

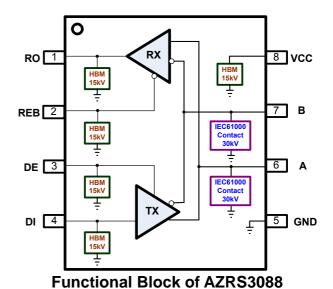
Features

- Meet the Requirements of the EIA/TIA-485
 Standards with 5V Power Supply
- Integrated <u>Transient Voltage Suppressor</u> (TVS)
- TVS Protection for Bus Terminals:
 ±30 kV IEC 61000-4-2, Contact/Air Discharge
 ±88 A IEC 61000-4-4, EFT (5/50ns)
 ±30 A IEC 61000-4-5, Surge (8/20µs)
- HBM ±15kV ESD Protection for all pins
- MM ±800V ESD Protection for all pins
- Latchup immunity up to ±400mA.
- High CDM protection up to ±2kV.
- True Fail-Safe Receiver While Maintaining EIA/TIA-485 Compatibility
- Hot-Swap Glitch free Protection on Control Inputs
- Up to 256 Transceivers on the Bus
- Maximum Baud Rate up to 10Mbps

Applications

- Motor Control
- Industrial Control
- Telecommunications Equipment
- Security System
- Building Automation Networks

Description


The AZRS3088 is a ±30 kV IEC 61000-4-2 Contact/Air Discharge protected, half-duplex transceiver designed for RS-485 data bus network, which contains one transmitter and one receiver. This device is fully compliant with the EIA/TIA-485 standard with 5V power supply.

The AZRS3088 features a fail-safe receiver, which guarantees the receiver to output high when the receiver inputs are open, short or idle.

The AZRS3088 features a hot-swap glitch free protection circuits which guarantee outputs of both the transmitter and the receiver in a high impedance state during the power up period. So that the large short current from power to ground will be disable by glitch free function, which will save the power and enhance the efficiency of the power up.

The AZRS3088 is optimized for signal rates up to 10Mbps with differential voltage of 2.3V. The AZRS3088 also has the thermal shutdown function when the temperature is over 150°C and the protection of the current limitation in the transmitter to protect the itself from the damage by the system-fault conditions during normal operation.

The AZRS3088 is also a high reliable device with built-in system level ESD protector device (TVS) against high-energy noise transients without any external components.

Part Number HBM on All IEC 61000-4-5 IEC 61000-4-2 **Duplex** Tx/Rx Supply **Data Rate** Fail-**Package** (Mbps) safe pins Surge on A,B Contact on A,B Type **AZRS3088** Half 1/1 5 **SO-8** 10 Yes ±15kV ±30A ± 30kV

ABSOLUTE MAXIMUM RATINGS

PARAMETER	PARAMETER	RATING	UNITS
Power Supply Vcc	Vcc	-0.3 to 8.0	V
Control Input Voltage	REB, DE	-0.3 to (Vcc+ 0.3)	V
Receiver Input Voltage	A, B	±13	V
Receiver Output Voltage	RO	-0.3 to (Vcc+ 0.3)	V
Transmitter Output Voltage	A, B	±13	V
Transmitter Input	DI	-0.3 to (Vcc+ 0.3)	V
Operating Temperature	T _{OP}	-40 to +85	°C
Storage Temperature	T _{STO}	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS

(Vcc=5V \pm 5% with T_{AMB}= T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at Vcc=5V and T_{AMB}= 25 °C.)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	TYP	MAX	UNITS
TRANSMITTER						1 1111 111	
Differential Transmitter Output	V _{OD1}	No load				5	V
Differential Transmitter Output	V_{OD2}	Fig.1, R _L = 27 Ω	2	1.7			V
Change in Magnitude of Differential Output Voltage	$\Delta V_{\sf OD}$	Fig.1, R _L = 27 \(\overline{\Omega} \)	2			0.2	V
Transmitter Common- Mode Output Voltage	V _{OC}	Fig.1, R _L = 27 \(\Omega\)	2			3	V
Change in Magnitude of Common- Mode Voltage	$\Delta V_{ m oc}$	Fig.1, R _L = 27 \(\overline{\Omega} \)	2			0.2	V
Input High Voltage	V _{IH}	DE, DI, REB		2.0			V
Input Low Voltage	V _{IL}	DE, DI, REB				0.8	V
Input Current	I _{IN1}	DI				±1	μΑ
Input Current	I _{IN2}	DE, REB				±50	μΑ
DI Input Hysteresis	V _{HYS}				100		mV
Input Current (A and B)	I _{IN3}	DE = GND, VCC = GND	V _{IN} = 12V			125	μΑ
input durionic (i cand b)	'IN3	or 5.25\/	V _{IN} = -7V			-75	pu t
Transmitter Short-Circuit	1	-7∨ ≤ V _{OUT} ≤	Vcc	-250			m Λ
Output Current	I _{OS}	0V ≤ V _{OUT} ≤	12V			250	mA
RECEIVER							
Receiver Differential Threshold Voltage	V _{TH}	-7V ≤ V _{CM} ≤	+12V	-200	-125	-50	mV
Receiver Input Hysteresis	$\Delta_{ m V_{TH}}$				25		mV
Receiver Output High Voltage	V _{OH}	Io= -4mA, VID= -50mV		Vcc-1.5			V
Receiver Output Low Voltage	V _{OL}	Io= 4mA, VID= -200mV				0.4	V
Three- State Output Current at Receiver	I _{OZR}	$0.4V \leq V_{CM} \leq 2.4V$				±1	μΑ
Receiver Input Resistance	R _{IN}	-7∨ ≤ V _{CM} ≤	+12V	96			kΩ
Receiver Output Short-Circuit Current	I _{OSR}	Fig.6 , 0V ≤ \		±7		±95	mA

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SUPPLY CURRENT							
Supply Current	Icc	No load, REB=GND, DI=Vcc or			420	600	μΑ
		GND.	DE= GND		320	500	μΑ
Supply Current in Shutdown Mode	I _{SHDN}	REB=Vcc, DE=	=GND		1n	10μ	Α

SWITCHING CHARACTERISTICS

(Vcc=5V \pm 5% with T_{AMB}= T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at Vcc=5V and T_{AMB}= 25 °C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Transmitter Input to Output	t _{DPLH} , t _{DPHL}	Fig.2 and 7, R_{DIFF} =54 Ω , C_{L1} = C_{L2} = 100pF		35	60	ns
Transmitter Output Skew $\left t_{\mathit{DPLH}} - t_{\mathit{DPHL}}\right $	t _{DSKEW}	Fig.2 and 7, R_{DIFF} =54 Ω , C_{L1} = C_{L2} = 100pF		5	±10	ns
Transmitter Rise or Fall Time	t _{DF} , t _{DR}	Fig.2 and 7, R_{DIFF} =54 Ω , C_{L1} = C_{L2} = 100pF		15	25	ns
Maximum Data Rate	f _{MAX}			10		Mbps
Transmitter Enable to Output Low	t _{DZL}	Fig.4 and 8, C _{DL} = 100pF, S1 closed			150	ns
Transmitter Enable to Output High	t _{DZH}	Fig.4 and 8, C _{DL} = 100pF, S2 closed			150	ns
Transmitter Disable Time from Low	t _{DLZ}	Fig.4 and 8, C _{DL} = 15pF, S1 closed			100	ns
Transmitter Disable Time from High	t _{DHZ}	Fig.4 and 8, C _{DL} = 15pF, S2 closed			100	ns
Receiver Input to Output	t _{RPLH} , t _{RPHL}	Fig.5 and 9 , $\left V_{ID}\right \ge 2.0 \text{V}$; rise and fall time of $\text{V}_{\text{ID}} \le 15 \text{ns}$		150	200	ns
$\left t_{\it RPLH}-t_{\it RPHL} ight $ Different Receiver Skew	t _{RSKD}	Fig.5 and 9, $ V_{ID} \ge 2.0V$; rise and fall time of $V_{ID} \le 15$ ns		1	±10	ns
Receiver Enable to Output Low	t _{RZL}	Fig.3 and 10, C _{RL} = 100pF, S1 closed		20	50	ns
Receiver Enable to Output High	t _{RZH}	Fig.3 and 10, C _{RL} = 100pF, S2 closed		20	50	ns
Receiver Disable Time from Low	t _{RLZ}	Fig.3 and 10, C _{RL} = 100pF, S1 closed		20	50	ns
Receiver Disable Time from High	t _{RHZ}	Fig.3 and 10, C _{RL} = 100pF, S2 closed		20	50	ns
Time to Shutdown	t _{SHDN}		50	200	600	ns
Transmitter Enable from Shutdown to Output Low	t _{DZL(SHDN)}	Fig.4 and 8, C _{DL} = 15pF, S1 closed			250	ns
Transmitter Enable from Shutdown to Output High	t _{DZH(SHDN)}	Fig.4 and 8, C _{DL} = 15pF, S2 closed			250	ns
Receiver Enable from Shutdown to Output Low	t _{RZL(SHDN)}	Fig.3 and 10, C _{RL} = 100pF, S1 closed			3000	ns
Receiver Enable from Shutdown to Output High	t _{RZH(SHDN)}	Fig.3 and 10, C _{RL} = 100pF, S2 closed			3000	ns

PIN FUNCTION DESCRIPTION

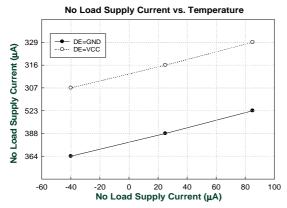
Pin Number	Mnemonic	Function
1	RO	Receiver Output: When REB is low and if (A - B) ≥ -50mV,
		RO is high; if (A - B) ≤ -200mV, RO is low.
2	REB	Receiver Output Enable: REB is low to enable the Receiver; REB
		is high to disable the Receiver.
3	DE	Transmitter Output Enable: DE is high to enable the transmitter;
		DE is low to disable the transceiver.
4	DI	Transmitter Input: When DE is high, a low on DI forces A output
		low and B output high. Similarly, a high on DI forces A output high
		and B output low.
5	GND	Ground pin. Must be connected to 0V.
6	А	Non-inverting Receiver Input and Non-inverting Transmitter
		Output
7	В	Inverting Receiver Input and Inverting Transmitter Output
8	VCC	Power Supply Input 5V.

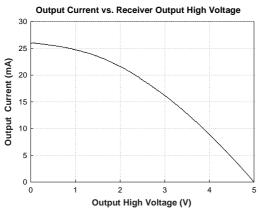
FUNCTION TABLE

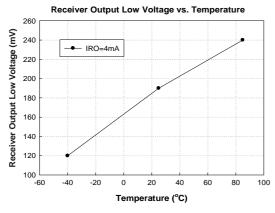
TRANSMITTING					
INPUTS			OUT	PUTS	
REB	DE	DI	Α	В	
X	1	0	0	1	
X	1	1	1	0	
0	0	X	HIGH- Z	HIGH- Z	
1	0	X	Shutdown		

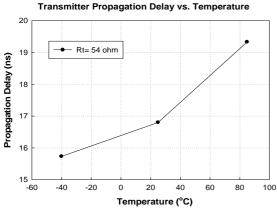
X= Don't care

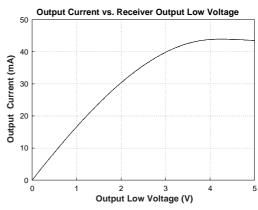
HIGH- Z= High impedance

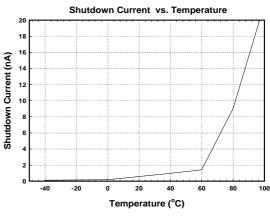

RECEIVING					
	INPUTS				
REB	DE	A - B	RO		
0	X	≥-0.05 ∨	1		
0	X	≤-0.2 y	0		
0	X	Open/Shorted	1		
1	1	X	HIGH- Z		
1	0	Shutdown			

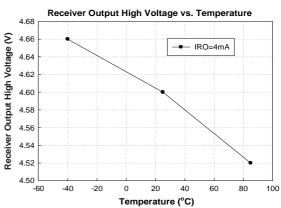

X= Don't care

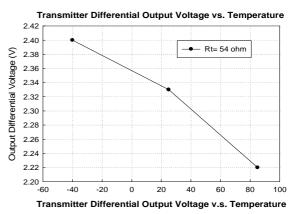

HIGH- Z= High impedance




(Vcc = +5V, $T_{AMB} = 25$ °C, unless otherwise noted.)







Detail Description

The AZRS3088 is a half-duplex RS-485 transceiver, which contains one transmitter and one receiver with 5V power supply. This device is fully compliant with the EIA/TIA-485 standard.

The AZRS3088 features a fail-safe receiver, which guarantees the receiver output high when the receiver inputs are open, short or idle. This is the true fail-safe receiver, which can save both the external pull-high off-chip resistor on bus A and pull-low off-chip resistor on bus B.

The AZRS3088 features the hot-swap circuit which guarantees the outputs of both the transmitter and receiver in a high impedance state during the power-up period until the supply voltage has stabilized.

The AZRS3088 operates at signal rates up to 10Mbps and which also has the thermal shutdown function and the current limited protection in the transmitter to protect the device from damage by system fault conditions during normal operation.

The immunity of the latchup is up to ± 400 mA that will enhance the system to be more safety and reliable.

Transmitter

The design of the transmitter is a non-inverted translator that converts the TTL single-ended input signal to differential EIA/TIA-485 signal The transmitter of the AZRS3088 guarantees a 10Mbps data rate communication. When the transmitter is active (DE= HIGH), the single-end input signals of transmitter will be transported to differential output signals of the transmitter. Under the disable state (DE= LOW), the outputs of transmitter are stay at high impedance state. The driving ability of the transmitter is referred to the differential output voltage under loading condition, which meets the EIA/TIA 485 standard. The fully differential output of transmitter are connected to the differential input of the receiver due to half-duplex operation.

Receiver

The receiver of the AZRS3088 converts the differential EIA/TIA-485 signals to single-end output TTL signal when receiver is in active state (REB=LOW), which incorporates input filtering in addition to input hysteresis, which enhances noise immunity with differential signals that have very slow rise and fall times.

Fail-Safe

The AZRS3088 guarantees a receiver output high when the receiver inputs are short, open, or idle. The threshold voltage of receiver input is between -50mV and -200mV. If the differential receiver input voltage (A - B) is greater than or equal to -50mV, receiver output (RO) is logic-high. If (A - B) is less than or equal to -200mV, RO is logic-low. In the case of a terminated bus with all transmitters disabled, the receiver's differential input voltage (A - B) is 0V; therefore, the RO is logic-high at that time.

Transmitter Output Protection

The AZRS3088 has the current limitation function and the thermal shutdown protection in the transmitter. Firstly, the function of current limitation provides immediate protection against short circuits over the whole common-mode voltage range (-7V to +12V). Secondly, the function of thermal shutdown protection will be active to force the transmitter outputs into a high impedance state if the operating temperature is over 150 °C.

1/8 Unit Load

The RS-485 standard defines both receiver inputs impedance are $12k\Omega$ (1 unit load) and the maximum 32-unit loads on the bus. The AZRS3088 transceiver has a $96k\Omega$ input impedance (1/8 unit load) of the receiver, allowing up to 256 devices to be connected in parallel on the RS485 bus.

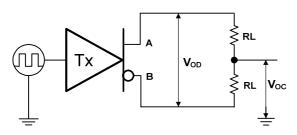


Fig.1 Transmitter DC test circuit

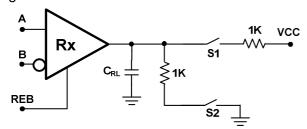


Fig.3 Receiver enable/disable timing test load

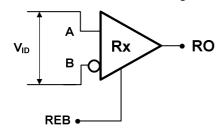


Fig.5 Receiver timing test circuit

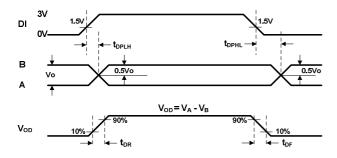


Fig.7 Transmitter Propagation Delays

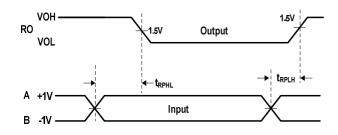


Fig.9 Receiver Propagation Delays

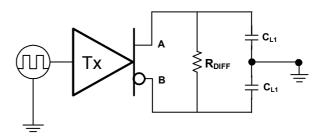


Fig.2 Transmitter timing test circuit

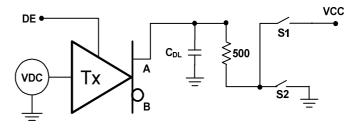


Fig.4 Transmitter enable/disable timing test load

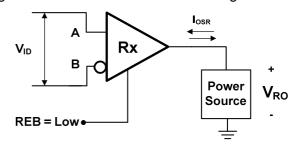


Fig.6 Receiver output short circuit

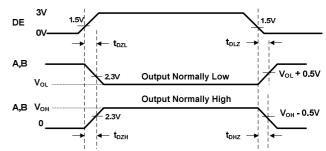


Fig.8 Transmitter Enable and Disable Times

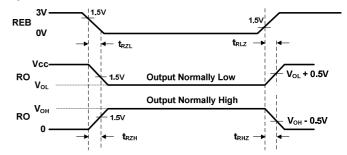
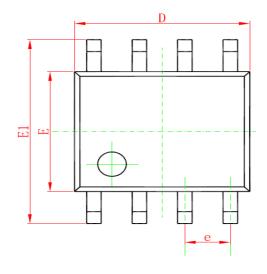
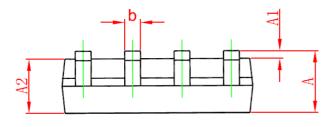
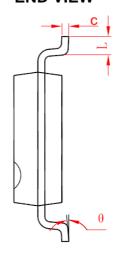



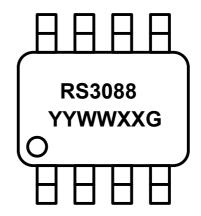
Fig.10 Receiver Enable and Disable Times



Mechanical Details


SO-8
PACKAGE DIAGRAMS
TOP VIEW

SIDE VIEW


END VIEW

PACKAGE DIMENSIONS

	Millim	eters	Inc	hes
Symbol	min	max	min	max
Α	1.35	1.75	0.053	0.069
A1	0.10	0.25	0.004	0.010
A2	1.35	1.55	0.053	0.061
b	0.33	0.51	0.013	0.020
С	0.17	0.26	0.007	0.010
D	4.70	5.10	0.185	0.201
Е	3.70	4.10	0.146	0.161
E1	5.80	6.20	0.228	0.244
е	1.27 BSC		0.05	BSC
L	0.40	1.27	0.016	0.050
θ	0	8	0	8

MARKING CODE

RS3088 = Device Code YYWWXX = Date Code G = Green Part Indication

Part Number	Marking Code
AZRS3088	RS3088

Ordering Information

PN#	Material	Type	Reel size	MOQ/interal box	MOQ/carton
AZRS3088.RDG	Green	T/R	13 inch	1 reel=2,500/box	5 box=12,500/carton

Revision History

Revision Modification Description				
Revision 2010/12/30	The Preliminary Release.			
Revision 2011/03/01	The Formal Release.			
Revision 2011/03/21	Correct the Package type from SOP-8 to SO-8.			
Revision 2011/05/25	Update the Company Logo.			
Revision 2011/06/19	Add the Ordering Information.			
Revision 2011/00/19	2. Eliminate the index of L1 in the PACKAGE DIMENSIONS.			