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introduction

good RTl design is about more than just implementing an algorithm in hardware. it involves 
design space exploration and analysis to determine the optimum micro-architecture for the target 
application, while maximizing the design’s reusability in other applications and portability to other 
manufacturing processes. all this must also be done in a way that takes into account the practical 
realities of implementation, such as timing closure and late-stage engineering change orders. 
additionally, since the RTl is often required for software development and hardware/software  
(hW/SW) co-verification, dimensional analyses must be executed as early as possible in the 
design process.

RTl developers have always found these design tasks challenging, and high-level synthesis (hlS) 
has long attempted to automate the process. But the hard reality is that hlS tools have been 
unable to deliver the quality of results (QoR) and expected net productivity gains to justify broad 
adoption. consequently, RTl developers work much the same way today as they did in the early 
1990s—except for the fact that today’s ic designs are 50 to 100x larger and more complex. 

now, cadence® c-to-Silicon compiler—the next-generation of hlS technology—eliminates 
historical barriers to hlS adoption by delivering the quality of results and net productivity gains 
that engineers need. it produces RTl with better quality than average human-generated design, 
while increasing engineering productivity up to 10x.

Historical Barriers to Hls adoption

engineers evaluating current generation hlS tools have reported the following limitations:

1. Unsatisfactory QoR for designs with mixed datapath and control logic

 hlS tools have not been able to deliver consistent and reliable RTl QoR across a broad set of 
design styles—especially mixed control/datapath designs—because they lack full integration with 
the implementation flow. Until now, current-generation hlS tools have at best had only a loose 
coupling to logic synthesis via Tcl scripts. This lack of integration prevents the hlS tool from 
obtaining the continuous, detailed area, timing and power feedback required to achieve high 
QoR. analogous to the link between logic synthesis tools and physical design tools, hlS tools 
must deploy embedded logic synthesis in an integrated design process to achieve good results.

2. inability to perform incremental eco synthesis

 Regardless of whether a change is large or small, current-generation hlS tools will generally 
require re-synthesis of the entire algorithm(s). consequently, even small changes in the algorithm 
often result in the generation of totally different RTl, so that the designer must then repeat 
 verification and logic synthesis of the entire design with each iteration. The additional re-synthesis 
and re-verification effort nullifies any productivity gains and frequently causes designers to switch 
their “golden” source from high-level of abstraction to RTl. a better solution would be for the 
hlS tools to generate new RTl for only those portions of the algorithm that have been changed, 
and leave the rest of the design untouched.

3. designs are difficult to retarget and reuse

 Using current-generation hlS tools, design reuse can be just as tedious and time-consuming  
as with manually developed RTl because the input from those tools typically fails to separate 
functionality from implementation constraints. The algorithm input description is usually 
 modified with pragmas and logic synthesis directives—implementation-specific information  
that is generally not reusable with a different process node or other applications. Reuse 
and retargeting thus require extensive rework of the design to modify existing pragmas and 
 directives, or add new ones. This drawback, combined with poor flexibility and controllability 
resulting from lack of incremental synthesis capability, leads users to conclude that it is ultimately 
easier and more productive to write RTl manually.
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4. limited verification support

 The current-generation hlS tools generally lack the support required to perform fast and  reliable 
verification of the synthesizable RTl output. much of the iP generated today includes both 
 hardware and software, and in many situations (such as with drivers, firmware or diagnostics) 
the software performance is heavily dependent on the timing of the hardware. While Sequential 
logic equivalency checkers (such as calypto’s) can help with static verification, they cannot 
dynamically check the hardware working properly with the software. Unless the user ports the 
synthesizable RTl output into emulation or fPga prototyping, the verification of the iP with the 
rest of the system and software require unacceptably long RTl simulations. To get around this 
limitation, the user is often forced to manually create a Systemc model of the iP with  timing. 
This generally works, but exposes the user to the risk of manual translation errors and  creates 
additional design and verification burdens (along with a need to maintain two different “golden” 
sources), all of which diminishes the productivity gains from high-level synthesis.  

WHicH input language? c, c++, or systemc?

in addition to the issues outlined above, deficiencies in the input language have historically limited 
the type and size of designs that the hlS tool can synthesize. for example, some current-generation 
hlS tools use the c language. Because c is sequential, untimed, non-hierarchical, and non-object-
oriented, it cannot effectively represent the parallelism, hierarchy and internal interdependencies of 
many algorithms. often, the only way that a c-based hlS tool can identify and extract parallelism 
from an algorithm is to constrain the language constructs used—such as eliminating pointers—in 
order to make the parallelism more visible. Such tools are generally restricted to synthesis of datapath 
designs because synthesis of control algorithms requires hierarchy and interdependency information 
that c lacks. Without hierarchy, such tools cannot easily handle large designs. in summary, as an hlS 
input language, c is a poor choice because of its inability to adequately capture hierarchy, hardware 
behavior, structure and timing (BST), all of which are critical to high-level synthesis.

c++-based hlS tools have been marginally more successful because the object-oriented nature of 
the c++ language at least enables capture of the design description in a modular and hierarchical 
manner. however, c++ still lacks the necessary semantics to represent hardware attributes such as 
timing, bit-accuracy, asynchronicity, and/or concurrency.

Systemc, which is a superset of c/c++, is the ideal system-level specification language for hlS. 
Systemc was developed as a simple, ieee standard c++ class library that retains features of c++ 
while adding the ability to represent timing, bit-widths, concurrency, etc. for use in both synthesis 
and verification. Systemc eliminates the aforementioned limitations of c/c++, making it possible to 
synthesize and verify designs of any size having both datapath and control functionality. for these 
reasons, more recent hlS tools have been built around or retrofitted to work with Systemc. The 
combination of the new Systemc Tlm 2.0 and future standardization of a synthesizable Systemc 
subset will further improve the capabilities of hlS tools to handle complex designs.

There is, however, an important caveat. it is still necessary for Systemc-based hlS tools to support 
many of the rich semantics of c/c++, and support features such as automatic transformation of 
pointer-based algorithm descriptions into hardware. Without such capabilities, any Systemc-based 
hlS tool will be severely limited, and will all too often require designers to extensively recode their 
c/c++ algorithms.

Taken together, all these barriers have restricted the use of current-generation hlS tools to niche 
applications and prevented them from achieving widespread adoption.
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WHat does c-to-silicon compiler deliver?

cadence c-to-Silicon compiler is the next-generation hlS technology that eliminates all of these 
adoption barriers. c-to-Silicon compiler fully supports algorithmic models written in c, c++ and 
Systemc, and also serves as the front-end of an integrated algorithm-to-layout design and 
 verification flow. it produces RTl with better quality than average human-generated RTl code, 
while increasing designer productivity up to 10x. c-to-Silicon compiler achieves these results 
by leveraging four unique features and capabilities

•	 Embedded Logic Synthesis (ELS) analyzes and synthesizes both control logic and datapath 
logic in a unified development environment, delivering better QoR than with manual methods. 

•	 A	unique	Behavior-Structure-Timing (BST) database enables incremental synthesis for 
faster turnaround time to verification and implementation, “what if” scenarios, and a tight link 
between RTl and the original source file (patent pending).

•	 Constraint-Functionality Separation (CFS) technology strictly separates algorithm functionality 
from implementation detail, facilitating reuse across multiple applications and process technologies 
(patent pending).

•	 Automatic generation of cycle-accurate, fast hardware models (FHM) capture timing and 
functionality equivalent to the generated RTl, and execute at 80 to 90 percent of the speed of 
an untimed, programmer’s view model (patent pending). fhms thus provide an alternative for 
accelerating verification and enabling fast and accurate hardware/software co-development

Table 1 compares the features and benefits of c-to-Silicon compiler with those of current-generation 
hlS tools:

Features Benefits c-to-silicon current 
  compiler generation Hls

embedded logic  delivers accurate timing estimation, enabling  yes no 
Synthesis (elS) better-than-manual QoR  

Behavior-Structure-Timing enables “true” incremental synthesis, minimizing  yes no 
(BST) database  design and verification cycle-time for design changes  

constraint-functionality  maintains independence between functionality  yes no 
Separation (fcS) and constraints, facilitating reuse across multiple    
 applications and process technologies

fast hardware model (fhm) RTl-equivalence (at i/os) with 80% to 90% of  yes no 
 untimed Pv-model speeds, enabling earlier,    
 faster verification and hW/SW co-development

Table 1: Cadence C-to-Silicon Compiler eliminates the barriers to HLS adoption

Realizing c-to-Silicon compiler’s unique capabilities required several years of development by 
researchers at cadence Berkeley labs, as well as major product development investments by 
cadence and other development partners.

HoW does c-to-silicon compiler deliver tHese 
Features and capaBilities?

How C-to-Silicon Compiler Delivers

1. high QoR using embedded logic Synthesis (elS)

 elS is one of the most important keys to better-than-manual QoR and high productivity delivered 
by cadence c-to-Silicon compiler. in fact, c-to-Silicon compiler is the only hlS tool available today 
with this capability, which uses an “under the hood” cadence RTl compiler logic synthesizer 
to guide and refine the hlS process and to ensure the generated RTl will synthesize exactly as 
predicted (see figure 1).
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Figure 1: C-to-Silicon Compiler uses continuous feedback from Embedded Logic Synthesis to achieve optimum QoR

 With its ability to obtain highly accurate timing estimates, c-to-Silicon compiler overcomes one of 
the foremost challenges historically faced by hlS tools—optimal scheduling of hardware resources. 
With elS, c-to-Silicon compiler analyzes the logic in its full-context, using back-annotation 
of full-context, gate-level timing estimates from cadence encounter® RTl compiler global 
 synthesis. This accurate timing estimation contrasts with the estimation accuracy of the best 
current-generation hlS tools, which use  pre-characterized technology libraries to make nominal 
gate delay estimates. These nominal estimates differ substantially from real timing because they 
do not comprehend implementation detail such as fan-in/fan-out variations and the presence or 
absence of buffers.

 c-to-Silicon compiler delivers full-context, gate-level timing and area estimation using elS, 
which are critical to the parallel optimization of control and datapath logic. Because control logic 
elements are usually more spatially distributed than datapath logic, control logic is typically more 
sensitive to variations in accuracy of timing estimates. consequently, with current-generation hlS 
tools, designers are generally forced to design and verify control and datapath logic separately, 
integrate them manually, and then reiterate the whole process if the result fails to meet the 
specification. This work requires users to repeat the verification process multiple times and forces 
manual intervention that can introduce more errors and consume additional time and resources. 
The accurate timing estimation and unique ability to jointly optimize control and datapath logic 
provided by c-to-Silicon compiler thus delivers better-than-manual results with considerably 
less effort. 

2. The Unique Behavior-Structure-Timing (BST) database enables incremental Synthesis, fast 
Turnaround Time to verification and implementation, “what if” Scenarios, and a Tight link 
Between RTl and the original Source file.

 By providing the ability to perform true incremental synthesis, c-to-Silicon compiler eliminates 
the need to repeat the design/verification cycle every time a small design change is made. The 
BST database serves to map the relationships between the behavioral elements of the input 
 algorithm to the structural elements implementing the algorithm. it also tracks all the various 
timing relationships, where different parts of the algorithm are mapped to execute across the 
 different structural elements during different clock-cycles. The BST database thus enables the 
visibility and controllability to adequately track, map and analyze data transformations from 
Systemc source-files all the way through the hlS, logic synthesis, and physical design phases.  
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 in practice, incremental synthesis using c-to-Silicon compiler works as follows:

 When formally releasing a design crafted with the c-to-Silicon compiler to the implementation 
team, the designer saves the final BST database that stores these key relationships of the design. 
if during the implementation process the need arises to change some part of the RTl (perhaps a 
bug in the specification is discovered; or marketing wants one more feature; or floorplanning 
needs the timing of a few signals adjusted to accommodate a different layout), then the 
designer runs c-to-Silicon compiler using the final BST that was saved as input. The c-to-Silicon 
gUi makes it simple for the designer to identify what parts of the c code were implemented 
by the particular RTl (and therefore which of those must be changed). To effect the design 
changes, the user modifies the input Systemc code (or perhaps just changes the constraints on 
how that code is implemented), and runs c-to-Silicon compiler on the modified input design 
and/or constraints in eco mode. c-to-Silicon compiler then implements everything—wherever 
possible—the exact same way it did previously, producing different RTl/logic only where absolutely 
required. c-to-Silicon compiler also produces a report clearly identifying all the new RTl/logic 
that was inserted so that the verification and implementation teams know what parts may need 
retesting and re-layout. once the team is satisfied with the modified RTl, the designer will save 
the updated BST to use as a new baseline should other design changes arise later.

Figure 2. The C-to-Silicon Compiler BST database enables incremental synthesis

•	Fast turnaround time to design and verification

 The combination of c-to-Silicon compiler and cadence conformal® eco designer provides a 
full and fast incremental synthesis flow from c/c++/Systemc to implementation (silicon layout). 

 The combination of c-to-Silicon compiler incremental synthesis and the fast compile times 
 provided by cadence incisive® Palladium® accelerator/emulator delivers a short turnaround 
time from c/c++/Systemc to full system verification (using emulation).

•	“What-if” analysis

 The BST database records every decision being made by the c-to-Silicon compiler tool, every 
step of the design transformation, and every user intervention. Therefore, the user can leverage 
this capability to “undo” the latest decision being done by the tool at any point, and provide 
different constraints/guidelines to influence the implementation depending on the specific 
 application. This flexibility allows the user to perform “what-if” analysis and architecture 
 trade-offs early in the design process with the ability to change and see the results immediately. 
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void
MPEG4 sync_signal()
{
  if (rst) {
    out.write(0):
  } else {
    inf tmp = in1
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  }
}

void
MPEG4 sync_signal()
{
  if (rst) {
    out.write(0):
  } else {
    inf tmp = in1
    out.write (in3 ?)
  }
}

void
MPEG4 sync_signal()
{
  if (rst) {
    out.write(0):
  } else {
    inf tmp = in1
    out.write (in3 ?)
  }
}

void
MPEG4 sync_signal()
{
  if (rst) {
    out.write(0):
  } else {
    inf tmp = in1
    out.write (in3 ?)
  }
}

Other High-Level Synthesis 
approaches
• Require the designer to recompile,
   re-run the disign and verification
   flow on the entire design whenever
   any changes are made
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•	 Tight link between RTL and the original source

 The BST database enables transparent interactions between the RTl designer and the system 
engineer. any critical path found in the RTl source can be linked into the equivalent path at 
the high-level of abstraction code. This capability encourages communication with the system 
designer and increases the probability of keeping the c/c++/Systemc code as the “golden” 
source during the final static timing analysis phase.

3. design Reuse and Retargeting Using constraint-functionality Separation (cfS)

 The cfS technology in c-to-Silicon compiler strictly separates design functionality (“the what”) 
from the implementation/constraints (“the how”). functional behavior is expressed as a c/c++ 
or Systemc model, while all information guiding/affecting implementation, structure, and timing 
for high-level synthesis is specified in one separate constraint-file. The cfS technology system 
supports a methodology in which users keep their source code as a pure algorithmic description 
of the function, and avoid corrupting that source code with any implementation or constraint-
related information.

 The separate constraints file is a particular convenience with interrelated and interdependent 
parameters and constraints, where changes to some values require changes to others. With 
the Systemc functional model and the separate constraints file, users can quickly perform an 
extensive design space exploration to determine the optimum micro-architecture to implement 
the function for different applications, without having to maintain different copies of the algorithm 
source code for each case. for example, by changing just the constraints file, the same mPeg-4 
video decoding algorithm can not only be retargeted at different manufacturing processes but  
can also be easily retargeted to wholly different target applications, such as a mobile phone, a  
laptop, or a big-screen Tv, each with very different area and performance constraints (see figure 3). 
additionally, if a bug is discovered in the algorithm (or any other change is required, such as 
upgrading to a new mPeg format), the change can be effected to the algorithm description 
only once, and then the same constraint files as before can be used as-is to quickly generate 
new chips for the different applications and technology nodes

Figure 3: C-to-Silicon Compiler retargets the design using only the separate constraints file

4. verification, hW/SW co-development and the fast hardware model (fhm)

 c-to-Silicon compiler automatically generates a cycle-accurate Systemc fhm of the RTl 
 functionality (see figure 4). The fhm executes at 80 to 90% of untimed programmer’s view (Pv) 
model speeds, enabling early, fast and accurate verification and hardware/software co-development.

C-to-Silicon
Compiler

90nm, 65nm, 45nm, ...

Design
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Directive Files
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High-res, high-power
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void
MPEG4 sync_signal()
{
  if (rst) {
    out.write(0):
  } else {
    inf tmp = in1 & in2
    out.write (in3 ? tmp :-tmp)
  }
}

# Cell phone
define clk_p 27
set precision 8
set r_bits 3
set g_bits 3
set b_bits 2

# Laptop
define clk_p 800
set precision 32
set r_bits 11
set g_bits 11
set b_bits 10

# Theatre
define clk_p 3200
set precision 96
set r_bits 32
set g_bits 32
set b_bits 32



www.cadence.com8

Figure 4: Fast Hardware Model simulates at near untimed programmer’s view model speeds

 This capability is made possible by the fact that c-to-Silicon compiler generates both the system-
level fhm and RTl from the same BST database, ensuring they are both precise images of the 
same design, with the same functionality and timing of their input/output behaviors. The fhm 
is instrumented with extensions available in the cadence incisive® verification environment to 
 provide extra visibility of variables and signals, enabling analysis and debugging. in this way, using 
the fhm generated by c-to-Silicon compiler enables the designer to leverage the entire cadence 
incisive Systemc-to-RTl verification infrastructure.

putting it all togetHer: c-to-silicon WitHin tHe 
complete design environment

Unlike other hlS technologies, which were developed as point tools, cadence c-to-Silicon compiler 
was developed from the outset to integrate with cadence design and verification tools and flows 
(see figure 5). Because c-to-Silicon compiler uses precise feedback from encounter RTl compiler 
global synthesis, the generated RTl is guaranteed to synthesize gates exactly as predicted when later 
fed into RTl compiler. c-to-Silicon compiler also was built using the incisive functional  verification 
platform as its regression system, which was instrumental in enabling cadence to bring this product 
to market quickly and with high quality. The c-to-Silicon compiler flow using the cadence Palladium 
and cadence Xtreme® hardware emulation/acceleration product line was  extensively used internally 
and externally as well. 

Figure 5: C-to-Silicon Compiler leverages comprehensive flows and infrastructure
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c-to-Silicon compiler fully supports both testbench-based and formal-based functional verification 
methodologies to ensure that the generated RTl and fhm are truly functionally equivalent to the 
system-level input model.

in the testbench-based method, c-to-Silicon compiler automatically generates Systemc wrappers 
for the RTl, enabling rapid integration into a system-level verification environment for side-by-side 
simulation with the Systemc functional description. The Systemc wrapper provides the RTl with 
the same external interfaces as the Systemc model, so the designer can connect both of those to 
the same system-level testbench. internally, the wrapper instantiates the synthesized RTl, connects 
to the RTl’s inputs and outputs, and converts between RTl and Systemc data types. The wrapper 
is optimized to work with the cadence incisive Simulation, but can be modified for use with 
other simulators.  

in the formal-based method, c-to-Silicon compiler automatically generates scripts for sequential 
logic equivalence checking (Slec). Slec verifies that the fhm and RTl are functionally equivalent 
by mathematically analyzing if—when starting from their reset states—both the Systemc model 
and RTl would always produce equivalent output sequences in response to the same input 
sequences. Slec can verify both cycle-by-cycle equivalence and transaction-level equivalence.

summary

By eliminating each of the previous barriers to hlS adoption, cadence c-to-Silicon compiler finally 
delivers on the promise of high level Synthesis—which numerous hlS tools and  technologies over 
the past two decades have failed to fulfill. With its unique embedded logic Synthesis, Behavior-
Structure-Timing database, constraint-functionality Separation, and fast hardware model generation 
capability, cadence c-to-Silicon compiler delivers better-than-manual QoR, order-of-magnitude 
increases in designer productivity, easy iP reuse and retargeting across applications and manufacturing 
processes, and faster verification and earlier hardware/software co-development—all while integrating 
smoothly with the rest of the existing integrated circuit verification and implementation flow. in this 
way, c-to-Silicon compiler does all of the things that hlS was meant to do.

          'clean c' targets standard for multicore programming by Richard goering, www.Scdsource.com



© 2008 cadence design systems, inc. all rights reserved. cadence, encounter, incisive, conformal, palladium, and Xtreme are registered trademarks and the 
cadence logo is a trademark of cadence design systems, inc. all others are properties of their respective holders.

20553    07/08    mK/Fld/cs/pdF

For more information about  
this and other products contact:

info@cadence.com

or log on to: 

www.cadence.com


