7. Quality Assurance Acceptance Test** | Screen | MIL-STD-750
Method | Condition | TX Requirements | |---|---|--|-----------------| | High Temperature Life (Stabilization Bake) | 1032 | 24 hours min at max rated storage temperature. | 100% | | Thermal Shock | | | | | (Temperature Cycling) | No dwell is required at 25°C. Test condition A1, 5 cycles -55°C to +125°C (extremes) >10 minutes. | | 100% | | Humidity Life | | 85°C, 85% RH, 168 Hrs. | 100% | | Interim Electrical V _{N(DC)} V _C (Note 3) | | As specified, but including delta parameter as a minimum. | 100% Screen | | Power Burn-In | 1038 | Condition B, 85°C, rated V _{MACI} , 72 hours min. | 100% | | Final Electrical +V _{N(DC)} V _C (Note 3) | | As specified - All parameter measurements must be completed within 96 hours after removal from burn-in conditions. | 100% Screen | | External Visual
Examination | 2017 In he performed after complete marking | | 100% | # Varistor Products High Reliability Varistors ## 3) Custom Types In addition to our comprehensive high-reliability series, Littelfuse can screen and condition to specific requirements. Additional mechanical and environmental capabilities are defined in Table 8. **TABLE 8. Mechanical And Environmental Capabilities (Typical Conditions)** | Test Name | Test Method | Description | |--------------------------------------|-----------------------|--| | Terminal Strength | MIL-STD-750-2036 | 3 Bends, 90° Arc, 16oz. Weight | | Drop Shock | MIL-STD-750-2016 | 1500g's, 0.5ms, 5 Pulses, X ₁ , V ₁ , Z ₁ | | Variable Frequency Vibration | MIL-STD-750-2056 | 20g's, 100-2000Hz, X ₁ , V ₁ , Z ₁ | | Constant Acceleration | MIL-STD-750-2006 | V ₂ , 20,000g's Min | | Salt Atmosphere | MIL-STD-750-1041 | 35°C, 24Hr, 10-50g/m ² Day | | Soldering Heat/Solderability | MIL-STD-750-2031/2026 | 260°C, 10s, 3 Cycles, Test Marking | | Resistance to Solvents | MIL-STD-202-215 | Permanence, 3 Solvents | | Flammability | MIL-STD-202-111 | 15s Torching, 10s to Flameout | | Flammability | UL1414 | 3 μ; 15s Torching | | Cyclical Moisture Resistance | MIL-STD-202-106 | 10 Days | | Steady-State Moisture Resistance | MIL-STD-750-1021.3 | 85/85 96Hr | | Biased Moisture Resistance | MIL-STD-750-1021.3 | Not Recommended for High-Voltage Types | | Temperature Cycle | MIL-STD-202-107 | -55°C to 125°C, 5 Cycles | | High-Temperature Life (Nonoperating) | MIL-STD-750-1032 | 125°C, 24Hr | | Burn-In | MIL-STD-750-1038 | Rated Temperature and V _{RMS} | | Hermetic Seal | MIL-STD-750-1071 | Condition D | # Varistor Products High Reliability Varistors ## 4) Commercial Items The General Services Administration has authorized the use of the Commercial Item Description (CID) for all government agencies. There are three (3) listed series within Littelfuse leaded/Industrial range: A-A-55564-3 (ZA Series) A-A-55564-2 (DA/DB Series) The PIN number should be used to buy commercial product to the CID. The manufacturer's number shown should not be used for ordering purposes. PIN consists of abbreviated CID number + Applicable Sheet (2 digits) + Dash number (-3 digits) **Example:** AA55564 + 02 + -001 = AA5556402-001 **Table 9. ZA Series A-A-55564-3** | Dash Number
AA5556403– | Equiv. Littelfuse
Commercial Part | Dash Number
AA5556403– | Equiv. Littelfuse
Commerical Part | Dash Number
AA5556403– | Equiv.littelfuse
Commercial Part | MFR's Cage | |---------------------------|--------------------------------------|---------------------------|--------------------------------------|---------------------------|-------------------------------------|------------| | 001 | V22ZA05 | 022 | V47ZA1 | 043 | V120ZA4 | | | 002 | V22ZA1 | 023 | V47ZA3 | 044 | V120ZA6 | | | 003 | V22ZA2 | 024 | V47ZA7 | 045 | V150ZA05 | | | 004 | V22ZA3 | 025 | V56ZA05 | 046 | V150ZA1 | | | 005 | V24ZA50 | 026 | V56ZA2 | 047 | V150ZA4 | | | 006 | V27ZA05 | 027 | V56ZA3 | 048 | V150ZA8 | | | 007 | V27ZA1 | 028 | V56ZA8 | 049 | V180ZA05 | | | 008 | V27ZA2 | 029 | V68ZA05 | 050 | V180ZA1 | | | 009 | V27ZA4 | 030 | V68ZA2 | 051 | V180ZA5 | | | 010 | V27ZA60 | 031 | V68ZA3 | 052 | V180ZA10 | | | 011 | V33ZA05 | 032 | V68ZA10 | 053 | V8ZA05 | S6019 | | 012 | V33ZA1 | 033 | V82ZA05 | 054 | V8ZA1 | | | 013 | V33ZA2 | 034 | V82ZA2 | 055 | V8ZA2 | | | 014 | V33ZA5 | 035 | V82ZA4 | 056 | V12ZA05 | | | 015 | V33ZA70 | 036 | V82ZA12 | 057 | V12ZA1 | | | 016 | V36ZA80 | 037 | V100ZA05 | 058 | V12ZA2 | | | 017 | V39ZA05 | 038 | V100ZA3 | 059 | V18ZA05 | | | 018 | V39ZA1 | 039 | V100ZA4 | 060 | V18ZA1 | | | 019 | V39ZA3 | 040 | V100ZA15 | 061 | V18ZA2 | | | 020 | V39ZA6 | 041 | V120ZA05 | 062 | V18ZA3 | | | 021 | V47ZA05 | 042 | V120ZA1 | 063 | V18ZA40 | | #### Table 10. DA/DB Series A-A-55564-2 | Dash Number
AA5556402– | MFR's Cage | Equiv. Littelfuse
Commercial Part | Dash Number
AA5556402– | MFR's Cage | Equiv. Littelfuse
Commercial Part | |---------------------------|------------|--------------------------------------|---------------------------|------------|--------------------------------------| | 001 | | V131DA40 | 012 | | V131DB40 | | 002 | | V151DA40 | 013 | | V151DB40 | | 003 | | V251DA40 | 014 | S6019 | V251DB40 | | 004 | S6019 | V271DA40 | 015 | | V271DB40 | | 005 | | V321DA40 | 016 | | V321DB40 | | 006 | | V421DA40 | 017 | | V421DB40 | | 007 | | V481DA40 | 018 | | V481DB40 | | 800 | | V511DA40 | 019 | | V511DB40 | | 009 | - | V571DA40 | 020 | | V571DB40 | | 010 | | V661DA40 | 021 | | V661DB40 | | 011 | | V751DA40 | 022 | | V751DB40 | #### **Radiation Hardness** For space applications, an extremely important property of a protection device is its response to imposed radiation effects. #### **Electron Irradiation** A Littelfuse MOV and a Silicon transient suppression diode were exposed to electron irradiation. The V-I curves, before and after test, are shown below. FIGURE 1. RADIATION SENSITIVITY OF LITTELFUSE V130LA1 AND SILICON TRANSIENT SUPPRESSION DIODE It is apparent that the Littelfuse MOV was virtually unaffected, even at the extremely high dose of 108 rads, while the Silicon transient suppression diode showed a dramatic increase in leakage current. #### **Neutron Effects** A second MOV-Zener comparison was made in response to neutron fluence. The selected devices were equal in area. Figure 2 shows the clamping voltage response of the MOV and the Zener to neutron irradiation to as high as 1015 N/cm². It is apparent that in contrast to the large change in the Zener, the MOV is unaltered. At highercurrents where the MOV's clamping voltage is again unchanged, the Zener device clamping voltage increases by as much as 36%. FIGURE 2. V-I CHARACTERISTIC RESPONSE TO NEUTRON IRRADIATION FOR MOV AND ZENER DIODE DEVICES Counterclockwise rotation of the V-I characteristics is observed in Silicon devices at high neutron irradiation levels; in other words, increasing leakage at low current levels and increasing clamping voltage at higher current levels. The solid and open circles for a given fluence represent the high and low breakdown currents for the sample of devices tested. Note that there is a marked decrease in current (or energy) handling capability with increased neutron fluence. Failure threshold of Silicon semiconductor junctions is further reduced when high or rapidly increasing currents are applied. Junctions develop hot spots, which enlarge until a short occurs if current is not limited or quickly removed. The characteristic voltage current relationship of a P– N Junction is shown below. FIGURE 3. V-I CHARACTERISTIC OF PN-JUNCTION At low reverse voltage, the device will conduct very little current (the saturation current). At higher reverse voltage VBO (breakdown voltage), the current increases rapidly as the electrons are either pulled by the electric field (Zener effect) or knocked out by other electrons (avalanching). A further increase in voltage causes the device to exhibit a negative resistance characteristic leading to secondary breakdown. This manifests itself through the formation of hotspots, and irreversible damage occurs. This failure threshold decreases under neutron irradiation for Zeners, but not for Z_NO Varistors. #### **Gamma Radiation** Radiation damage studies were performed on type V130LA2 varistors. Emission spectra and V-I characteristics were collected before and after irradiation with 106 rads Co60 gamma radiation. Both show no change, within experimental error, after irradiation.