
Introduction

“The state-space of a chip will grow exponentially every 24 months” is
the verification engineer’s corollary to Moore’s Law. The block or IP-level
components are now as big as full systems on chip (SoCs) were five years
ago. Today’s SoCs are growing beyond multiple hundred-million gates. While
the verification engineering community has created several new tools and
methodologies, these are primarily designed on top of two technologies
developed in the 1980s to simulate circuits expressed using a hardware
description language (HDL)—the hardware simulator and the hardware
accelerator/emulator.

Because of its flexibility, hardware simulator–based verification is more widely
used for verification tasks and is therefore expected to scale with the exploding
design complexity. This expectation is rational even after a generation of use
because of the continuous innovation that has enabled the hardware simulator
to reduce memory while speeding execution and overall turnaround time. The
Cadence Incisive Enterprise Simulator not only embodies these characteristics,
but it also provides the new controls, technologies, and methodologies
necessary to meet the SoC verification performance requirements at 40nm and
finer geometries.

While the number of knobs available to tune performance has grown
with verification complexity, the approach to addressing project-specific
requirements remains systematic. The first step to doing so is obviously to
analyze the design and verification requirements; a careful examination
will identify the areas that can be improved and to what extent those
improvements will affect overall turnaround time. If it is a derivative testbench
and design, then simply moving to the latest simulator release is all that’s
needed to improve productivity. However, if there are verification environment
features, or if the deployment of a new technology/methodology causes a
significant change to the design and/or testbench, then a more detailed profile

Hardware Simulator Performance Scaling to Meet
Advanced Node SoC Verification Requirements
By Amit Dua, Adam Sherer, and Umer Yousafzai—Cadence Design Systems

Because of its flexibility, hardware simulator–based verification is expected to scale with design
complexity. Continuous innovation has enabled hardware simulators to reduce both memory and
overall turnaround time. The Cadence® Incisive® Enterprise Simulator not only embodies these
characteristics, but also provides the new controls, technologies, and methodologies necessary to
meet SoC verification performance requirements at sub-40nm. This technical paper examines the
Cadence systematic approach to optimizing verification performance and productivity.

Contents

Introduction1

Innovation in the Core

Simulator2

Advanced Node SoC Verification

Requirements6

Summary9

http://www.intel.com/about/companyinfo/museum/exhibits/moore.htm

is needed to identify performance bottlenecks due to coding styles, engine optimizations, or both. If the project is
undergoing a larger design/verification expansion, then a more structured approach is needed for performance and
productivity.

This technical paper is aligned with this systematic approach to verification, each section focusing on a project-
specific method for improving verification performance and productivity.

Innovation in the Core Simulator

The assigned task may be to “simulate this design” and the good news is that verification language standards
enable interoperability, so project teams can choose. After a generation of development, what sets the simulator
providers apart is the ability of their engineering teams to innovate both core performance and structured
solutions. What makes the core performance so important is that it pervades all verification tasks—design,
subsystem verification, SoC integration, and gate-level simulation of the synthesis output—and does so with
minimal methodology impact.

Better simulation through better engineering

Functional verification at the register-transfer level (RTL) is expected to continue being the predominant verification
technique. One way to increase performance and productivity is to move up to higher level of abstractions like
transaction-level modeling (TLM). But in the other direction, gate-level simulation continues to be the primary
signoff criteria. As a result, simulation-based verification holds the key at all level of abstraction. The requirements
on RTL performance have evolved dramatically in the last 25 years of the commercial simulation industry, driven
by the dramatic expansion of new languages and extensions to them compounded by the amount of code that is
required to express the increased complexity of design and verification.

“Dramatic expansion” must have metrics to understand how this led to a new generation of performance
innovation. For years, simulation engineers have created reference examples to validate the scalability of the
simulator. The Incisive Verification Kit is a simple SoC developed in early 2000 equaling about 1.5M gates. At the
same time, the Incisive Enterprise Simulator is being applied to actual designs approaching 200M gates and more,
and will certainly be applied to larger designs in the future. This growing gap between contrived and actual designs
led the Cadence Incisive team to form close working relationships with several large electronics firms to access their
leading-edge designs. The result is a wave of optimizations born of real-world test cases and delivered to the broad
user community in each new release of the Incisive Enterprise Simulator.

All the examples of Incisive simulation innovation are too numerous to cover in this paper, but select examples can
provide credence to the new opportunities and head-room for performance gains in the core. Here are a few of the
improvements made during 2011:

•	 Assertion-based verification: Assertion-based verification (ABV) has matured from a scattering of checker
instances to a core design requirement with some project teams defining “assertion density” metrics as much as
one assertion per ten lines of design code or more. A single finish for each cover property, optimizations focused
on SystemVerilog Assertions (SVA) sequence operators, and performance controls (such as limiting the failures/
finish per assertion and user control of assertion evaluation at each stage of the compile/elaborate/simulation
cycle) optimize performance for both subsystem and full SoC verification.

•	 Gate-level simulation: Gate-level timing checks became significantly more complex beginning with the 40nm
node. A careful examination of the design and library found a much greater use of complex expressions in timing
outputs, creating an opportunity for optimization. Specifically, the complex expressions can be in the continuous
assignments or through multi-gates that then drive the timing check conditions. While optimizations like this one
have some benefit in smaller designs, most of the memory and runtime benefits occur in designs that elaborate
larger than 8GB, which is becoming the norm at 40nm and below.

•	 Coverage: In the span of a few years, mainstream coverage collection has moved from simple code coverage
to complex functional coverage. As a result, coverage data has grown in two dimensions—the number of bins
tracking the design plus testbench and the number of coverage data files required to merge from multiple tests.
The former includes designs up through the 100M gate equivalent range and larger, while the latter includes test
suites that range up through the hundreds of thousands of merges and more.

www.cadence.com 2

Hardware Simulator Performance Scaling to Meet Advanced Node SoC Verification Requirements

Optimizations for mixed-language dumping, dynamic SystemVerilog objects, toggle coverage, and more all
contribute to runtime improvements while union merge, storage of evaluated expression types, auto bin range
allocation/de-allocation, and others all contribute to memory improvements. As the metric-driven verification
methodology pioneered by Cadence in the mid 2000s and Accellera’s Universal Verification Methodology continue
to proliferate, additional innovation opportunities will appear for coverage.

•	 Power-aware design: Power-aware design is transitioning from a feature that’s needed for specific applications
to one that’s a basic physical requirement to enable advanced node SoCs to work. At the same time, the
complexity of the power modes and their transitions is growing to the point where directed tests are no longer
sufficient to verify that the SoC will operate properly under all power conditions. This implies that the simulator
needs to be fast enough to run every functional test as a power-aware functional test. Incisive technology offers
this capability with a native low-power solution that has marginal overhead during both elaboration and runtime.

The data in Table 1 provides insight into how the Incisive engineering team measures itself. As members of the
team build optimizations such as the ones described for assertions, gate-level simulation, and coverage, these
features are rolled into specific software releases and measured against multiple test cases. For a project team
that starts with a specific software release, they will experience some of the improvements in performance in that
release and will look to upgrade to the subsequent release for additional improvements.

Representative
Simulation
Features

Gains from 9.2
Base to 10.2
Latest Release

Gains from 10.2
Base to 11.1 Latest
Release

Cumulative Gains

Turn-Around Time
(TAT)

RTL elaboration 1.6 – 2.8x 1.0 – 1.2x 1.6 – 3.4x

SystemVerilog elab-
oration memory

1.0 – 1.2x 1.0x 1.0 – 1.2x

Simulation Run
Time

Verilog RTL 1.0 – 1.3x 1.0 – 1.3x 1.0 – 1.7x

ABV performance 1.6 – 7x 1.0 – 1.2x 1.0 – 8.4x

SystemVerilog per-
formance

1.0 – 1.2x 1.0 – 1.3x 1.0 – 1.3x

Constraint solver
performance

1.5 – 2.0x 1.2 – 1.7x 1.8 - 3.4x

Coverage write per-
formance

1.6 – 2.7x 1.1 – 7x 1.8 – 19x

GLS performance 1.0 – 5.7x 1.0 – 1.4x 1.0 – 8.0x

Simulation Memory

Verilog RTL memory 1.0 – 1.2x 1.0 – 1.2x 1.0 – 1.4x

SystemVerilog
memory

1.1 – 1.3x 1.0 – 1.2x 1.1 – 1.6x

Table 1: Representative Incisive Enterprise Simulator release-to-release performance gains

The data in Table 1 measures the statistical mode for the tests in each category and uses a single standard
deviation to create the range. Since performance of a software application is often a tradeoff between memory
and runtime, a specific optimization may reduce one at the expense of the other. The test suite helps Cadence
identify such performance tradeoffs and make good engineering judgments that help improve performance for the
majority of the use cases. The Incisive engineering team also measures the number of tests that appear above and
below the mode to ensure that the performance of the overall suite improves. Subsequent updates of this paper
will include updates to this table.

Configuring the simulator for speed

The points in the previous section outline the forces of change that are acting on the simulator as well as the
subsequent changes to the simulator itself. With respect to enhancements like those to gate-level simulation for
advanced node libraries such as 40nm and below can benefit by simply upgrading to the latest simulator. However,
the enhancement may be overshadowed by other factors that reduce perceived benefit of the enhancement. For
example, if only select instance hierarchies of the design are open for debug access, the effects will be much
greater in terms of overall runtime improvement compared to running the design with complete access. There,
users may want to consider modifying their run scripts, where appropriate, to maximize the improvements in the
core simulator.

www.cadence.com 3

Hardware Simulator Performance Scaling to Meet Advanced Node SoC Verification Requirements

By default (no options) the simulator runs in a fast mode with minimal debugging capability. To externally refer to
design objects (e.g. through PLI/VPI/VHPI or tcl) or to single-step through lines of code during simulation requires
using debug options. These options provide visibility into different parts of a design in exchange for speed, but
judicious use of them provides a balanced approach to optimizing performance.

When global debug options are applied, like “–linedebug” or “–access rw[c],” the optimizations get switched
off on the entire design. In general, these options should not be used for regression. For debug and on large
designs, they should be applied selectively rather than globally. “-linedebug” is a compile-time switch, so it can be
selectively applied to source files that need step debugging. Running without “-linedebug” mode is generally 2x
faster, or more, when applied to all sources.

The external access to design objects can be limited by passing an access file to the elaborator, which contains
access permissions for specific instances or objects in the design. It is important to note that the access
permission is required only for external references from PLI and tcl; it is not required for any access from Verilog,
SystemVerilog, or VHDL source code, nc_mirror, or for out-of-module references. The access file option (“-afile
filename”) lets the user specify only those objects that need access. As a result, the simulator can optimize objects
that do not need to be accessed. The elaboration option “-genafile” is used to automatically generate an access
file. The impact of using an access file over “-access rw” depends on the number of objects in the access file.
Fewer objects in the access file yields more gain. The typical range is a 1.05–1.5x improvement by reducing the
access level.

CPU, cache, memory, storage, network, and operating system can also affect performance. For example, large
simulations, including top-level SoC tests and gate-level simulations, use large amounts of memory whereas
smaller subsystem regression simulations may be dominated by turnaround time in both elaboration and runtime.
Regardless, the optimal performance is achieved when the simulation fits within physical memory. The -status flag
in the Incisive simulation environment will report the memory requested by the Incisive Enterprise Simulator. In the
situation where the simulator executable, or snapshot, is very large, it will load faster if it is copied to local storage
rather than accessed across a network. Regardless of the size of the design, larger caches are better with at least
8M of cache being the lower limit when a project team upgrades their regression farm.

There are many more options and methodology changes that can be used to extract more performance. The
simplest and fastest way to configure the simulator for a project’s performance needs is to work with a Cadence
expert to conduct a performance audit. The expert will work closely with the project team onsite and suggest
performance improvement techniques and methodology changes.

An example of the benefit of such an audit would be to improve performance during the gate-level simulation
phase of a project. To start with, there are a few options including running with different SDF precision, disabling
negative timing checks, or even running in zero or unit delay mode. All timing values (including those less
than 10ps) and all negative timing checks are used by default in the Incisive Enterprise Simulator. This results in
more accurate timing simulation, but higher memory consumption and slower simulation speed. Verilog timing
simulation can be run faster by using a larger timescale and without negative timing checks. A performance
audit will yield many more suggestions, such as how to make optimal use of farm machines for better regression
performance, the management of compiled libraries, and so on.

Using a profiler to tune performance

Software engineers have used profiling tools for years to improve algorithm performance, and that technology is
increasingly important to verification engineers as the environments increasingly resemble large software projects.
The profiler is a tool that measures where time is spent during simulation. It helps the project team understand and
optimize the environment for improved performance.

It is recommended that project teams profile the simulation environment regularly. The best practice is to run it
at every major change in environment. When writing code, engineers tend to focus first on functional accuracy—
and that is the right thing to do. In some cases, the initial algorithm tradeoffs include coding styles that are easier
to understand but may be inefficient. Profiling the environment can help identify those bottlenecks as the code
is maintained and developed. The value of the profiler is that it indicates to the user exactly where the runtime
is spent and, in many cases, clearly points to the unexpected effects of a particular coding style. In this way, the
profiler points out an opportunity to improve performance.

The Incisive Enterprise Simulator has a built-in profiler that provides basic information in a text file. It can be
enabled by simply adding the -profile option at runtime. There is very low overhead on runtime performance and
memory for collecting the statistics in a simulation.

www.cadence.com 4

Hardware Simulator Performance Scaling to Meet Advanced Node SoC Verification Requirements

The Incisive profiler report is divided into several sections, each of which provides an aspect of the overall
performance picture. The header section contains information about the machine details, elaboration options,
simulation time, CPU, and memory usage. The stream counts section reports the blocks or the tasks that consume
most of the time. It provides information about the time spent in individual code streams such as always blocks,
initial blocks, VHDL processes, tasks and functions, continuous assignments, non-blocking assignments, and other
language features. If an HDL construct appears unexpectedly high in the list, it may have been written inefficiently.
For example, in Figure 1, the stream counts section reports that the highest percentage of total time—31% —is
spent in one VHDL process block.

--
Stream Counts (230526 hits total)
--
%hits #hits #inst name
31.4 72380 [] Process statement: $PROCESS_000 (line: 64, in design
unit
COMN_LIB.C_LCBCTL:C_LCBCTL)
3.2 7407 [] Process statement: $PROCESS_002 (line: 82, in design unit
COMN_LIB.C_LCBBAS:C_LCBBAS)
2.6 6070 [] Method SSS_MT_RETURN_BYTE (method)
1.0 2245 [] Process statement: $PROCESS_001 (line: 69, in design unit
COMN_LIB.C_LCBBASE:C_LCBBASE)
0.9 2105 [] Process statement: $PROCESS_000 (line: 64, in design unit
COMN_LIB.C_LCBCTL:C_LCBCTL)
…

Figure 1: Language features in the stream counts section of the profiler report

There is also a summary section that makes it easier to identify widespread inefficiencies in the simulation. For
example, large amounts of time spent on always blocks, probing, file I/O, and PLI applications will show up most
clearly in this section. The example in Figure 2 shows the summary section for a typical Verilog and VHDL mixed-
language RTL design.

--
Stream Type Summary Counts (19154 hits total)
--
%hits #hits #inst name
35.0 6708 [] Always statements
21.7 4153 [14474] Verilog functions
15.6 2997 [14971] VHDL process
11.7 2245 [] Non-blocking assignments
11.4 2176 [6452] Simulation Engine Time
0.9 164 [7528] Engine support
0.9 163 [] Verilog tasks
0.8 150 [139] VCD/SHM variable dumping
0.7 140 [7549] Continuous assignments
0.5 96 [331] Parallel block sub-processes
0.5 93 [] User-defined primitives
0.3 59 [] Logic primitives
0.1 23 [4152] Initial statements
0.1 18 [] VHDL subprogram
0.0 7 [] User defined system tasks/functions
0.0 1 [] Support for VPI callbacks (or UI)

Figure 2: Summary section of the profiler report

www.cadence.com 5

Hardware Simulator Performance Scaling to Meet Advanced Node SoC Verification Requirements

As design sizes become large and verification environments become more complex, there is a need for more
advanced profiling. An advanced profiler has to not only provide a means for managing the greater amount of
data, but it also has to accommodate the allocation of time to objects that can be created and destroyed during
simulation (hardware descriptions can’t do either) and a flow of control that moves across threads of execution
rather than by hierarchy.

The Incisive advanced profiler supports features including instance-based profiling, finer basic block-level
information, and a call graph for object-oriented code. The instance-level information is useful to know the time
spend in a sub-scope within an IP block. This can be used to replace the time-consuming IP blocks with a fast
model. The call graph is very useful for class-based verification environments such as those written with the Open
Verification Methodology (OVM) or Universal Verification Methodology (UVM) libraries. An example of this more
advanced profiler information is shown in Figure 3.

Figure 3: Output from an advanced profiler

Advanced Node SoC Verification Requirements

While tuning the engine can provide single-digit performance multiples, advanced node SoC designs at 40nm and
below demand structured approaches to simulation technologies and a methodology to achieve greater gains. The
first requirement encountered by all project teams is to reduce turnaround time (TAT) at each stage of verification,
as shown in Figure 4. To do this, we need to look at the other steps in the simulation process that consume
significant time. Quite often that means speeding the assembly, or elaboration, stage. Incremental elaboration
comes over from the software world, where subsystems can be compiled into linkable objects and then those
linkable objects are linked together. Then, only those subsystems that have changed are re-compiled. This reduces
TAT by orders of magnitude when minor changes are made.

A similar process can be applied at runtime by executing the common portion of a set of tests once and then
restoring and reseeding each of those tests from that common point to reduce debug and regression time
significantly. In each of these steps, some minimal changes in design and verification methodology are needed to
achieve the large performance improvements. The same is true as simulation engines shift from single- to multi-
core execution. Taken together with a tuned core engine, these new technologies will enable simulation to meet
the performance requirements of advanced node SoC verification.

SoC

IP

Gate

Subsystem

Project vplanElaborate Simulate

Analyze / debug / code

Figure 4: Turnaround time affects each verification stage for advanced node SoCs

www.cadence.com 6

Hardware Simulator Performance Scaling to Meet Advanced Node SoC Verification Requirements

Incremental elaboration

SoC projects typically distribute the development across multiple teams, creating natural lines of division in the
SoC. Verification engineers usually don’t make changes to the design under test (DUT) as they verify it with various
test scenarios. That allows the test or verification engineers generally to work on a fixed version of the DUT and
verify it with various test scenarios. They typically change only the verification environment (testbench or just the
tests). This division worked naturally in the past as the common verification languages (like e, C/C++, and Vera)
were compiled outside the design model build by HDL simulators.

However, simulators have upgraded significantly in the last few years and have incorporated the verification
languages as an integral part of their engines. The verification languages became compiled natively into a unified
environment for both design and verification. In the early use of SystemVerilog, the environments were generally
small enough that there was little additional overhead. However, with the wide acceptance of the OVM, and the
UVM built from it, the SystemVerilog content grew so quickly that it is now a common requirement to elaborate
the testbench separately from DUT to reduce TAT.

The Incisive Enterprise Simulator provides the ability to split the environment into parts that are elaborated
separately and combined at the simulation step. This capability enables fast elaboration of the design and
verification environment in many common situations, including the following:

•	 Changes local to the testbench or the verification environment, but not in the design

•	 Linking different testbench hierarchies to a design that has been elaborated once

•	 Changes local to a design when the rest of the verification environment is unchanged

This feature is most useful during the debugging phase as it enables very fast TAT after small modifications. It
significantly boosts productivity and performance by separately elaborating the small changing portion from the
once-elaborated or large fixed-portion of the design and verification environment. SoC project teams are deploying
this technology to reduce TAT from hours to minutes and are driving additional flexibility into the solution as it
becomes a mainstream approach to structured verification.

Dynamic load and reseeding

Regression simulation, the execution of waves of tests on a farm of servers, is a common verification practice. In
regression simulation, the randomized tests are written to validate specific features and complete in a fixed period
of time between a few seconds and a few hours. In many cases, a large number of tests will require a common
design initialization or interface protocol training phase. While a single test can verify this startup, all of the tests in
the group run the same phase, resulting in wasted farm cycles.

Dynamic reseeding eliminates this redundancy, reducing overall regression time. Working on real designs, gains of
as much as 3x have been observed. The key is being able to save the state of simulation, including any attached
PLI/VPI/VIP, restore a simulation from this saved state, and then reseed the restored environment to start the
unique test. By doing so, each test that shares the same initialization is now that much shorter. This means many
more waves of regression can execute on the farm in the same amount of time, resulting in a reduction of the total
regression time. Many groups leverage this reduction in regression time to run many more simulations, resulting
in a gain in functional coverage results. This effort does require a small amount of methodology change to
understand which tests share the same initialization routine, but the design and testbench do not have to change.
Once set up for regression, reseeding also can improve TAT for debugging failing simulations.

An example of this structured approach is shown in Figure 5. The first step is to identify all of the tests that share
a common reset, protocol programming, or other type of initial sequence. Then a single test is run through that
sequence and the state is saved. From that point, each of the individual tests can be executed with a much shorter
run. Tests, such as test D in the example, can even be reseeded. The structured aspect is just to identify the tests
that meet these criteria and to schedule them together with the load-balancing software to improve regression
farm performance.

www.cadence.com 7

Hardware Simulator Performance Scaling to Meet Advanced Node SoC Verification Requirements

Reset/config Test A Reset/config Test C

Reset/config Test B Reset/config Test D

Reset/config Test A Test C

Test B Test D

Original regression
 Start of interesting traffic

Dynamic load and reseed regression

Significant reduction in
overall regression run time

Restore state /
reseed if needed

Save state

Figure 5: Dynamic load and reseeding

Multi-core simulation

Multi-core simulation can improve verification performance by distributing the regression runs among multiple
cores. Almost all machines running simulation today are multi-core. There are different ways to use them for faster
performance.

The most common way to exploit them is by running multiple tests on one machine with each simulation using
a single core. This technique is commonly used to boost the performance of regressions using Incisive Enterprise
Manager or with simple load-balancing tools. However, there are cases when there are specific simulation jobs that
are very long and the profile data attributes much of the execution time to applications like waveform dumping,
generation of code streams, and more. Depending on the application, the Incisive Enterprise Simulator can provide
1.1-1.4x additional performance using multiple cores in this situation.

The other mechanism is to partition a large design and simulate it in parts on the multiple cores available on a
machine. The overall verification environment is subject to improvements because the event distribution in an SoC
is very specific to the test being run and may vary greatly from one test to the next. For example, in a gate-level
simulation without timing, long simulation threads can be found that are then loaded onto different cores for
execution for very significant gains. When timing is added, those threads can fracture into very short events that
lose their parallel nature. By doing so, performance gains of 1.5x on two cores and 2.9x on four cores have been
observed on a representative SoC design.

The best way to determine if a design can benefit from multi-core support is to use a special thread profiler to
determine the level of parallelism in the environment. Doing so may lead to tuning in the testbench to inject more
parallel traffic into the environment so that the functional coverage goals are met and the environment is more
suited for multi-core simulation. Regardless, the application of multiple cores to improve simulation execution
performance shows promise for advanced node SoCs.

Project-level performance optimization

While compilation, elaboration, and simulation performance is very important for users, verification performance
needs to take into account the “high value engineer performance (HVEP)” in achieving verification goals. Cadence
is constantly innovating to provide better debug, coverage analysis, and automation capabilities to improve HVEP.
These innovations to improve project-level performance can be organized into two categories: novel verification
technologies and novel methodologies.

Some examples of novel verification technologies include leveraging formal engines and hardware-based
acceleration. Formal engines, such as the Incisive Enterprise Verifier, can be applied to signal connectivity checking.
Doing so is an efficient way to check that buses and I/Os are hooked up correctly without having to simulate the
full SoC or without even having an SoC-level testbench. That translates into overall project time reduction because
designers have a way to debug low-hanging problems early. This particular application of the formal engine also
requires no knowledge of assertions or even formal verification.

www.cadence.com 8

Hardware Simulator Performance Scaling to Meet Advanced Node SoC Verification Requirements

Another way to apply formal techniques to reduce the project cycle is to identify design code that is unreachable to
adjust code coverage goals. This coverage unreachability flow provides automation to verification engineers so their
valuable time is focused on hitting coverage goals that are actually achievable. Similarly, verification engineers use
coverage ranking to identify test runs that are not adding unique coverage hits to assess if the test has a bug or is
redundant.

Hardware-based acceleration is a way for project teams that are trying to find 2–3x gains from simulation to break
through to 10–50x gains or more. For complex SoCs that include mixed-signal blocks, acceleration can still be part
of a structured approach that leverages abstract models for the analog blocks. With additional testbench tuning,
the acceleration can achieve 500–1,000x gains with no degradation associated with larger design size

Some examples of novel methodologies include low-power simulation at RTL, digital/mixed-signal modeling, and
metric-driven verification. With power being the bane of many SoC designs, more and more designs include power-
aware domains. These domains depend on physical characteristics of the chip, such as power rails and isolation
cell location, which have not been traditionally modeled in either gate or RTL abstractions. The Incisive Enterprise
Simulator, with its direct connection to Cadence Encounter® Conformal® Low Power, provides the accuracy and
native simulation performance needed to execute every regression test as a power-aware test. Another aspect of
SoC designs is that they all have analog blocks. Modeling those using transistor or traditional analog behavioral
modeling slows the execution of the SoC tests to that of the analog model. By modeling those blocks using wreals,
or the emerging SystemVerilog modeling standard, the entire SoC can execute at digital speeds while maintaining
much of the analog accuracy required for integration verification.

These methodologies enable the simulation to maintain digital speeds, but they don’t provide project-level
information on the completeness of the verification. For that, teams should turn to the project-level, executable
plans associated with the Cadence metric-driven verification (MDV) methodology and the associated Incisive
Enterprise Manager. With that pairing, project teams can increase the performance, productivity, and quality of the
overall project, which is critical for advanced node SoC complexity.

Summary

Performance for functional verification is undergoing the largest change since commercial simulators debuted a
generation ago. Designers experience this change in the doubling of their work every 24 months, as Gordon Moore
observed, but verification engineers experience exponential growth in the same time period.

In response, Cadence engineers are innovating performance improvements in the core simulator, forming close
relationships with leading electronics companies, and delivering continuous improvements that benefit the
entire use community. That helps the simulator keep pace with advanced node SoC performance needs, but the
scale of the integration for these SoCs demands further innovation. As such, Cadence also provides structured
approaches to verification—including new technologies and methodologies—that address bottlenecks unique to
SoC verification, go beyond RTL simulation, and include virtual prototyping, high-level synthesis, mixed-language
behavioral and timed simulation, hardware acceleration, emulation, and rapid prototyping solutions. Delivered by
a worldwide expert field team, Cadence is scaling verification performance to meet your projects needs for today
and tomorrow.

Cadence is transforming the global electronics industry through a vision called EDA360.
With an application-driven approach to design, our software, hardware, IP, and services help
customers realize silicon, SoCs, and complete systems efficiently and profitably. www.cadence.com

© 2012 Cadence Design Systems, Inc. All rights reserved. Cadence, the Cadence logo, Conformal, Encounter, and Incisive are registered trademarks
of Cadence Design Systems, Inc. All others are properties of their respective holders. 22551 01/12 MK/DM/PDF

Hardware Simulator Performance Scaling to Meet Advanced Node SoC Verification Requirements

