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Modeling for Stimulus Generation 
EZ-Start Guide 

The procedures described in this document are deliberately broad and generic. Your 
specific design might require procedures that are slightly different from those described 
here. However, most of the concepts described in this document are valid for various 
application domains. 

About EZ-Start Guides  

EZ-Start guides are provided by Cadence Design Systems as entry point tutorials for 
various technologies. EZ-Start guides are meant to quickly review high-level concepts of a 
specific technology, and allow the user to independently experience and explore it. For a 
deeper understanding of how to architect a quality verification environment, consult a 
Cadence methodology specialist or refer to the Plan-to-Closure Methodology User Guide.  

Introduction 

In general, there are three essential components to efficient verification: stimulus 
generation, coverage, and checking. Cadence Design Systems, Inc. provides companion 
EZ-Start packages for each of these three areas. In this EZ-Start package, you will learn 
how to model data items for stimulus generation. 

A typical verification process (as illustrated below) involves repeatedly getting a device into 
a specific state, applying stimulus to the design, and then checking the results of the 
simulation. 

Figure 1  Verification Process 
 

 

Given the size and complexity of today’s designs, the verification process introduces 
several challenges surrounding stimulus generation: 
  How do you identify every corner-case state? 
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  How do you target the simulation for both internal and external scenarios? 
  How do you uncover bugs that are buried within the design? 

This document describes how, by using SystemVerilog constructs, you can model your 
data items so that they address each of these challenges. 

Note: You can apply the concepts covered in this document to different domains. For 
example, you can use these concepts for data-com where you have packets, cells, and 
frames; for graphical devices, where you generate register operations for different 
configurations; or, for CPU verification where you need to generate instructions and CPU 
interrupts. 

Coverage-Driven Verification (CDV) 
 
Coverage-driven verification (CDV) is a Cadence methodology that enables efficient 
verification. In general, CDV involves:  

Random generation 
Self checking  
Metrics to track progress 

The following rules incorporate the three aspects of CDV listed above. These rules are 
crucial in creating an implementation strategy that results in productive verification.  

  Organize your verification goals right away. These goals can include a combination of 
functional code and assertion coverage. Organizing these plans upfront ensures that 
your designs are verified quickly and thoroughly, and lets you track the verification 
progress until verification convergence. 

  The testbench must be smart enough to automatically generate legal stimuli. In such a 
testbench, the various tests are layered on top of the infrastructure and touch only 
specific areas. This results in more focused testing, thus making the tests shorter and 
easier to write, read, and maintain.  

  The infrastructure must allow for the creation of fully-directed tests that explicitly 
describe the injected stimuli and random tests. The level of randomization is a function 
of the defined constraints. 

  Do not overconstrain your tests. Your tests must be as random as possible, so that the 
generation engine is free to explore all values without any biased assumptions. Raising 
the level of randomization in your tests can help find unanticipated bugs. 

  Verification must start with random tests. Limit directed tests to cover only the remaining 
untested functionality. Automatic test generation decreases the amount of time spent 
creating tests manually. 
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The following figure illustrates a typical CDV flow, and gives the general process.  

Figure 2  CDV Flow 
 

  

1. Create a coverage model 
that is based on a 
verification plan.  

2. Start with a few highly-
random scenarios. 

3. Adjust constraints and add 
new sequences. Target 
unvisited coverage holes. 

4. Refine and enhance your 
coverage model. 

Note: This figure gives just an overview of the CDV process. For more information on CDV 
and the Cadence tools that enable this process, refer to the Plan-to-Closure Methodology 
User Guide.  

Modeling Stimuli Data Items 

When modeling interaction within a testbench, you should be working at the transaction 
level. Working at this level has the following advantages: 

1.  

2.  

3.  

Many tests involve transaction-level control. For example, a test can call for two 
consecutive packets that are sent to the same address.  
Transactions hide a lot of protocol-specific details and allow you to control a scenario, 
while reducing the knowledge required to create tests.  
Transactions can encapsulate assumptions and attribute interdependencies. 
 

Note: Since the term transaction is broad, this document refers to generated traffic as data 
items. Data items include: packets, cells, frames for data-com devices, instructions or 
interrupts for CPU verification, and bus transfers or bursts for modeling buses. The 
following sections discuss how to model data items using SystemVerilog classes and 
constraints.  

Examples 1-5 are also provided in ASCII form. To run these examples, open the 
instruction.sv file located in the  /examples directory provided with this document. 
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Using Classes when Modeling Data Items 

SystemVerilog introduces a new class construct, which is used in object-oriented (OO) 
programming.  A class is a user-defined data type that can encapsulate data members, 
methods, and other properties. The collection of the data members and class properties 
define the functionality and characteristics of an object. 

The following is an example of a CPU instruction that consists of an opcode and two 
operands. The first operand is a CPU register value, and the second is a byte. 

Example 1  CPU Instruction Example 
 
1  package instruction_pkg; // Package encapsulates user-defined types 

2  

3  typedef enum {REG0, REG1, REG2, REG3} register_e; 

4  typedef enum {ADD, ADDI, SUB, SUBI, JMP, JMPC, CALL,RETURN}opcode_e; 

5 

6  class instruction_c; 

7     rand opcode_e opcode; 

8     rand register_e operand1; 

9     rand byte operand2; 

10 

11    function void do_print(); // Encapsulates data and functionality 

12       $display("Instruction: opcode=%s, register=%s, operand2=%h", 

13                 opcode.name(), operand1.name(), operand2); 

14    endfunction  

15    

16 endclass: instruction_c  

17     

18 endpackage: instruction_pkg 

In this example: 
 

Line 1 Uses a package called instruction_pkg to encapsulate the 
user-defined types. Packages avoid name-space cluttering and 
enable reuse. 

Lines 3 and 4 Uses enumerated data types to group and name items. Enumerated 
types make the code easier to read and to debug.  

Note: This document uses the *_e naming convention for 
enumerated data types and *_c for classes. 

Lines 7 to 9 Uses the rand keyword to declare the instruction attributes as 
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random variables.  

Line 11 Implements a service function called do_print() for the class 
data items. This function will print the class data. 

Now that we have our class defined, we can use this definition to generate our desired 
number of instructions. The following code generates one hundred random CPU 
instructions. 

Example 2  Generating CPU Instructions 
 
1  import instruction_pkg::*; 

2 

3  program test; 

4     instruction_c cur_instruction; 

5      

6     initial 

7         begin 

8       cur_instruction = new; 

9       for (int i = 0; i < 100; i++) 

10           begin 

11               assert(cur_instruction.randomize()); 

12               cur_instruction.do_print(); 

13           end 

14        end 

15 endprogram 

In this example: 
 

Line 1 Imports the package defined in Example 1 in order to access the 
package’s attributes and declarations. 

Line 3 Uses a program block to encapsulate our test information.  

Line 4 Before you can use the class defined in Example 1, you need to 
create a variable using that class as its data type. This line creates 
a variable called cur_instruction, which is a handle to class 
instance instruction_c.  

Line 8 Before you can use the variable cur_instruction, it must be 
initialized. This line uses the new function to initialize the variable 
cur_instruction to an instance of class instruction_c.  

Line 11 Uses the built-in randomize() method to generate random values 
for all active random variables within an object. The randomize() 
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method returns 1 if it successfully assigns all of the random 
variables within an object to a valid value. Otherwise, it returns 0. 
This line also uses the assert construct to ensure that the correct 
values are assigned to the generated instruction. 

Using Constraints when Modeling Data Items 

Modeling real data items in real protocol rarely involves pure random attribute generation. 
There are dependencies between fields that make some data items illegal. For example, to 
make a legal cell, its checksum must be equal to an arithmetic calculation of its other fields. 
To capture such dependencies, you can use constraints. A constraint describes a property 
of a field and directs a solver, which can be embedded in a simulator, to process the 
constraint and choose a value that satisfies the properties of the constraint. 

This section provides short examples for the following types of constraints: 

  Specification constraints—Constraints derived from a specification that defines the legal 
data items. 

  Default and preference constraints—Constraints that specify that a particular 
combination of legal values occur more than others. For example, you might have a 
default distribution of 95% legal packets and 5% illegal packets. You can override this 
default specification using tests, if you need to meet a certain verification goal. 

  Test constraints—Constraints that are layered on top of an existing environment in 
order to steer the generation towards unexplored areas.  

Specification Constraints 

For example, a specification indicates that “JMP and JPMC must use the value REG0 as 
their branching address.” The following illustrates the implementation of this specification.  

Example 3  Specification Constraint 
 
class instruction_c; 

   rand opcode_e opcode; 

   rand register_e operand1; 

   rand byte operand2; 

   rand inst_kind_e kind; 

           

   //Spec: JMP and JMPC should use the address from REG0 

   constraint jmp_reg0 {opcode inside {JMP, JMPC} -> operand1 == REG0;} 
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endclass: instruction_c  

Note: Specification constraints can be overridden during testing. Overriding constraints is 
useful in cases where the specification describes the expected behavior for corrupted input 
or to test device recovery. 

Default and Preference Constraints 

For efficient verification, you can create constraints that emulate regular traffic behavior or 
specify how you want to distribute traffic. For example, the typical traffic for an Ethernet 
usually contains only a few erroneous packets. The following implements this type of 
behavior. Specifically, the following code specifies that CALL and RETURN opcodes occur 
less often than other opcodes. 

Example 4  Default and Preference Constraints 
 
class instruction_c; 

   rand opcode_e opcode; 

   rand register_e operand1; 

   rand byte operand2; 

   rand inst_kind_e kind; 

 

   // By default, the following provides less CALL and RETURN opcodes  

   constraint less_call_ret {  

            opcode dist {[ADD:JMPC]:=10,CALL:=1,RETURN:=1};} 

endclass: instruction_c  

Test Constraints 

When you are modeling data items, it is uselful to add extra control fields that provide a 
user-friendly interface. Control fields are class attributes that are not a part of the physical 
data time, but can simplify test creation and are useful for coverage. For example, a packet 
might have a control field that determines if a cyclic redundant check (CRC) result is legal. 
Although this Boolean field is not sent to the design under test (DUT), this field can help 
test writers specify how legal and illegal packets should be distributed—without having to 
know the underlying packet implementation. Control fields can help make tests shorter and 
easier to write and understand. 

For example, the following  is taken from specification and functional coverage planning: 

“There are two types of instructions, arithmetic and flow control. The user will most likely 
want only one type of instructuion in a given scenario. How can the developer environment 
assist the test writer to iteratively achieve this preference?” 
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To address this, a new type is added to the instruction package and is then used in the 
class to differentiate between the different instruction types.  

Example 5  Control Fields 
 
package instruction_pkg; 

... 

// New control field for instruction kind 

typedef enum {ARITHMETIC, FLOW_CONTROL, ... } inst_kind_e; 

... 

class instruction_c; 

   rand opcode_e opcode; 

   rand register_e operand1; 

   rand byte operand2; 

   rand inst_kind_e kind;  // Not part of the physical instruction data 

 

   constraint kind_knob { 

     (kind == ARITHMETIC) -> opcode inside {ADDI, ADD, SUB,SUBI};  

     (kind == FLOW_CONTROL) -> opcode inside {JMP, JMPC, CALL, RETURN}; 

   } 

...   // Other instruction class definitions 

endclass: instruction_c  

... 

endpackage: instruction_pkg 

Now, the test writer can add a constraint that calls for only arithmetic instructions or that 
further specifies the distribution. 

Modeling for Stimuli Generation Lab 

In this section, you will use the concepts discussed in the previous sections to model a data 
item.  

You should be using IUS version 05.81 p002 or higher. To verify that you are using the 
correct version of the simulator, use the following command: 
% ncverilog -version 

You should see a message similar to the following: 
 TOOL: ncverilog  05.70-p002         

You can go to http://downloads.cadence.com/ to find and download the latest IUS release. 
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About the Data Item (BTM Cell) 

You will be modeling a data item called a BTM cell. The BTM cell has 53 bytes:  

  The first byte is for the header of the cell.  

 The first two bits of the header contain the cell type (this can be data, control or 
reserved).  

 The next six bits of the header contain the random address.  

  The next 51 bytes are for data or payload.  

  The last byte is a parity byte that contains a parity calculation of the first 52 bytes. 

The following figure illustrates the structure of the BTM cell. 

Figure 3  BTM Cell Structure 
 

 

Modeling the BTM Cell 

This section walks you through the steps necessary to model this BTM cell.  

To model this BTM cell: 
1.  
2.  

Create a file and give it an .sv extension. For example,  btm.sv. 
Within the btm.sv file, define a package that contains: 

a. An enumeration data type that captures the following data types: DATA, 
CONTROL, and RESERVED. 
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3.  
4.  
5.  
6.  
7.  

  

  
  

b. A class called btm_cell_c . This class has the following fields: 

 Enumerated cell types 

 A six-bit address 

 408-bit data 

 A parity byte 

Note: All of these fields must be randomized. Therefore, tag all of these fields 
with the rand keyword. 

c. A do_print() void function to that prints the cell’s type, address, and parity 
fields. 

Import the package definition to the global scope.  
Define a program that allocates one cell. 
Using a loop, randomize the values and call the do_print() void function for ten cells. 
Save the file. 
Compile the file. 

Use the following command to compile and run SystemVerilog code using batch mode: 
% ncverilog +sv btm.sv 

Or, use the following command to compile and run IUS in GUI mode: 
% ncverilog +sv +gui btm.sv 

The solution for this exercise is in the exercise1.sv file of the  /solutions directory, 
which was provided with this document.  

Constraining the BTM Cell  

Now that you have modeled the structure of the BTM cell, you need to add the following 
constraints: 

A constraint that avoids the RESERVED cell type. 

Note: Your constraint should not specify default reserved cell type. 
A constraint that constrains the value of the address so that it is byte aligned. 
A constraint that constrains the last two bits of the address such that they are zero. 

The solution for this exercise is in the exercise2.sv file of the  /solutions directory, 
which was provided with this document.  
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