
T
e

c
h

n
ic

a
l Pa

P
e

R

cadence c-To-Silicon comPileR
deliveRS on The PRomiSe of
high-level SynTheSiS

www.cadence.com2

introduction

good RTl design is about more than just implementing an algorithm in hardware. it involves
design space exploration and analysis to determine the optimum micro-architecture for the target
application, while maximizing the design’s reusability in other applications and portability to other
manufacturing processes. all this must also be done in a way that takes into account the practical
realities of implementation, such as timing closure and late-stage engineering change orders.
additionally, since the RTl is often required for software development and hardware/software
(hW/SW) co-verification, dimensional analyses must be executed as early as possible in the
design process.

RTl developers have always found these design tasks challenging, and high-level synthesis (hlS)
has long attempted to automate the process. But the hard reality is that hlS tools have been
unable to deliver the quality of results (QoR) and expected net productivity gains to justify broad
adoption. consequently, RTl developers work much the same way today as they did in the early
1990s—except for the fact that today’s ic designs are 50 to 100x larger and more complex.

now, cadence® c-to-Silicon compiler—the next-generation of hlS technology—eliminates
historical barriers to hlS adoption by delivering the quality of results and net productivity gains
that engineers need. it produces RTl with better quality than average human-generated design,
while increasing engineering productivity up to 10x.

Historical Barriers to Hls adoption

engineers evaluating current generation hlS tools have reported the following limitations:

1. Unsatisfactory QoR for designs with mixed datapath and control logic

 hlS tools have not been able to deliver consistent and reliable RTl QoR across a broad set of
design styles—especially mixed control/datapath designs—because they lack full integration with
the implementation flow. Until now, current-generation hlS tools have at best had only a loose
coupling to logic synthesis via Tcl scripts. This lack of integration prevents the hlS tool from
obtaining the continuous, detailed area, timing and power feedback required to achieve high
QoR. analogous to the link between logic synthesis tools and physical design tools, hlS tools
must deploy embedded logic synthesis in an integrated design process to achieve good results.

2. inability to perform incremental eco synthesis

 Regardless of whether a change is large or small, current-generation hlS tools will generally
require re-synthesis of the entire algorithm(s). consequently, even small changes in the algorithm
often result in the generation of totally different RTl, so that the designer must then repeat
 verification and logic synthesis of the entire design with each iteration. The additional re-synthesis
and re-verification effort nullifies any productivity gains and frequently causes designers to switch
their “golden” source from high-level of abstraction to RTl. a better solution would be for the
hlS tools to generate new RTl for only those portions of the algorithm that have been changed,
and leave the rest of the design untouched.

3. designs are difficult to retarget and reuse

 Using current-generation hlS tools, design reuse can be just as tedious and time-consuming
as with manually developed RTl because the input from those tools typically fails to separate
functionality from implementation constraints. The algorithm input description is usually
 modified with pragmas and logic synthesis directives—implementation-specific information
that is generally not reusable with a different process node or other applications. Reuse
and retargeting thus require extensive rework of the design to modify existing pragmas and
 directives, or add new ones. This drawback, combined with poor flexibility and controllability
resulting from lack of incremental synthesis capability, leads users to conclude that it is ultimately
easier and more productive to write RTl manually.

cadence c-To-Sil icon comPileR deliveRS on The PRomiSe of high-level SynTheSiS 3

4. limited verification support

 The current-generation hlS tools generally lack the support required to perform fast and reliable
verification of the synthesizable RTl output. much of the iP generated today includes both
 hardware and software, and in many situations (such as with drivers, firmware or diagnostics)
the software performance is heavily dependent on the timing of the hardware. While Sequential
logic equivalency checkers (such as calypto’s) can help with static verification, they cannot
dynamically check the hardware working properly with the software. Unless the user ports the
synthesizable RTl output into emulation or fPga prototyping, the verification of the iP with the
rest of the system and software require unacceptably long RTl simulations. To get around this
limitation, the user is often forced to manually create a Systemc model of the iP with timing.
This generally works, but exposes the user to the risk of manual translation errors and creates
additional design and verification burdens (along with a need to maintain two different “golden”
sources), all of which diminishes the productivity gains from high-level synthesis.

WHicH input language? c, c++, or systemc?

in addition to the issues outlined above, deficiencies in the input language have historically limited
the type and size of designs that the hlS tool can synthesize. for example, some current-generation
hlS tools use the c language. Because c is sequential, untimed, non-hierarchical, and non-object-
oriented, it cannot effectively represent the parallelism, hierarchy and internal interdependencies of
many algorithms. often, the only way that a c-based hlS tool can identify and extract parallelism
from an algorithm is to constrain the language constructs used—such as eliminating pointers—in
order to make the parallelism more visible. Such tools are generally restricted to synthesis of datapath
designs because synthesis of control algorithms requires hierarchy and interdependency information
that c lacks. Without hierarchy, such tools cannot easily handle large designs. in summary, as an hlS
input language, c is a poor choice because of its inability to adequately capture hierarchy, hardware
behavior, structure and timing (BST), all of which are critical to high-level synthesis.

c++-based hlS tools have been marginally more successful because the object-oriented nature of
the c++ language at least enables capture of the design description in a modular and hierarchical
manner. however, c++ still lacks the necessary semantics to represent hardware attributes such as
timing, bit-accuracy, asynchronicity, and/or concurrency.

Systemc, which is a superset of c/c++, is the ideal system-level specification language for hlS.
Systemc was developed as a simple, ieee standard c++ class library that retains features of c++
while adding the ability to represent timing, bit-widths, concurrency, etc. for use in both synthesis
and verification. Systemc eliminates the aforementioned limitations of c/c++, making it possible to
synthesize and verify designs of any size having both datapath and control functionality. for these
reasons, more recent hlS tools have been built around or retrofitted to work with Systemc. The
combination of the new Systemc Tlm 2.0 and future standardization of a synthesizable Systemc
subset will further improve the capabilities of hlS tools to handle complex designs.

There is, however, an important caveat. it is still necessary for Systemc-based hlS tools to support
many of the rich semantics of c/c++, and support features such as automatic transformation of
pointer-based algorithm descriptions into hardware. Without such capabilities, any Systemc-based
hlS tool will be severely limited, and will all too often require designers to extensively recode their
c/c++ algorithms.

Taken together, all these barriers have restricted the use of current-generation hlS tools to niche
applications and prevented them from achieving widespread adoption.

www.cadence.com4

WHat does c-to-silicon compiler deliver?

cadence c-to-Silicon compiler is the next-generation hlS technology that eliminates all of these
adoption barriers. c-to-Silicon compiler fully supports algorithmic models written in c, c++ and
Systemc, and also serves as the front-end of an integrated algorithm-to-layout design and
 verification flow. it produces RTl with better quality than average human-generated RTl code,
while increasing designer productivity up to 10x. c-to-Silicon compiler achieves these results
by leveraging four unique features and capabilities

•	 Embedded Logic Synthesis (ELS) analyzes and synthesizes both control logic and datapath
logic in a unified development environment, delivering better QoR than with manual methods.

•	 A	unique	Behavior-Structure-Timing (BST) database enables incremental synthesis for
faster turnaround time to verification and implementation, “what if” scenarios, and a tight link
between RTl and the original source file (patent pending).

•	 Constraint-Functionality Separation (CFS) technology strictly separates algorithm functionality
from implementation detail, facilitating reuse across multiple applications and process technologies
(patent pending).

•	 Automatic generation of cycle-accurate, fast hardware models (FHM) capture timing and
functionality equivalent to the generated RTl, and execute at 80 to 90 percent of the speed of
an untimed, programmer’s view model (patent pending). fhms thus provide an alternative for
accelerating verification and enabling fast and accurate hardware/software co-development

Table 1 compares the features and benefits of c-to-Silicon compiler with those of current-generation
hlS tools:

Features Benefits c-to-silicon current
 compiler generation Hls

embedded logic delivers accurate timing estimation, enabling yes no
Synthesis (elS) better-than-manual QoR

Behavior-Structure-Timing enables “true” incremental synthesis, minimizing yes no
(BST) database design and verification cycle-time for design changes

constraint-functionality maintains independence between functionality yes no
Separation (fcS) and constraints, facilitating reuse across multiple
 applications and process technologies

fast hardware model (fhm) RTl-equivalence (at i/os) with 80% to 90% of yes no
 untimed Pv-model speeds, enabling earlier,
 faster verification and hW/SW co-development

Table 1: Cadence C-to-Silicon Compiler eliminates the barriers to HLS adoption

Realizing c-to-Silicon compiler’s unique capabilities required several years of development by
researchers at cadence Berkeley labs, as well as major product development investments by
cadence and other development partners.

HoW does c-to-silicon compiler deliver tHese
Features and capaBilities?

How C-to-Silicon Compiler Delivers

1. high QoR using embedded logic Synthesis (elS)

 elS is one of the most important keys to better-than-manual QoR and high productivity delivered
by cadence c-to-Silicon compiler. in fact, c-to-Silicon compiler is the only hlS tool available today
with this capability, which uses an “under the hood” cadence RTl compiler logic synthesizer
to guide and refine the hlS process and to ensure the generated RTl will synthesize exactly as
predicted (see figure 1).

cadence c-To-Sil icon comPileR deliveRS on The PRomiSe of high-level SynTheSiS 5

Figure 1: C-to-Silicon Compiler uses continuous feedback from Embedded Logic Synthesis to achieve optimum QoR

 With its ability to obtain highly accurate timing estimates, c-to-Silicon compiler overcomes one of
the foremost challenges historically faced by hlS tools—optimal scheduling of hardware resources.
With elS, c-to-Silicon compiler analyzes the logic in its full-context, using back-annotation
of full-context, gate-level timing estimates from cadence encounter® RTl compiler global
 synthesis. This accurate timing estimation contrasts with the estimation accuracy of the best
current-generation hlS tools, which use pre-characterized technology libraries to make nominal
gate delay estimates. These nominal estimates differ substantially from real timing because they
do not comprehend implementation detail such as fan-in/fan-out variations and the presence or
absence of buffers.

 c-to-Silicon compiler delivers full-context, gate-level timing and area estimation using elS,
which are critical to the parallel optimization of control and datapath logic. Because control logic
elements are usually more spatially distributed than datapath logic, control logic is typically more
sensitive to variations in accuracy of timing estimates. consequently, with current-generation hlS
tools, designers are generally forced to design and verify control and datapath logic separately,
integrate them manually, and then reiterate the whole process if the result fails to meet the
specification. This work requires users to repeat the verification process multiple times and forces
manual intervention that can introduce more errors and consume additional time and resources.
The accurate timing estimation and unique ability to jointly optimize control and datapath logic
provided by c-to-Silicon compiler thus delivers better-than-manual results with considerably
less effort.

2. The Unique Behavior-Structure-Timing (BST) database enables incremental Synthesis, fast
Turnaround Time to verification and implementation, “what if” Scenarios, and a Tight link
Between RTl and the original Source file.

 By providing the ability to perform true incremental synthesis, c-to-Silicon compiler eliminates
the need to repeat the design/verification cycle every time a small design change is made. The
BST database serves to map the relationships between the behavioral elements of the input
 algorithm to the structural elements implementing the algorithm. it also tracks all the various
timing relationships, where different parts of the algorithm are mapped to execute across the
 different structural elements during different clock-cycles. The BST database thus enables the
visibility and controllability to adequately track, map and analyze data transformations from
Systemc source-files all the way through the hlS, logic synthesis, and physical design phases.

Full-context
gate-level timing
estimation

Other HLS approaches
• Low accuracy timing estimates
• Requires separate D&V of control
 and datapath logic, then integration

Encounter RTL
Compiler

Micro-architecture
optimizations

State Register

Next State and
output logic

• Area estimates
• Timing estimates
• Power estimates (fut.)

• Macrocell changes
• Scheduling changes
• other...

C-to-Silicon Compiler

Control Datapath

Status Signals

Reg A Reg B Reg C Reg D

Reg E

+ ==

www.cadence.com6

 in practice, incremental synthesis using c-to-Silicon compiler works as follows:

 When formally releasing a design crafted with the c-to-Silicon compiler to the implementation
team, the designer saves the final BST database that stores these key relationships of the design.
if during the implementation process the need arises to change some part of the RTl (perhaps a
bug in the specification is discovered; or marketing wants one more feature; or floorplanning
needs the timing of a few signals adjusted to accommodate a different layout), then the
designer runs c-to-Silicon compiler using the final BST that was saved as input. The c-to-Silicon
gUi makes it simple for the designer to identify what parts of the c code were implemented
by the particular RTl (and therefore which of those must be changed). To effect the design
changes, the user modifies the input Systemc code (or perhaps just changes the constraints on
how that code is implemented), and runs c-to-Silicon compiler on the modified input design
and/or constraints in eco mode. c-to-Silicon compiler then implements everything—wherever
possible—the exact same way it did previously, producing different RTl/logic only where absolutely
required. c-to-Silicon compiler also produces a report clearly identifying all the new RTl/logic
that was inserted so that the verification and implementation teams know what parts may need
retesting and re-layout. once the team is satisfied with the modified RTl, the designer will save
the updated BST to use as a new baseline should other design changes arise later.

Figure 2. The C-to-Silicon Compiler BST database enables incremental synthesis

•	Fast turnaround time to design and verification

 The combination of c-to-Silicon compiler and cadence conformal® eco designer provides a
full and fast incremental synthesis flow from c/c++/Systemc to implementation (silicon layout).

 The combination of c-to-Silicon compiler incremental synthesis and the fast compile times
 provided by cadence incisive® Palladium® accelerator/emulator delivers a short turnaround
time from c/c++/Systemc to full system verification (using emulation).

•	“What-if” analysis

 The BST database records every decision being made by the c-to-Silicon compiler tool, every
step of the design transformation, and every user intervention. Therefore, the user can leverage
this capability to “undo” the latest decision being done by the tool at any point, and provide
different constraints/guidelines to influence the implementation depending on the specific
 application. This flexibility allows the user to perform “what-if” analysis and architecture
 trade-offs early in the design process with the ability to change and see the results immediately.

Database

Alternative 1

Initial RTL

C-to-Silicon
Compiler

sig 1

i1
b1
i2

Database

Modified RTL

C-to-Silicon
Compiler

sig 1

i1

b1
b2

i0

i2

Database

Alternative N

Final RTL

Modified
Source

Modified
Constraints

Source

Constraints

C-to-Silicon
Compiler

sig 1

i1
b1
i2

+

++

C-to-Silicon
Compiler

BST Database

• Design constraints
• Design-state snapshots
• Enables “what-if” analysis
• Tool decision history

void
MPEG4 sync_signal()
{
 if (rst) {
 out.write(0):
 } else {
 inf tmp = in1
 out.write (in3 ?)
 }
}

void
MPEG4 sync_signal()
{
 if (rst) {
 out.write(0):
 } else {
 inf tmp = in1
 out.write (in3 ?)
 }
}

void
MPEG4 sync_signal()
{
 if (rst) {
 out.write(0):
 } else {
 inf tmp = in1
 out.write (in3 ?)
 }
}

void
MPEG4 sync_signal()
{
 if (rst) {
 out.write(0):
 } else {
 inf tmp = in1
 out.write (in3 ?)
 }
}

Other High-Level Synthesis
approaches
• Require the designer to recompile,
 re-run the disign and verification
 flow on the entire design whenever
 any changes are made

cadence c-To-Sil icon comPileR deliveRS on The PRomiSe of high-level SynTheSiS 7

•	 Tight link between RTL and the original source

 The BST database enables transparent interactions between the RTl designer and the system
engineer. any critical path found in the RTl source can be linked into the equivalent path at
the high-level of abstraction code. This capability encourages communication with the system
designer and increases the probability of keeping the c/c++/Systemc code as the “golden”
source during the final static timing analysis phase.

3. design Reuse and Retargeting Using constraint-functionality Separation (cfS)

 The cfS technology in c-to-Silicon compiler strictly separates design functionality (“the what”)
from the implementation/constraints (“the how”). functional behavior is expressed as a c/c++
or Systemc model, while all information guiding/affecting implementation, structure, and timing
for high-level synthesis is specified in one separate constraint-file. The cfS technology system
supports a methodology in which users keep their source code as a pure algorithmic description
of the function, and avoid corrupting that source code with any implementation or constraint-
related information.

 The separate constraints file is a particular convenience with interrelated and interdependent
parameters and constraints, where changes to some values require changes to others. With
the Systemc functional model and the separate constraints file, users can quickly perform an
extensive design space exploration to determine the optimum micro-architecture to implement
the function for different applications, without having to maintain different copies of the algorithm
source code for each case. for example, by changing just the constraints file, the same mPeg-4
video decoding algorithm can not only be retargeted at different manufacturing processes but
can also be easily retargeted to wholly different target applications, such as a mobile phone, a
laptop, or a big-screen Tv, each with very different area and performance constraints (see figure 3).
additionally, if a bug is discovered in the algorithm (or any other change is required, such as
upgrading to a new mPeg format), the change can be effected to the algorithm description
only once, and then the same constraint files as before can be used as-is to quickly generate
new chips for the different applications and technology nodes

Figure 3: C-to-Silicon Compiler retargets the design using only the separate constraints file

4. verification, hW/SW co-development and the fast hardware model (fhm)

 c-to-Silicon compiler automatically generates a cycle-accurate Systemc fhm of the RTl
 functionality (see figure 4). The fhm executes at 80 to 90% of untimed programmer’s view (Pv)
model speeds, enabling early, fast and accurate verification and hardware/software co-development.

C-to-Silicon
Compiler

90nm, 65nm, 45nm, ...

Design
(Functionality)

Directive Files
(Constraints)

24-bits color/pixel
High-res, high-power

16-bits color/pixel
Med-res, med-power

8-bits color/pixel
Low-res, low-power

void
MPEG4 sync_signal()
{
 if (rst) {
 out.write(0):
 } else {
 inf tmp = in1 & in2
 out.write (in3 ? tmp :-tmp)
 }
}

Cell phone
define clk_p 27
set precision 8
set r_bits 3
set g_bits 3
set b_bits 2

Laptop
define clk_p 800
set precision 32
set r_bits 11
set g_bits 11
set b_bits 10

Theatre
define clk_p 3200
set precision 96
set r_bits 32
set g_bits 32
set b_bits 32

www.cadence.com8

Figure 4: Fast Hardware Model simulates at near untimed programmer’s view model speeds

 This capability is made possible by the fact that c-to-Silicon compiler generates both the system-
level fhm and RTl from the same BST database, ensuring they are both precise images of the
same design, with the same functionality and timing of their input/output behaviors. The fhm
is instrumented with extensions available in the cadence incisive® verification environment to
 provide extra visibility of variables and signals, enabling analysis and debugging. in this way, using
the fhm generated by c-to-Silicon compiler enables the designer to leverage the entire cadence
incisive Systemc-to-RTl verification infrastructure.

putting it all togetHer: c-to-silicon WitHin tHe
complete design environment

Unlike other hlS technologies, which were developed as point tools, cadence c-to-Silicon compiler
was developed from the outset to integrate with cadence design and verification tools and flows
(see figure 5). Because c-to-Silicon compiler uses precise feedback from encounter RTl compiler
global synthesis, the generated RTl is guaranteed to synthesize gates exactly as predicted when later
fed into RTl compiler. c-to-Silicon compiler also was built using the incisive functional verification
platform as its regression system, which was instrumental in enabling cadence to bring this product
to market quickly and with high quality. The c-to-Silicon compiler flow using the cadence Palladium
and cadence Xtreme® hardware emulation/acceleration product line was extensively used internally
and externally as well.

Figure 5: C-to-Silicon Compiler leverages comprehensive flows and infrastructure

Speed = Normal RTL

RTL

C-to-Silicon
Compiler

Logic

Speed = 80-90% PV-Model

FHM

Y = F(...)

Other High-Level Synthesis
approaches
• RTL only, limits verification speed

• If FHM, then lack cycle-accuracy

• Cannot support hardware/software
 development

FHM RTL SystemC
Wrapper

Technology
Library

Design
Constraints

System-Level Model
C/C++, SystemC

C-to-Silicon Compiler

Embedded Encounter RTL Compiler

RTL

Side-by-Side Verification

SystemC
Wrapper

Input
Model

Testbench

RTL

Encounter
Digital
Implementation

Incisive
Verification

Early Software
Development

Scripts

SLEC

cadence c-To-Sil icon comPileR deliveRS on The PRomiSe of high-level SynTheSiS 9

c-to-Silicon compiler fully supports both testbench-based and formal-based functional verification
methodologies to ensure that the generated RTl and fhm are truly functionally equivalent to the
system-level input model.

in the testbench-based method, c-to-Silicon compiler automatically generates Systemc wrappers
for the RTl, enabling rapid integration into a system-level verification environment for side-by-side
simulation with the Systemc functional description. The Systemc wrapper provides the RTl with
the same external interfaces as the Systemc model, so the designer can connect both of those to
the same system-level testbench. internally, the wrapper instantiates the synthesized RTl, connects
to the RTl’s inputs and outputs, and converts between RTl and Systemc data types. The wrapper
is optimized to work with the cadence incisive Simulation, but can be modified for use with
other simulators.

in the formal-based method, c-to-Silicon compiler automatically generates scripts for sequential
logic equivalence checking (Slec). Slec verifies that the fhm and RTl are functionally equivalent
by mathematically analyzing if—when starting from their reset states—both the Systemc model
and RTl would always produce equivalent output sequences in response to the same input
sequences. Slec can verify both cycle-by-cycle equivalence and transaction-level equivalence.

summary

By eliminating each of the previous barriers to hlS adoption, cadence c-to-Silicon compiler finally
delivers on the promise of high level Synthesis—which numerous hlS tools and technologies over
the past two decades have failed to fulfill. With its unique embedded logic Synthesis, Behavior-
Structure-Timing database, constraint-functionality Separation, and fast hardware model generation
capability, cadence c-to-Silicon compiler delivers better-than-manual QoR, order-of-magnitude
increases in designer productivity, easy iP reuse and retargeting across applications and manufacturing
processes, and faster verification and earlier hardware/software co-development—all while integrating
smoothly with the rest of the existing integrated circuit verification and implementation flow. in this
way, c-to-Silicon compiler does all of the things that hlS was meant to do.

 'clean c' targets standard for multicore programming by Richard goering, www.Scdsource.com

© 2008 cadence design systems, inc. all rights reserved. cadence, encounter, incisive, conformal, palladium, and Xtreme are registered trademarks and the
cadence logo is a trademark of cadence design systems, inc. all others are properties of their respective holders.

20553 07/08 mK/Fld/cs/pdF

For more information about
this and other products contact:

info@cadence.com

or log on to:

www.cadence.com

