

CDNLive 2007: Session #: 8.8

3D S-parameter Simulation with Allegro SI

Presented By:

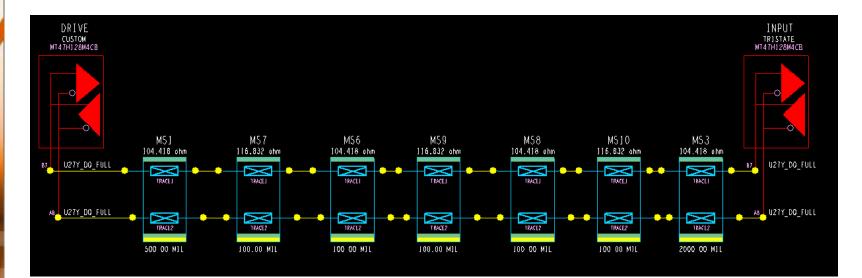
Joe Socha

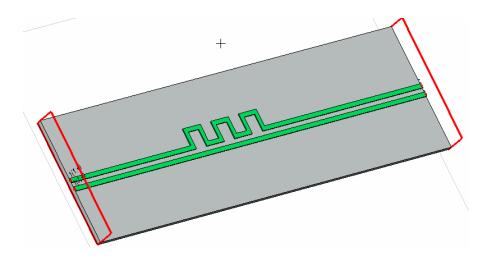
Sedona International

www.sedonaii.com

In this session attendees will discover several places where simulation accuracy can be improved by incorporating S-Parameter models of 3D structures such a Connectors and Ball Grid Array (BGA) pin fields. Attendees will also see how 3D modeling and S-Parameter generation and simulation is greatly simplified by the combination of Allegro SI and CST Microwave Studio.

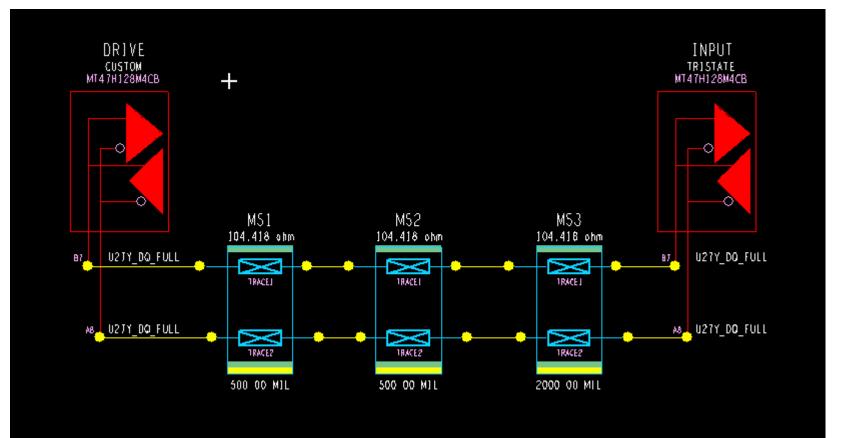
The session will include comparisons of real DDR2 and SERDES cases with and without 3D models. Attendees will learn that improved accuracy will affect some of the engineering tradeoffs made during the design and layout process.

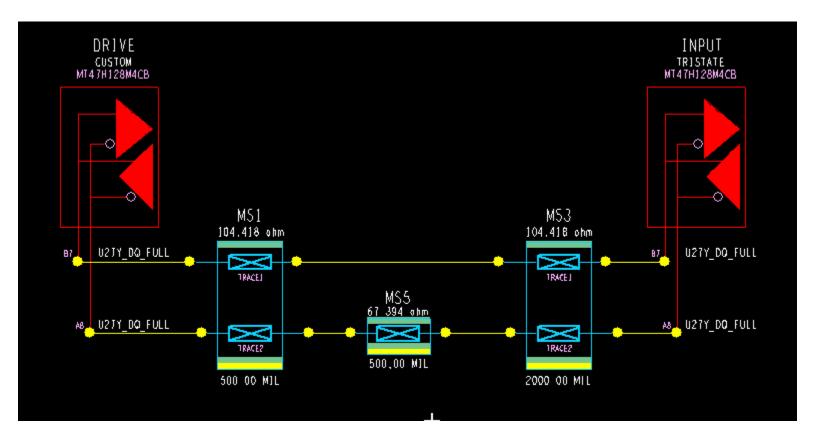

2D - 2 ½ D - 3D


- Much of engineering is about tradeoffs
- SI simulation tradeoff is speed for fidelity
 - Large size = slow speed
 - Large detail = slow speed
- Hard to setup = VERY slow speed
 - Is a one week setup worth it?

- Optimized simulators add tremendous value
 - Allegro SI
 - CST Microwave Studio

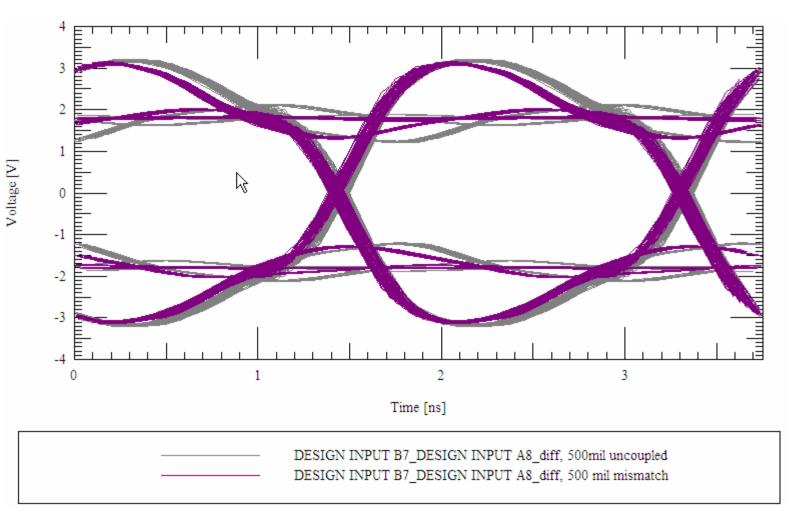
Serpentine Example DDR2 DQS




Verify Allegro SI in Combination with CST

- Verify with a simple example
- Build an understanding of how to blend two environments
- Verification allows for extrapolation to unknown cases

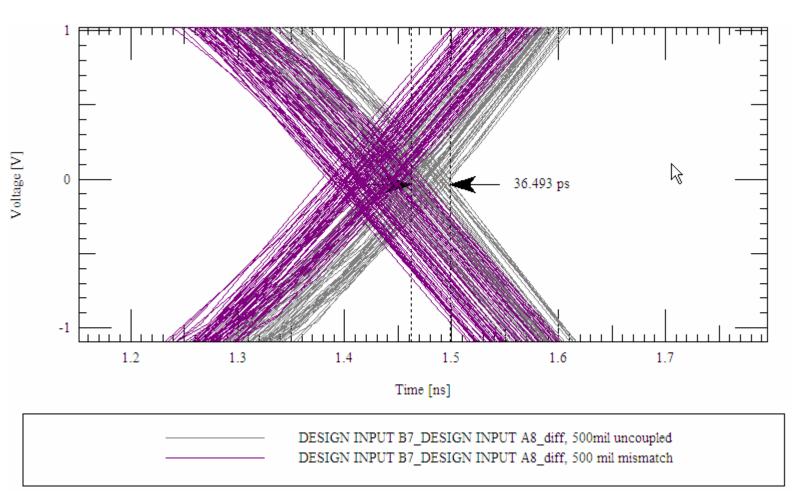
Simulation Setup: Decompose into 3 Lengths



Length Mismatch

500 mil trace removed from Diff pair

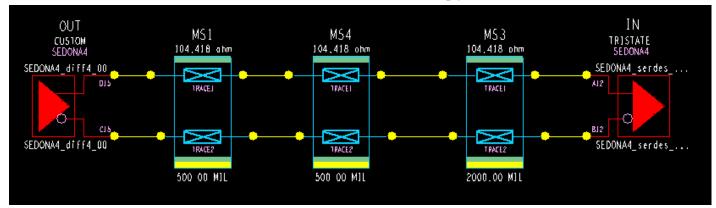
Mismatch Results

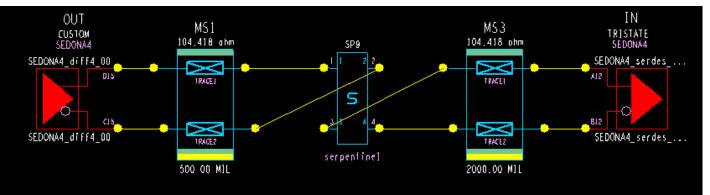


Very small impact on wave shape

Sedona International

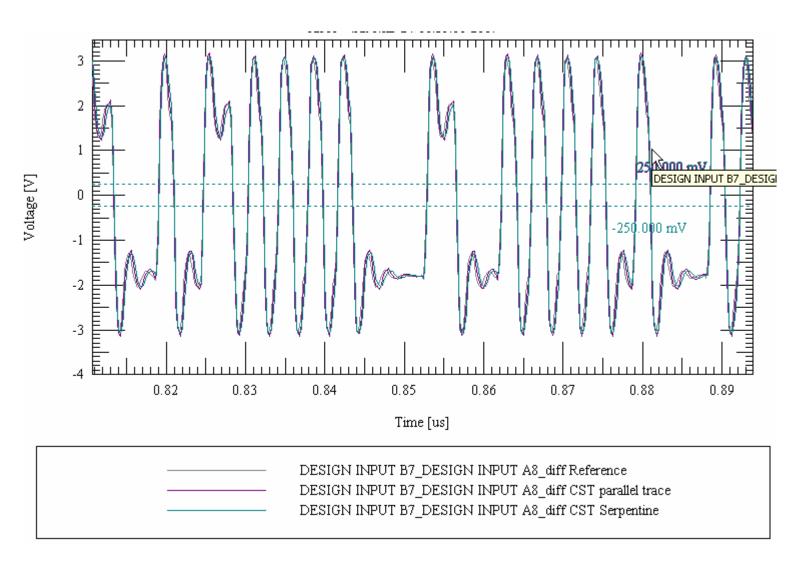
Page 8

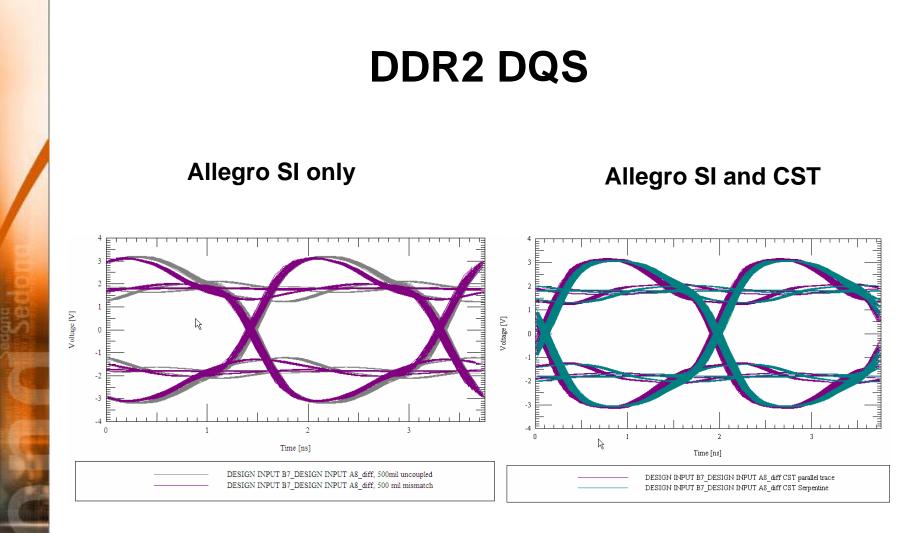

500mil Time Delay


Allegro SI Diff Normalizes the data 36.5 x 2 = 73ps or 500mils

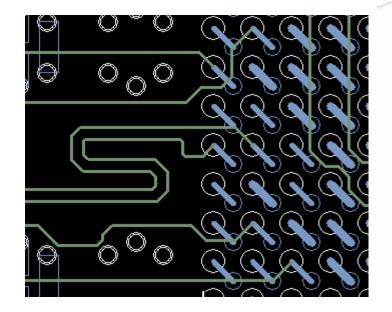
Simulation Topologies

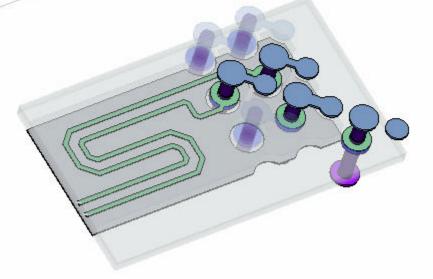
Reference topology




S-Parameter simulation model from 3D extraction

S-Parameter models are touchstone files

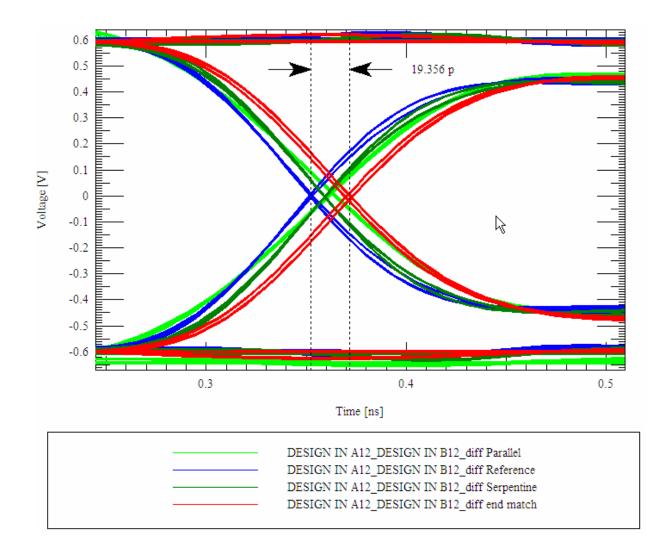

Time vs Voltage



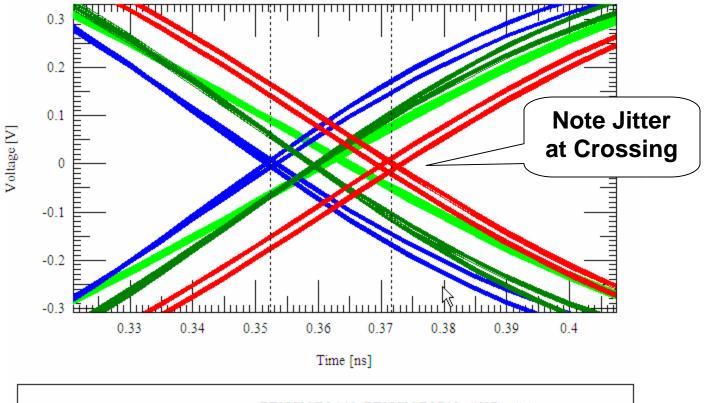
Almost no difference at DDR2 speeds What about Gigabit speeds?

Gigabit Example; PCB in 3D, End Match

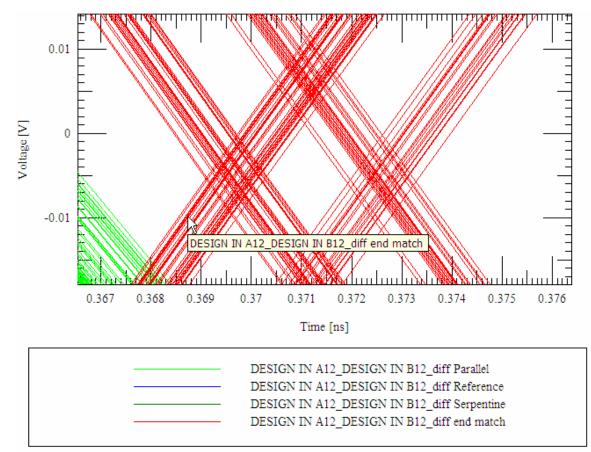




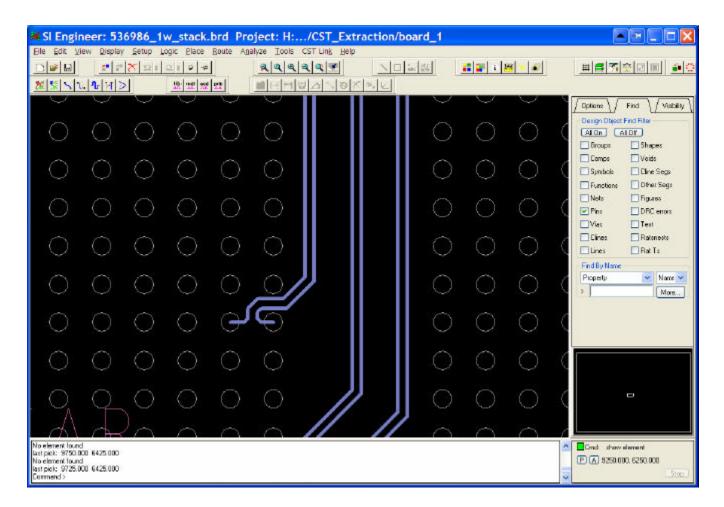
3D extraction in CST Microwave Studio


Random 256 Bit Eye

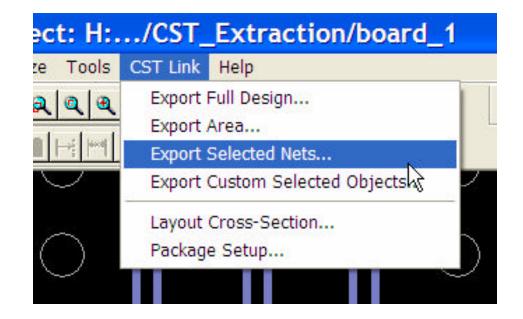
Random 256 Bit Eye Zoom Overlay



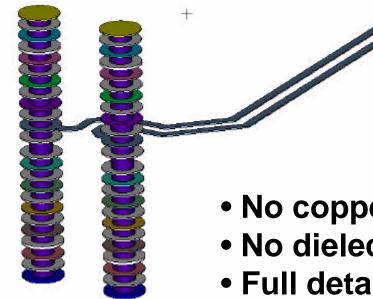
Random 256 Bit Eye Zoom


 DESIGN IN A12_DESIGN IN B12_diff Parallel
 DESIGN IN A12_DESIGN IN B12_diff Reference
 DESIGN IN A12_DESIGN IN B12_diff Serpentine
 DESIGN IN A12_DESIGN IN B12_diff end match

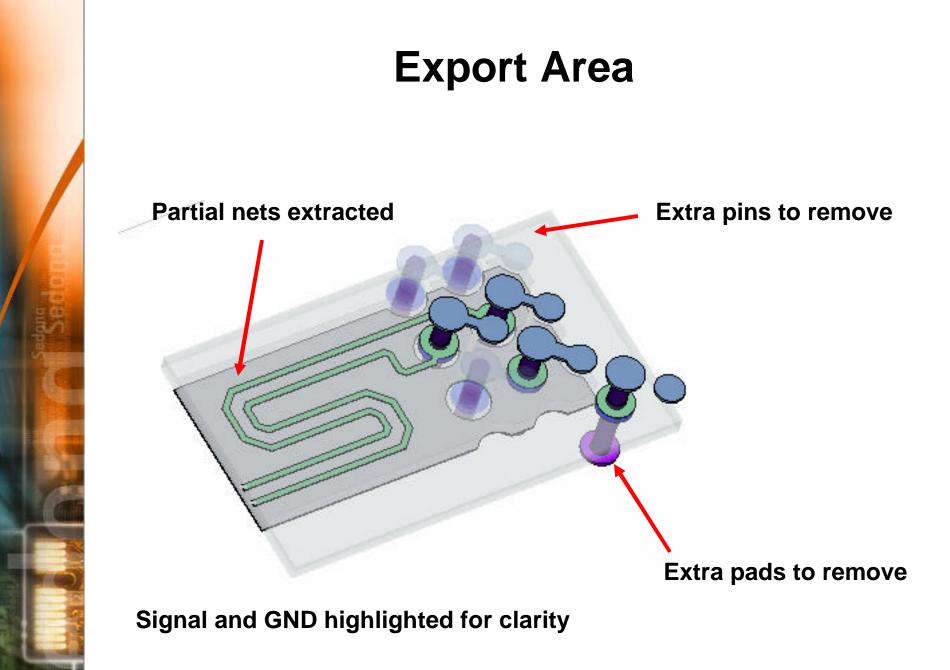
Jitter Close-up: Data Dependency?


Conclusion: DDR2 speeds minimal effect Gigabit speeds noticeable differences in signal performance

Extracting Data from Allegro

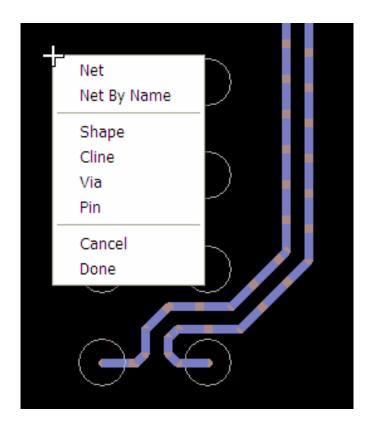

A single Diff pair is of interest on the board

Export Options



Selecting the correction extraction is important

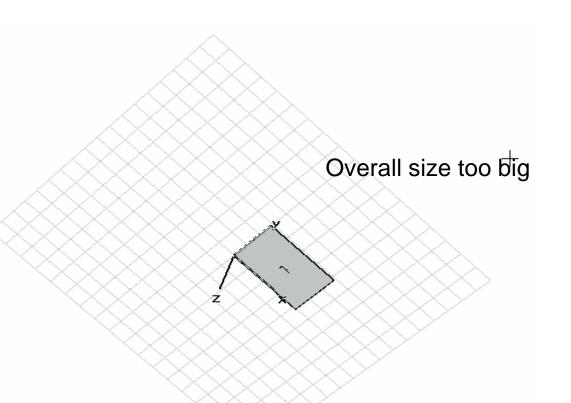
Export Net


- No copper planes extracted
- No dielectric planes extracted
- Full detail on VIAs

Export Custom Select

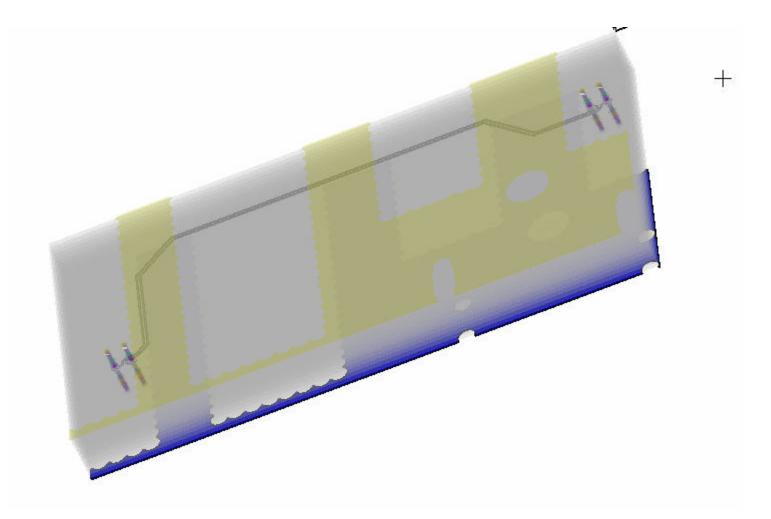
								rowse	
		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.							
Cross	section 9	Setup	Se	lect Objects to Exp	port	Clos	:e [,	About	
									_
-	e e	1000							
T Layout	Cross Se	ection						- H	
		A second s							-
	and the second se								
Section Setup									
Section Setup									
	(1	Law Ture		Etric Suitedhee Blasse	Tickness	Flaction 1	Stockin Fred 15 kg Dec	antin Contra l	Firm
Section Setup Mat	63	Layer Type	e	Etch Subclass Name	Thickness	Elevation 8	Electric Cond.(5.Am) Die	alactric Constant	Εκρα
Mai		Layer Type		Etch Subclass Name	Thickness 1.300000	Elevation 8	Electric Cond.(S/m) Die 59290000.0000	alectric Constant	Екра
Mai					11.5.000000000				
Mai COPPER FR-4		Conductor Dieleotrio	*	TOP	1.300000	264.300000 255.300000	59290000.0000	1.0000	
Mat COPPER FR-4 COPPER	-	Conductor Dieleobio Plane	*	TOP	1.300000 9.000000 1.300000	264.300000 255.300000 254.000000	59290000.0000 0.0000 59590000.0000	1.0000 4.5000 4.5000	
Mat COPPER FR-4 COPPER FR-4		Conductor Dielectric Plane Dialectric	* * *	TOP L2_GND1	1.300000 9.000000 1.300000 9.600000	264.300000 295.300000 254.000000 244.400000	59590000.0000 0.0000 59590000.0000 0.0000	1.0000 4.5000 4.5000 4.5000	
Mat COPPER FR-4 COPPER FR-4 COPPER	-	Conductor Dielectric Plane Dialectric Conductor	* *	TOP	1.300000 9.000000 1.300000 9.600000 1.300000	264.300000 255.300000 254.000000 244.400000 243.100000	59590000.0000 0.0000 59590000.0000 0.0000 59590000.0000	1.0000 4.5000 4.5000 4.5000 4.5000 4.5000	
Mat COPPER FR-4 COPPER FR-4 COPPER FR-4		Conductor Dieleotrio Plene Dieleotrio Conductor Conductor Dieleotric	* * * * *	TOP L2_GND1 L2_GIG1	1 300000 9000000 1 300000 9600000 1 300000 1 300000 10 100000	264.300000 265.300000 254.000000 244.400000 243.100000 233.000000	59990000.0000 0.0000 55550000.0000 0.0000 59590000.0000 0.0000	1.0000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000	
Mai COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER		Conductor Dideotrio Plene Dialectric Conductor Oislectric Dielectric Plane	* * *	TOP L2_GND1 L2_GIG1	1 301000 9.001000 1 300000 9.601000 1 300000 10.100000 2.600000	264.300000 295.300000 254.000000 244.400000 243.100000 233.000000 233.000000	5 92 900 00 0000 5 95 900 00 000 5 95 900 00 000 6 900 0 000 5 95 900 0 000 5 95 900 0 000 5 95 900 0 000	1.000 4.500 4.500 4.500 4.500 4.500 4.500 4.500	
Mat COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4		Conductor Dielectric Plane Conductor Conductor Dielectric Conductor Dielectric Plane Dielectric	* * *	TOP L2_GND1 L3_SIG1 L4_GND2	1 30000 9,00000 1 30000 9,60000 1 30000 10,10000 2,60000 9,60000	264.300000 295.300000 244.400000 243.100000 233.000000 233.000000 230.400000 230.900000	5 95900 0000 0 0000 5 55500 0000 6 0000 5 95900 0000 0 0000 5 95900 0000 5 95900 0000 5 95900 0000 5 95900 0000 0 0000 0 0000	1.000 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500	
Mat COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4		Condustor Dieleotio Plane Dieleotio Condustor Dieleotio Condustor Plane Plane Dieleotio Condustor Condustor	* * *	TOP L2_GND1 L2_GIG1	1.30000 9.00000 1.30000 9.60000 1.30000 10.10000 2.60000 9.60000 1.30000	264.300000 265.300000 244.400000 243.100000 233.000000 233.000000 230.400000 230.400000 230.900000 219.500000	5 92 900 00 0000 5 95 900 00 000 5 95 900 00 000 6 900 0 000 5 95 900 0 000 5 95 900 0 000 5 95 900 0 000	1.000 4.500 4.500 4.500 4.500 4.500 4.500 4.500	
Mai COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER		Condustor Dielectio Plane Condustor Dielectric Condustor Dielectric Plane Dielectric Dielectric Condustor Dielectric Condustor Dielectric	* * *	TOP L2_GND1 L3_SIG1 L4_GND2 L5_SIG2	1 30000 9,00000 1 30000 9,60000 1 30000 10,10000 2,60000 9,60000	264.300000 295.300000 244.400000 243.100000 233.000000 233.400000 230.400000 230.400000 230.500000 239.500000 219.500000	5 95900 0000 0 0000 5 55500 0000 6 0000 5 95900 0000 0 0000 5 95900 0000 5 95900 0000 5 95900 0000 5 95900 0000 0 0000 0 0000	1.000 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500	
Mai COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4		Condustor Dieleotio Plane Dieleotio Condustor Dieleotio Condustor Plane Plane Dieleotio Condustor Condustor	× × × × × × × × × × × × × × × × × × ×	TOP L2_GND1 L3_SIG1 L4_GND2	1.30000 9.00000 1.30000 9.60000 1.30000 10.10000 2.60000 9.60000 1.30000	264.300000 265.300000 244.400000 243.100000 233.000000 233.000000 230.400000 230.400000 230.900000 219.500000	5 95000 0000 0000 5 95000 0000 6 9000 6 9000 0 0000 5 95000 000 6 0000 6 9000 0 0000 5 9550000 0000	1.000 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500	
Mai COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER		Condustor Dielectio Plane Condustor Dielectric Condustor Dielectric Plane Dielectric Dielectric Condustor Dielectric Condustor Dielectric	* * * * * * * * * * * * * * * * * * * *	TOP L2_GND1 L3_SIG1 L4_GND2 L5_SIG2	1.30000 9.00000 1.30000 9.60000 1.30000 40.10000 2.60000 9.60000 1.30000 1.30000	264.300000 295.300000 244.400000 243.100000 233.000000 233.400000 230.400000 230.400000 230.500000 239.500000 219.500000	5959000000000 0.0000 59550000.0000 0.0000 59550000.0000 59590000.0000 0.0000 59590000.0000 0.0000 0.0000 0.0000	1.0000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000	
Mat COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4		Conductor Dielectric Dielectric Pone Conductor Dielectric Dielectric Dielectric Dielectric Onductor Oielectric Dielectric Oielectric Pone	* * * * * * * * * * * * * * * * * * * *	TOP L2_GND1 L3_SIG1 L4_GND2 L5_SIG2	1.30000 9.001000 1.30000 9.60000 1.30000 10.10000 2.60000 1.30000 1.30000 10.10000 1.20000 1.20000	264.30000 255.00000 254.00000 244.400000 233.00000 233.00000 230.60000 230.60000 219.500000 219.500000 219.400000	595900000000 5950000000 59500000000 595900000000 595900000000 595900000000 595900000000 595900000000 595900000000	1.0003 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000	
Mai COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER FR-4 COPPER		Conductor Dielectric Dielectric Dielectric Dielectric Conductor Dielectric Conductor	* * * * * * *	TOP L2_OND1 L2_SIG1 L4_GND2 L5_SIG2 L6_GND3	1.30000 9.00000 1.30000 1.30000 1.30000 2.80000 9.60000 1.30000 1.30000 1.20000 1.20000 1.30000 1.30000	264-302000 255-300000 254-002000 244-402000 233-002000 233-002000 233-402000 235-402000 205-202000 205-202000 195-100200 195-100200	5959000000000 595900000000 595900000000 595900000000 595900000000 595900000000 595900000000 595900000000 595900000000 595900000000	1.000 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500 4.500	
Mat COPPER FR-4 COPPER FR-4 COPPER FR-4		Conductor Dielectrio Dielectrio Dielectric Conductor Dielectric Conductor Dielectric Oielectric Conductor Conductor Conductor Dielectric Dielectric Plane Plane Oielectric	* * * * * * * *	TOP L2_GND1 L3_SIG1 L4_GND2 L5_SIG2 L5_SIG2 L6_GND3 L7_SIG3	1.30000 9.00000 1.30000 1.30000 10.10000 2.60000 9.60000 1.30000 1.30000 1.30000 1.20000 1.20000	264.302000 255.300000 244.402000 244.402000 233.002000 230.402000 230.402000 219.502000 219.502000 219.502000 219.502000 219.502000 219.502000 219.502000 219.502000	5959000000000 595900000000 595900000000 595900000000 595900000000 595900000000 595900000000 60000 595900000000 60000 60000 60000	1.0001 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000 4.5000	

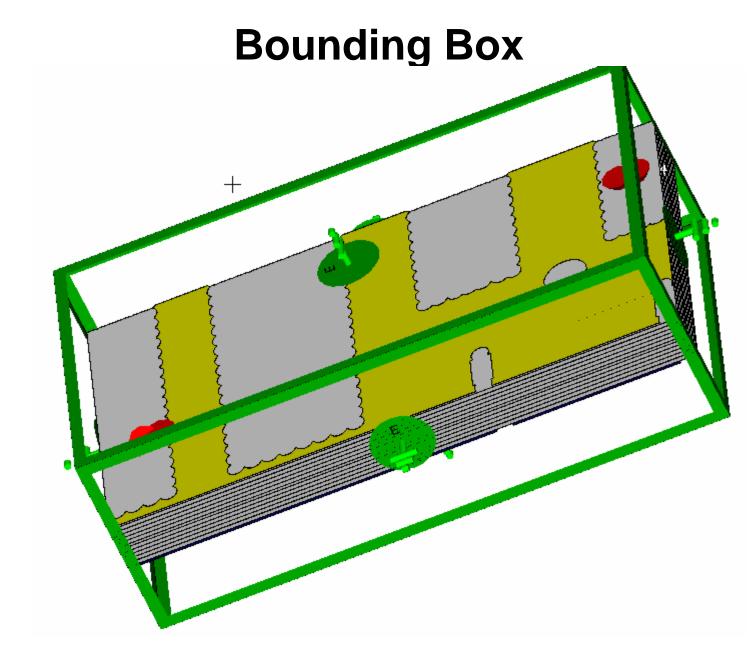
Selected Objects

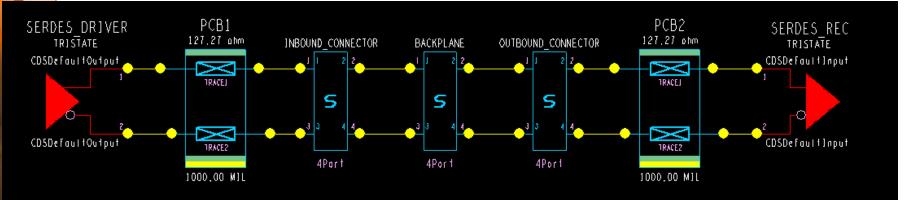

Diff Pair selected by Net Planes selected by Net Name

ETCH_L11_SIG5 Lossy metal 1 5.959e+007 [S/m] 8920 [kg/m^3]

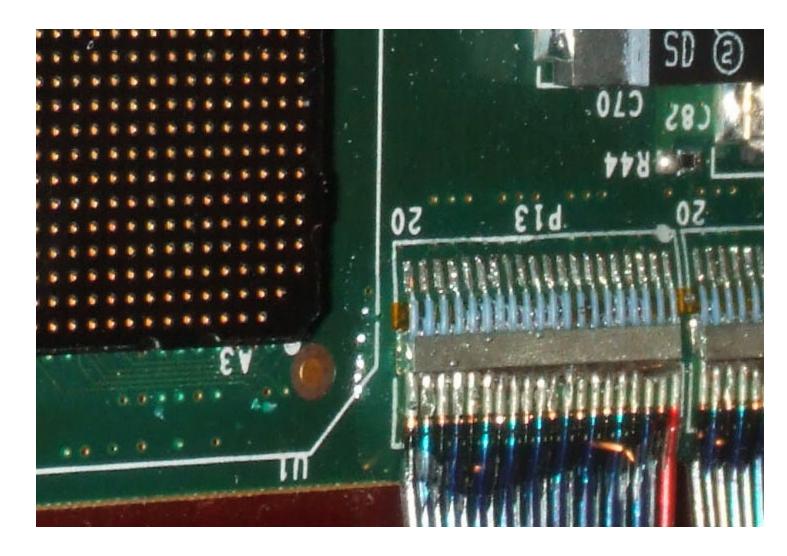
z


Zoom on Diff Pair

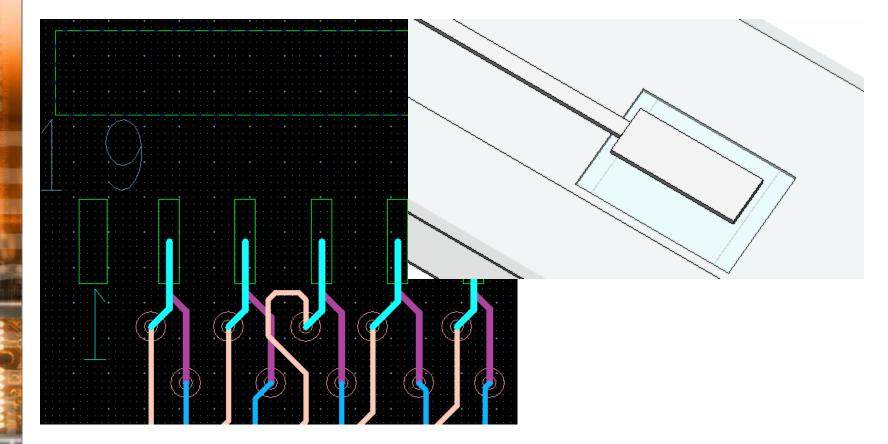


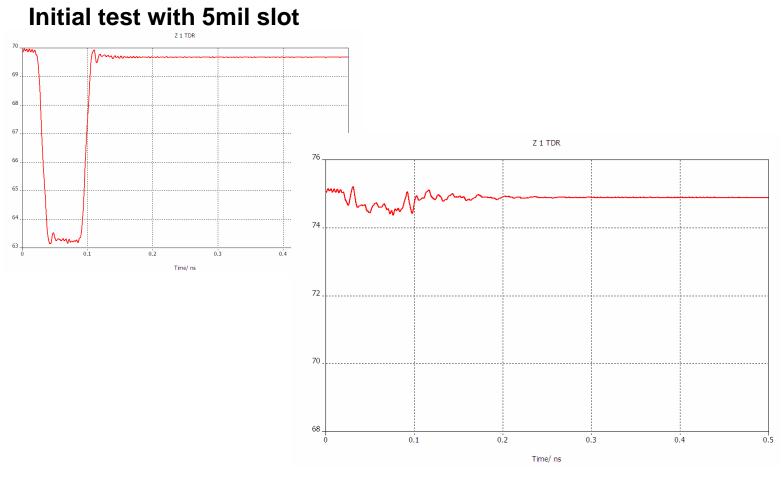

Solution: Add new shapes that overlap with unwanted areas. New shapes are vacuum and merged with 'Insert'

Final Shape



System Level Simulation Example

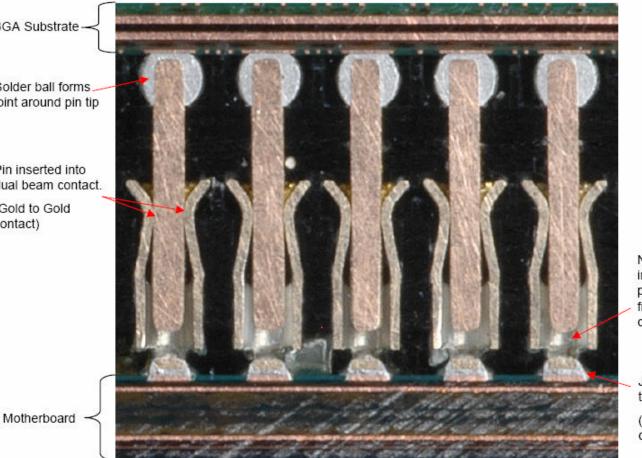



Consider other 3D Connections

Impedance Matching Coax Landing to Etch Transition

TDR Plot from Slot Under Trace

Final optimized slot length and width

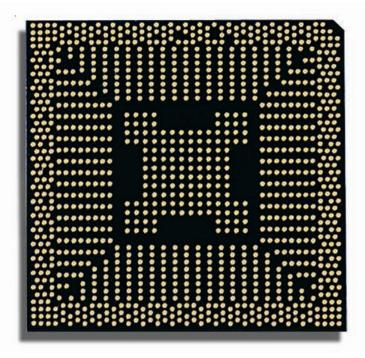

BGA Adapter

HiLo[™] Cross Section - BGA Socketing Application

BGA Substrate

Solder ball forms. joint around pin tip

Pin inserted into dual beam contact. (Gold to Gold contact)

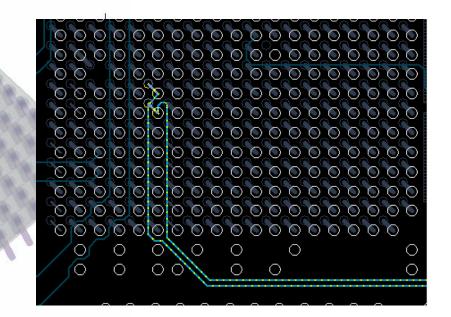

Nickel plating in inside of barrel prevents solder from wicking up contact

J-Lead soldered to motherboard

(J cut off in cross-section)

Low Cost Variable Pitch Custom Connectors

Center pitch is 1mm Inner ring is 1.5mm x 1mm pitch Outer ring is 0.8mm pitch



Conclusion:

As custom connectorization decreases in cost and system complexity increases the need for 3D analysis will also increase.

Future Work:

- Study Contribution of Pin Field vs Length Mismatch
- Build Test Structure

Tools Used

- CST Microwave Studio
 - 3D solver for S-Parameters
 - Good Allegro interface
- Cadence Allegro SI
 - Flexible layout tool
 - Good constraint management
- Cadence SigXp
 - Topology viewer
 - Simulation

Results viewer - SigWave ____

Sedona International

Page 36

References

- Cadence Design Systems
- CST
- ISI Interconnect Systems Incorporated

About Sedona International, Inc.

- Specialized Engineering services for complex electronics
 - Electrical, Mechanical and Embedded Software
- Core Strengths
 - Integrated PCB layout and SI Analysis:
 - Chip Board System
 - Subject Matter Experts: right people to the job
- Large company processes, small company feel
 - Wiki, RT, Automated systems
- Serving North America
 - Locations in Boston / Ottawa / Texas

Thank you

Questions

Joe Socha Technical Lead Sedona International jsocha@sedonaii.com www.sedonaii.com

cadence designer network

CONNECT: IDEAS

CDNLive! 2007 Silicon Valley