
System-Level Design and
Verification Challenge

Today’s system-on-chip (SoC) market
is extremely competitive. In order
for chip design projects to succeed,
designers must create and verify
differentiated hardware more quickly
than their competitors. Unfortunately,
today’s design flows begin by
manually writing an RTL description
that functions the same as the C/C++
specification model written by the
architects. The RTL description also
codifies the micro-architecture that
will be implemented, largely deter-
mining the final PPA with minimal
ability to explore more optimal alterna-
tives. This inflexibility has negatively
affected the risk/reward tradeoff of
developing new intellectual property
(IP), instead pushing companies
toward outsourcing or re-using more
and more of their SoCs in order to
meet schedule demands, reducing
their ability to differentiate.

The history of chip design has seen
a progression of leaps in design and
verification abstraction that deliver a
corresponding leap in productivity.
Starting with the transistor level,
moving up to gate level, and then to

RTL, hardware design productivity
has kept pace with the advances in
silicon capacity (see Figure 1). But
productivity has lagged recently
because the shift from RTL has taken
longer than expected due to the
lack of production-worthy high-level
synthesis.

The Solution: High-Level
Synthesis

In order to make the next produc-
tivity leap, high-level synthesis must
deliver an automated path for the

entire design from transaction-level
models (TLMs) to RTL while delivering
PPA that is at least as good as what
is achieved with handwritten RTL.
C-to-Silicon Compiler is the first high-
level synthesis product to synthesize
datapath and control logic together,
described in an industry-standard
language, to generate PPA that meets
or beats that of handwritten RTL.

C-to-Silicon Compiler reads in a
SystemC description of the hardware
architecture and generates a Verilog
RTL micro-architecture utilizing the

Cadence® C-to-Silicon Compiler high-level synthesis enables hardware design and verification
to move up to the transaction level of abstraction, delivering quantum leaps in productivity and
project turnaround time. Its analysis and optimization works in conjunction with embedded
production logic synthesis, delivering performance, power, and area (PPA) results that meet or
beat those of handwritten register-transfer logic (RTL) for any mixture of datapath and control
logic design. By automating the path from transaction-level SystemC to RTL, C-to-Silicon Compiler
enables the main focus of functional verification to shift to a higher level of abstraction, greatly
speeding the overall verification cycle.

C-to-Silicon Compiler High-Level Synthesis
Automated high-level synthesis for design and verification

1

10

100

1000

10000

Transistors

Gates

RTL

TLM

Pr
od

uc
tiv

ity
, N

ew
 D

es
ig

n
(g

at
es

/d
ay

)

Figure 1: Raising design abstraction levels increases productivity

www.cadence.com 2

C-to-Silicon Compiler High-Level Synthesis

high-level constraints that are unique
to the target product requirements and
process library. These constraints are
fine-tuned based on visual feedback
from a rich graphical design environment
and an incremental database. Because
the implementation constraints are kept
separate from the design’s functionality,
the same verified SystemC model is easily
re-targeted for different end products
with different requirements and process
libraries (see Figure 2).

Cadence has developed a full method-
ology to extend design and verifi-
cation to SystemC TLM. By starting the
metric-driven verification methodology
with TLM, most bugs are eliminated
before RTL is even created, greatly
speeding the overall turnaround time
of what is typically the critical path of a
design project. Because the production
synthesis guides generation of the RTL
and synthesis constraints, the path into
existing implementation flows is smooth.
And if bugs need to be fixed or features
added later during implementation, the
automated engineering change order
(ECO) capability applies a small patch that
is optimized and formally verified so the
project can stay on schedule.

C-to-Silicon Compiler Features

Micro-architecture exploration

•	 SystemC describes only the
functionality, while C-to-Silicon
implements the micro-architecture,
enabling full exploration of the PPA
solution space before committing to an
RTL micro-architecture

•	 Graphical environment delivers source-
connected visual analysis of such items
as the control and data flow, critical
timing path, area utilization, and power
consumption

•	 Identify micro-architectures that have
a greater power reduction than is
possible in RTL synthesis, while meeting
performance goals

Production quality of results for ASIC
or FPGA

•	 Industry-leading scheduling and optimi-
zation, including resource sharing,
various pipelining approaches, speed
grade control, and carry-save adder
(CSA) optimization.

•	 Cadence RTL Compiler synthesis is
embedded under-the-hood for ASIC
flows to accurately characterize
resources for analysis and optimization

•	 Utilizes Liberty libraries for ASIC flows,
along with wireload models or RTL
Compiler physical layout estimation
(PLE)

•	 Supports Xilinx and Altera FPGA devices
and synthesis flows

ECO from TLM to GDSII

•	 Incremental synthesis minimizes
changes to RTL while meeting
constraints when applying an ECO
patch

•	 Tight links to Cadence Encounter®
Conformal ECO applies patches
downstream to anywhere in the
implementation flow, from netlist
to placement with routing to
metal-only ECO

Successful on all types of hardware

•	 Synthesizes datapath and control logic
together, supporting all type of designs
in the mixed datapath-control spectrum

•	 Has been used in production on
projects spanning the datapath-
control spectrum. Examples include
H.265 video codec, high-speed image
processor, 3G equalizer, 100Gbps
optical networking, AES encryption, L2
cache control, and low-density parity
checker

Built to enhance existing
methodologies

•	 Supports IEEE SystemC and OSCI TLM
with a single-source model used as a
virtual prototype in simulation and then
taken through high-level synthesis

•	 Generates RTL and constraints
compatible with Cadence and
third-party RTL synthesis and logic
equivalence checking

•	 Methodology available to extend
today’s RTL-driven metric-driven verifi-
cation environments to TLM-driven

Better PPA for ASIC or FPGA

High-level synthesis takes in untimed
algorithms and implements micro-archi-
tectures and pipelines with the freedom
to distribute and share logic across
registers in order to satisfy constraints.
Thus it is able to choose from a much
broader and more powerful array of
implementation options in order to deliver
better PPA than is delivered by manually
constructing designs with RTL.

C-to-Silicon Compiler embeds production
logic synthesis technology in order to
provide accurate analysis and optimization
guidance. It characterizes the timing,
power, and area of logic components in
the context in which they are used in the
design in order to more accurately model
wire timing effects.

For ASIC flows, C-to-Silicon Compiler
utilizes RTL Compiler synthesis along
with the production Liberty library (see
Figure 3). For FPGA flows, it utilizes either

SystemC
Design

RTL
µArch1

RTL
µArch2

RTL
µArch3

RTL
µArch4

Figure 2: Generate different micro-
architectures for different end-product needs
from the same verified SystemC design.

SystemC

LIB

RTL
Constraints

HLS
Constraints

RTL

C-to-Silicon
Compiler

RTL Compiler
Inside

Figure 3: C-to-Silicon ASIC flow

www.cadence.com 3

C-to-Silicon Compiler High-Level Synthesis

Xilinx or Altera synthesis and device infor-
mation. Utilizing production RTL synthesis
delivers more accurate characterization,
allowing for more aggressive optimization
while generating RTL that will predictably
deliver the desired quality of results after
synthesis.

Graphical Exploration and
Control

Successfully transforming an algorithm
into production-quality hardware requires
designers to make micro-architecture
decisions in order to achieve the desired
PPA balance. C-to-Silicon Compiler’s
graphical environment is a full cockpit for
running synthesis, analyzing results, and
making necessary adjustments.

After the SystemC design is compiled,
the structure and flow of the design
is displayed in the control-dataflow
graph. This high-level visualization of the
loops, branches, operations, and timing
elements is cross-linked to the SystemC
source to help the designer better under-
stand the flow and interdependencies
of the design. And it is updated after
each step of the synthesis process (see
Figure 4).

Once the design has been scheduled and
resources have been allocated, all aspects
of PPA are examined. The critical path
viewer displays the timing-critical paths
annotated with timing results from RTL
synthesis. The area and power tree map
viewers quickly highlight the blocks that
consume the largest area or power as
measured in RTL synthesis. Adjustments
are made directly in the GUI and applied
to the next run. Finally, the generated
RTL structure can also be viewed in
schematic form to visualize the resulting
micro-architecture.

Apply ECO Anywhere from
TLM-GDSII

Changes to the design can become
necessary at any point during the design
flow. Rather than re-running high-level
synthesis followed by completely re-doing
the entire RTL-GDSII implementation for
the design, an ECO patch can minimize
the impact of the change on the design
and thus the schedule.

Most high-level synthesis
tools are far removed
from the RTL-GDSII
implementation flow.
However, because
C-to-Silicon Compiler
embeds production
synthesis, it can combine
this capability with its
incremental database
to generate a patched
RTL design that will
meet timing constraints
downstream.

This capability, working
in conjunction with
Cadence Conformal ECO
Designer, enables the
patch to then be applied
downstream on the
netlist, the placed design,
the routed design, or
the post-mask netlist if
a metal-only ECO is possible. Conformal
ECO combines Cadence Conformal
Equivalence Checker with RTL Compiler’s
synthesis optimization to ensure the patch
is correct and that the design still meets
its quality of results goals.

Faster Time to Verified RTL

Functional verification is the schedule
bottleneck in most design projects.
Designing at a higher level of abstraction
requires fewer details, which
means fewer opportunities for
designers to introduce bugs,
faster simulation runtimes,
and speedier debug of errors.
However, if TLM verification is
simply added onto an existing
verification methodology, it
becomes an extra step that does
not help.

Cadence has extended its metric-
driven verification methodology
to take advantage of starting
verification at a higher level of
abstraction. Most features—
specifically the core functionality
and the protocol timing—are
verified as SystemC TLM. Because
C-to-Silicon Compiler offers an
automated path to RTL, these
features can just be regressed once

in RTL, where verification can then focus
only on newly added features introduced
with signal-level interfaces and register
timing.

The result is an overall reduction in verifi-
cation turnaround time that has been
proven to reduce the verification cycle by
35-50% (see Figure 5).

SystemC source Control-dataflow graph

Critical path timing report
from RTL Compiler Area tree map

Figure 4: Complete graphical analysis, fully cross-linked.

RTL Coding

Micro-Arch Design

RTL Verification

Time to Completion

SystemC Design

SystemC Verification

RTL Verification

Time to Completion Savings

HLS Flow

RTL Flow

Figure 5: Verification savings from SystemC
design and verification

C-to-Silicon Compiler High-Level Synthesis

Cadence is transforming the global electronics industry through a vision called EDA360.
With an application-driven approach to design, our software, hardware, IP, and services help
customers realize silicon, SoCs, and complete systems efficiently and profitably. www.cadence.com

©2011 Cadence Design Systems, Inc. All rights reserved. Cadence, the Cadence logo, and Encounter are registered trademarks of Cadence Design
Systems, Inc. 1689 12/13 SA/DM/PDF

Supported Workstations and
Operating Systems*

•	 X86 instruction-set architecture
workstations

•	 OS type: Linux
 – RHEL 5 (32-bit and 64-bit), RHEL 6
(32-bit and 64-bit)

 – SuSE 10 (32-bit and 64-bit), SuSE 11
(32-bit and 64-bit)

* Please check with your Cadence
representative for the latest information and
additional details as they are subject to change
without notice.

Cadence Services and Support

•	 Cadence application engineers can
answer your technical questions by
telephone, email, or Internet—they can
also provide technical assistance and
custom training

•	 Cadence certified instructors teach
more than 70 courses and bring
their real-world experience into the
classroom

•	 More than 25 Internet Learning Series
(iLS) online courses allow you the
flexibility of training at your own
computer via the Internet

•	 Cadence Online Support gives you
24x7 online access to a knowledgebase
of the latest solutions, technical
documentation, software downloads,
and more

Specifications

C-to-Silicon Compiler L

Design format and language
support

•	 Input design language: IEEE SystemC and OSCI TLM 1.0

•	 High-level synthesis constraints and scripting: Tcl

•	 Output design language: IEEE 1364 Verilog

•	 Output constraints: Synopsys Design Constraints

Graphical user interface Full cross-linked graphical design environment with new design wizard, control-dataflow
graph, critical path viewer, area and power tree maps, resource viewer, pipeline viewer, source
code viewer, RTL schematic viewer

Embedded logic synthesis •	 ASIC: Cadence RTL Compiler

•	 FPGA: Xilinx or Altera

Analysis Built-in timing, power, and area analysis utilizing context-aware characterization from embed-
ded logic synthesis

Database Fully incremental design database that stores behavior, structure, and timing information

ECO synthesis Incremental synthesis that uses similarity as the primary cost function

Clock gating Fine-grained and coarse-grained clock gating

Memory support Flatten array, built-in RAM, prototype memory, vendor RAM, external memory

Ramp-up support •	 Self-paced tutorials

•	 Extensive design and script examples

•	 Methodology services available

Design IP •	 Math functions

•	 Fixed-point data types

•	 Floating-point data types

•	 Flex channel block-to-block communication

•	 AXI3

•	 AXI4-Lite

Testbench generation Automatically generates SystemC wrappers to enable RTL verification with SystemC test-
benches

Simulation model generation Automatically generates I/O cycle-accurate simulation models, assertions, and scripts for simu-
lation

