1. Standard Land Dimensions

A high Q value is achieved when the PCB electrode land pattern is designed so that it does not project beyond the chip inductor (chip coil) electrode.

Land Pattern
+ Solder Resist
Land Pattern
Solder Resist

Series	Standard Land Dimensions								
LQG15HH LQG18HH	o a	Part Number LQG15HH LQG18HH	a 0.4 0.6-0.8	b 1.4-1.5 1.8-2.2	0.5-0.6 0.6-0.8				
LQH32CH	5.5								
	1.0 1.3 1.0								

Attention should be paid to potential magnetic coupling effects when using the inductor (coil) as a resonator.

2. Standard Soldering Conditions

(1) Soldering method

Chip inductors (chip coils) can be flow or reflow soldered.

Please contact Murata regarding other soldering methods.

As for LQG series, please use reflow soldering.

Solder: Use H60A, H63A (JIS Z 3282) or equivalent.

Use solder paste equivalent to H60A for

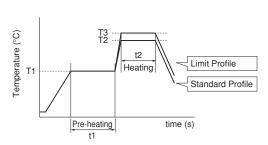
LQG15HH/18HH.

In case of Lead-free solder, use Sn-3.0Ag-0.5Cu

solder.

Flux: Use rosin-based flux, but not strongly acidic flux (with

chlorine content exceeding 0.2wt%).

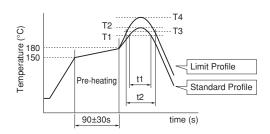

Do not use water-soluble flux.

For additional mounting methods, please contact Murata.

(2) Soldering profile

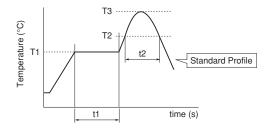
Flow Soldering profile

(Eutectic solder, Sn-3.0Ag-0.5Cu solder)



Series	Pre-heating		Standard Profile			Limit Profile		
			Heating		Cycle	Heating		Cycle
	Temp. (T1)	Time. (t1)	Temp. (T2)	Time. (t2)	of flow	Temp. (T3)	Time. (t2)	of flow
LQH32CH	150°C	60s min.	250°C	4 to 6s	2 times	265±3°C	5s max.	1 times

Continued from the preceding page.


Reflow Soldering profile

①Soldering profile for Lead-free solder (Sn-3Ag-0.5Cu)

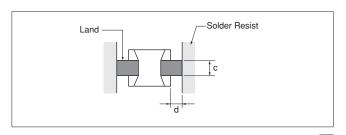
Series	Standard Profile			Limit Profile				
	Heating		Peak	Cycle	Heating		Peak temperature	Cycle
	Temp. (T1)	Time. (t1)	temperature (T2)	of reflow	Temp. (T3)	Time. (t2)	(T4)	of reflow
LQG15HH/18HH	220°C	30 to 60s	245±3°C	2 times max.	230°C	60s max.	260°C/10s	2 times max.
LQH32CH								1 times

②Soldering profile for Eutectic solder (Limit profile: refer to ①)

Series	D I.		Standard Profile				
	Pre-no	eating	Hea	iting	Peak	Cycle	
	Temp. (T1)	Time. (t1)	Temp. (T2)	Time. (t2)	temperature (T3)	of reflow	
LQG15HH/18HH	150°C	60s min.	183°C	60s max.	230°C	2 times max.	
LQH32CH	150 C						

(3) Reworking with Soldering Iron

Preheating at 150°C for 1 minute is required. Do not directly touch the ceramic element with the tip of the soldering iron. The reworking soldering conditions are as follows:


Soldering iron power output: 80W max. Temperature of soldering iron tip: 350°C Diameter of soldering iron end: 3.0mm max.

Soldering time: within 3 s

3. Mounting Instructions

(1) Land Pattern Dimensions

Large lands reduce Q of the mounted chip. Also, large protruding land areas (bordered by lines having dimensions 'c' and 'd' shown) cause floating and electrode leaching.

Continued on the following page.

Continued from the preceding page.

(2) Magnetic Coupling

Since some chip inductors (chip coils) are constructed like an open magnetic circuit, narrow spacing between inductors (coils) may cause magnetic coupling.

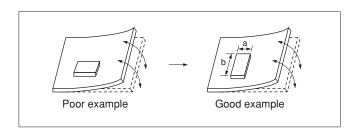
(3) PCB Warping

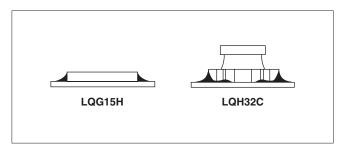
PCB should be designed so that products are not subjected to the mechanical stress caused by warping the board.

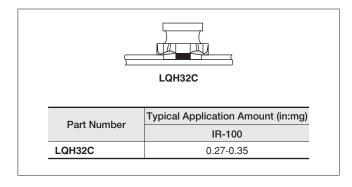
Products should be located in the sideways direction (Length: a<b) to the mechanical stress.

(4) Amount of Solder Paste

Excessive solder causes electrode corrosion, while insufficient solder causes low electrode bonding strength. Adjust the amount of solder paste as shown on the right so that solder is applied.


Guideline of solder paste thickness


LQG: 100 to 150μm LQH: 200 to 300μm


(5) Amount of Adhesive

If too much adhesive is applied, then it may overflow into the land or termination areas and yield poor solderability. In contrast, if insufficient adhesive is applied, or if the adhesive is not sufficiently hardened, then the chip may become detached during flow soldering. Apply the adhesive in accordance with the following conditions:

Magnetic Coupling

4. Cleaning

The following conditions should be observed when cleaning chip inductors (chip coils):

In case of cleaning, please contact Murata engineering.

- (1) Cleaning Temperature: 60°C max. (40°C max. for alcohol cleaning agents)
- (2) Ultrasonic

Output: 20W/I max. Duration: 5 minutes max. Frequency: 28 to 40kHz

Care should be taken not to cause resonance of the PCB and mounted products.

(3) Cleaning agent

The following cleaning agents have been tested on

individual components. Evaluation in complete assembly should be done prior to production.

- (a) Alcohol cleaning agents Isopropyl alcohol (IPA)
- (b) Aqueous cleaning agents Pine Alpha ST-100S
- (4) Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agents have been removed with deionized water.

For additional cleaning methods, please contact Murata.