

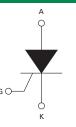
SxX8xSx Series

Main Features

Symbol	Value	Unit
I _{T(RMS)}	0.8	А
V _{DRM} /V _{RRM}	400 to 800	V
I _{GT}	5 to 200	μΑ

Applications

The SxX8xSx EV series is specifically designed for GFCI (Ground Fault Circuit Interrupter) and gas ignition applications.


Description

New device series offers high static dv/dt and lower turn off (t_q) sensitive SCR with its small die planar construction design. It is specifically designed for GFCI (Ground Fault Circuit Interrupter) and Gas Ignition applications. All SCRs junctions are glass-passivated to ensure long term reliability and parametric stability.

Features

- RoHS compliant
- Thru-hole and surface mount packages
- Surge current capability > 10Amps
- Blocking voltage (V_{DRM} / V_{RRM}) capability - up to 800V
- High dv/dt noise immunity
- Improved turn-off time (t_q) < 25 µsec
- Sensitive gate for direct microprocessor interface

Schematic Symbol

Absolute Maximum Ratings

Symbol	Parameter			Value	Unit
		TO-92	$T_{c} = 55^{\circ}C$	0.8	А
I _{T(RMS)}	RMS on-state current (full sine wave)	SOT-89	$T_{c} = 60^{\circ}C$	0.8	А
		SOT-223	T _L = 60°C	0.8	А
		TO-92	$T_c = 55^{\circ}C$	0.51	А
I _{T(AV)}	Average on-state current	SOT-89	T _C = 60°C	0.51	А
		SOT-223	T _L = 60°C	0.51	А
1	Non repetitive surge peak on-state current	TO-92 SOT-89 SOT-223	F= 50Hz	8	А
TSM	(Single cycle, T_J initial = 25°C)		F= 60Hz	10	А
l²t	I ² t Value for fusing	t _p = 10 ms	F = 50 Hz	0.32	A ² s
I-1	1-t value for fusing	$t_p = 8.3 \text{ ms}$	F = 60 Hz	0.41	A ² s
di/dt	Critical rate of rise of on-state current I _G = 10mA	TO-92 SOT-89 SOT-223	T _J = 125°C	50	A/µs
I _{GM}	Peak Gate Current	t _p = 10 μs	T _J = 125°C	1.0	А
$P_{G(AV)}$	Average gate power dissipation	_	T _J = 125°C	0.1	W
T _{stg}	Storage junction temperature range	_	_	-40 to 150	°C
T _J	Operating junction temperature range	_	_	-40 to 125	°C

Teccor® brand Thyristors EV Series 0.8 Amp Sensitive SCRs

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Complete	Description	Tank Canadiki ana	Limit		Value		1.1
Symbol	Description	Test Conditions	lest Conditions Limit		SxX8yS2	SxX8yS	Unit
1	DC Gate Trigger Current	V _D = 6V	MIN.	0.5	1	15	μΑ
GT	DC date mgger current	$R_L = 100 \Omega$	MAX.	5	50	200	μΑ
V _{GT}	DC Gate Trigger Voltage	$V_D = 6V$ $R_L = 100 \Omega$	MAX.	0.8		V	
V_{GRM}	Peak Reverse Gate Voltage	I _{RG} = 10μA MIN. 5			V		
I _H	Holding Current	$R_{GK} = 1 K\Omega$	MAX.	5		mA	
(dv/dt)s	Critical Rate-of-Rise of Off-State Voltage	$\begin{array}{c} T_{J}=125^{\circ}\text{C} \\ V_{D}=V_{DRM} / V_{RRM} \\ \text{Exp. Waveform} \\ R_{GK}=1 \text{ k}\Omega \end{array}$	MIN.	75		V/µs	
t _q	Turn-Off Time	$T_J = 25^{\circ}C @ 600 V$ $R_{GK} = 1 k\Omega$	MAX.	30	25	25	μs
t _{gt}	Turn-On Time	$I_{G}=10\text{mA}$ PW = 15 μ sec $I_{T}=1.6A(pk)$	MAX.	2.0	2.0	2.0	μs

Note: x = voltage, y = package

Static Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Description	Test Conditions	Limit	Value	Unit
V _{TM}	Peak On-State Voltage	I _{TM} = 1.6A (pk)	MAX.	1.70	V
I _{DRM}	Off-State Current, Peak Repetitive	$T_J = 25^{\circ}C @V_D = V_{DRM}$ $R_{GK} = 1 k\Omega$		3	μΑ
		$T_J = 125^{\circ}C @VD = V_{DRM}$ $R_{GK} = 1 k\Omega$	MAX.	500	μА

Thermal Resistances

Symbol	Description	Test Conditions		Value	Unit
	R _{th(j-c)} Junction to case (AC)		TO-92	75	°C/W
R _{th(j-c)}		$I_{T} = 0.8A_{(RMS)}^{1}$	SOT-223	30	°C/W
			SOT-89	50	°C/W
	Junction to ambient $I_T = 0.8A_{(RMS)}^{1}$		TO-92	150	°C/W
$R_{th(j-a)}$		$I_{T} = 0.8A_{(RMS)}^{1}$	SOT-223	60	°C/W
			SOT-89	90	°C/W

¹ 60Hz AC resistive load condition, 100% conduction.

Figure 1: Normalized DC Gate Trigger Current For All Quadrants vs. Junction Temperature

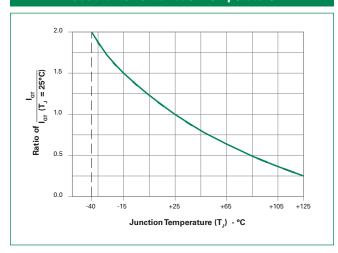


Figure 2: Normalized DC Holding Current vs. Junction Temperature

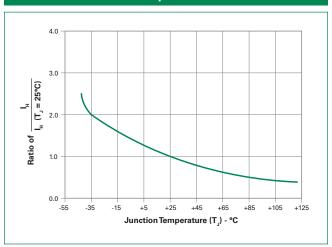


Figure 3: Normalized DC Gate Trigger Voltage vs. Junction Temperature

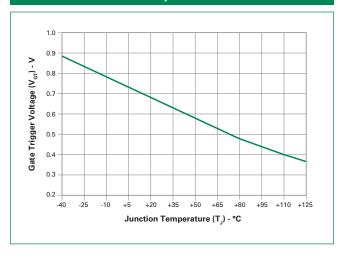


Figure 4: Power Dissipation (Typical) vs. RMS On-State Current

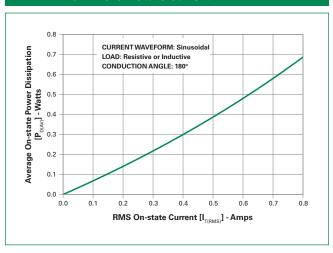
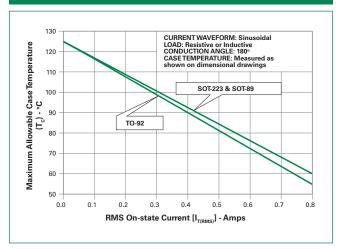
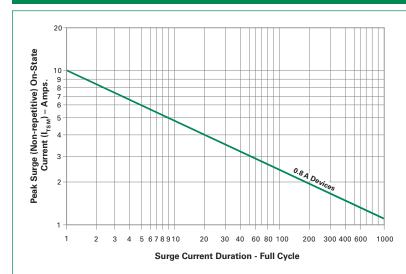
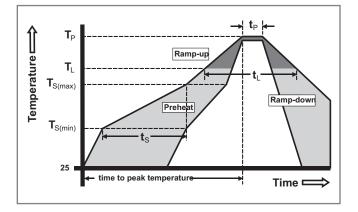




Figure 5: Maximum Allowable Case Temperature vs. On-State Current

Figure 6: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal

Load: Resistive


RMS On-State Current [$I_{T(RMS)}$]: Max Rated Value at Specific Case Temperature

Notes:

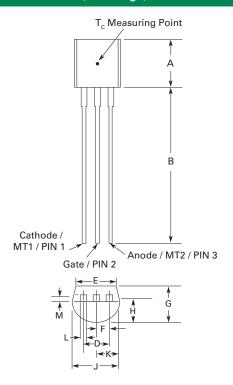
- 1. Gate control may be lost during and immediately following surge current interval.
- 2. Overload may not be repeated until junction temperature has returned to steady-state rated value.

Soldering Parameters

Reflow Co	ndition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ra	amp up rate (LiquidusTemp) k	5°C/second max	
T _{S(max)} to T _L	- Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Time (min to max) (t _s)	60 – 150 seconds	
PeakTemp	erature (T _P)	260 ^{+0/-5} °C	
Time with	in 5°C of actual peak ire (t _p)	20 - 40 seconds	
Ramp-dov	vn Rate	5°C/second max	
Time 25°C	to peakTemperature (T _P)	8 minutes Max.	
Do not exc	ceed	280°C	

Physical Specifications

Terminal Finish	100% Matte Tin-plated.
Body Material	UL recognized epoxy meeting flammability classification 94V-0.
Lead Material	Copper Alloy

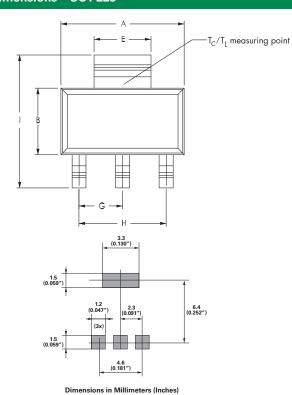

Design Considerations

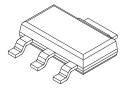
Careful selection of the correct device for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the device rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

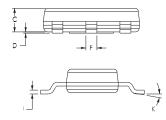
Reliability/Environmental Tests

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 110°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/ Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Thermal Shock	MIL-STD-750, M-1056 10 cycles; 0°C to 100°C; 5-min dwell- time at each temperature; 10 sec (max) transfer time between temperature
Autoclave	EIA / JEDEC, JESD22-A102 168 hours (121°C at 2 ATMs) and 100% R/H
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E

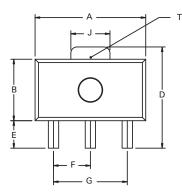
Dimensions - TO-92 (E Package)

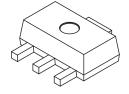


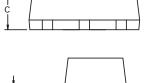

Dimension	Inc	hes	Millimeters		
Dimension	Min	Max	Min	Max	
А	0.176	0.196	4.47	4.98	
В	0.500		12.70		
D	0.095	0.105	2.41	2.67	
Е	0.150		3.81		
F	0.046	0.054	1.16	1.37	
G	0.135	0.145	3.43	3.68	
Н	0.088	0.096	2.23	2.44	
J	0.176	0.186	4.47	4.73	
K	0.088	0.096	2.23	2.44	
L	0.013	0.019	0.33	0.48	
М	0.013	0.017	0.33	0.43	


All leads insulated from case. Case is electrically nonconductive.

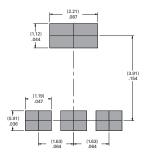
Dimensions - SOT-223






Dimensions	Inches			Millimeters			
Dimensions	Min	Тур	Max	Min	Тур	Max	
А	0.248	0.256	0.264	6.30	6.50	6.70	
В	0.130	0.138	0.146	3.30	3.50	3.70	
С	_	_	0.071	_	_	1.80	
D	0.001	_	0.004	0.02	_	0.10	
Е	0.114	0.118	0.124	2.90	3.00	3.15	
F	0.024	0.027	0.034	0.60	0.70	0.85	
G	_	0.090	_	_	2.30	_	
Н	_	0.181	_	_	4.60	_	
I	0.264	0.276	0.287	6.70	7.00	7.30	
J	0.009	0.010	0.014	0.24	0.26	0.35	
K		10° MAX					

Dimensions – SOT-89


Tc Measuring Point

Dimension		Inches			Millimeters		
Difficusion	Min	Тур	Max	Min	Тур	Max	
А	0.173	_	0.181	4.40	_	4.60	
В	0.090	_	0.102	2.29	_	2.60	
С	0.055	_	0.063	1.40	_	1.60	
D	0.155	_	0.167	3.94	_	4.25	
Е	0.035	_	0.047	0.89	_	1.20	
F	0.056	_	0.062	1.42	_	1.57	
G	0.115	_	0.121	2.92	_	3.07	
Н	0.014	_	0.017	0.35	_	0.44	
I	0.014	_	0.019	0.36	_	0.48	
J	0.064	_	0.072	1.62	_	1.83	

Pad Layout for SOT-89

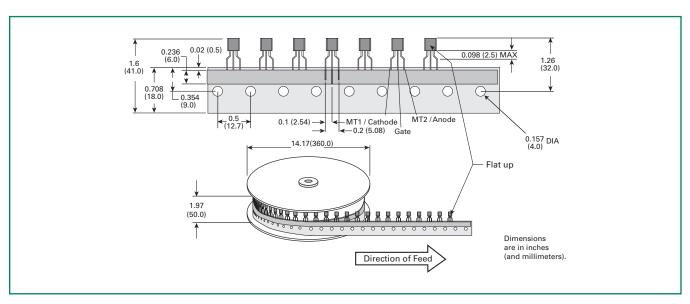
Dimensions in Millimeters (Inches)

Teccor® brand Thyristors EV Series 0.8 Amp Sensitive SCRs

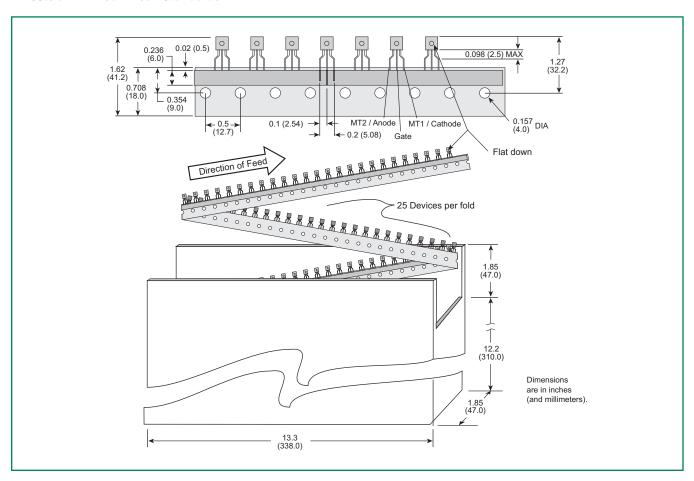
Product Selector

David Niversia an		Voltage	Cata Camatainita		
Part Number	400V	600V	800V	Gate Sensitivity	Package
S4X8ES	X	_	_	200 μΑ	TO-92
S6X8ES	_	X	_	200 μΑ	TO-92
S8X8ES	_	_	X	200 μΑ	TO-92
S4X8TS	X	_	_	200 μΑ	SOT-223
S6X8TS	_	X	_	200 μΑ	SOT-223
S8X8TS	_	_	X	200 μΑ	SOT-223
S4X8BS	X	_	_	200 μΑ	SOT-89
S6X8BS	_	X	_	200 μΑ	SOT-89
S4X8ES1	X	_	_	5 μΑ	TO-92
S6X8ES1	_	X	_	5 μΑ	TO-92
S8X8ES1	_	_	X	5 μΑ	TO-92
S4X8TS1	X	_	_	5 μΑ	SOT-223
S6X8TS1	_	X	_	5 μΑ	SOT-223
S8X8TS1	_	_	X	5 μΑ	SOT-223
S4X8ES2	X	_	_	50 μA	TO-92
S6X8ES2	_	X	_	50 μA	TO-92
S8X8ES2	_	_	X	50 μA	TO-92
S4X8TS2	X	_	_	50 μΑ	SOT-223
S6X8TS2	_	X	_	50 μA	SOT-223
S8X8TS2	_	_	X	50 μA	SOT-223

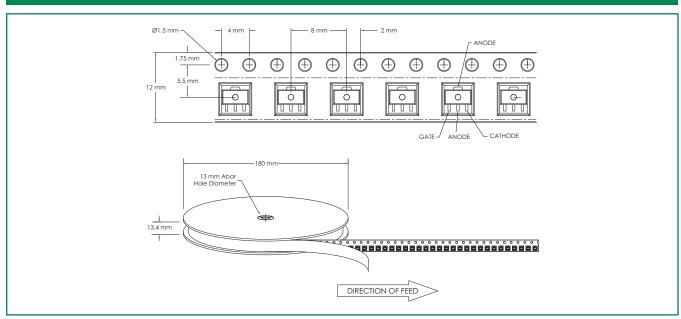
Packing Options


Part Number	Marking	Weight	Packing Mode	Base Quantity
SxX8ESy	SxX8ESy	0.170g	Bulk	2500
SxX8ESyAP	SxX8ESy	0.170g	Ammo Pack	2000
SxX8ESyRP	SxX8ESy	0.170g	Tape & Reel	2000
SxX8TSyRP	SxX8TSy	0.120g	Tape & Reel	1000
SxX8BSRP	xX8	0.053g	Tape & Reel	1000

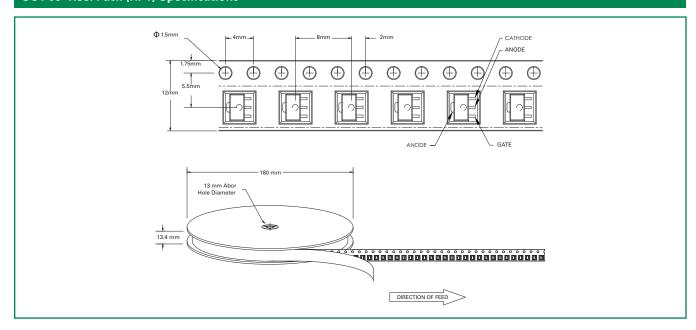
Note: x = voltage, y = gate sensitivity


TO-92 (3-lead) Reel Pack (RP) Radial Leaded Specifications

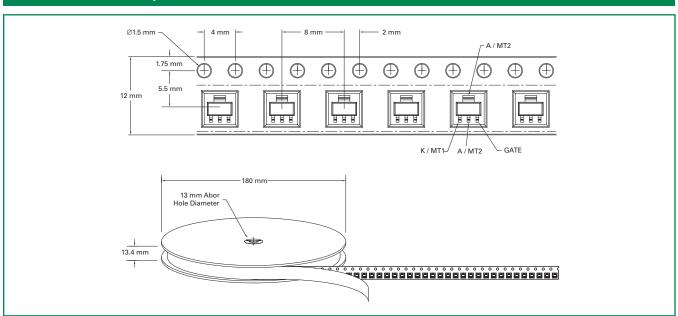
Meets all EIA-468-B 1994 Standards


TO-92 (3-lead) Ammo Pack (AP) Radial Leaded Specifications

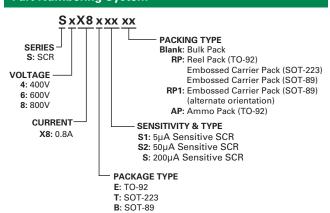
Meets all EIA-468-B 1994 Standards

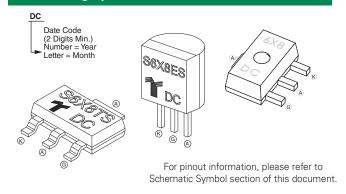


SOT-89 Reel Pack (RP) Specifications



SOT-89 Reel Pack (RP1) Specifications




SOT-223 Reel Pack (RP) Specifications

Part Numbering System

Part Marking System

