DesignCon 2006

Leveraging Assertions In
SystemVerilog Testbench to get
to Closure

Leena Singh, Cadence Design Systems, Inc.

Tim Pylant, Cadence Design Systems, Inc.

Abstract

This paper discusses some best practices in funadticerification by making use of
SystemVerilog for testbench, assertions for statiacdlynamic checking and functional
coverage. It also discusses how to construct éiffercomponents of verification
environment (for example BFMs, monitors, stimuleneration etc.) for ease of reuse in
multiple projects and platforms. It illustratesatigh a complete verification example -
how designers can compose their block level enuaneat with assertions, coverage and a
testbench that finds more bugs and is also reusable

Author(s) Biography

Leena Singh is a Senior Member of Consulting Staff in the Verification Division Methodology
group of Cadence Design Systems, Inc and is author of following books on Verification:
System-on-a-Chip Verification - Methodology and Techniques, Kluwer Academic Publishers
(KAP), 1999.

Advanced Verification Techniques: A SystemC Based Approach for Successful Tapeout, Kluwer
Academic Publishers (KAP), 2004.

1. Overview

This paper focuses on techniques for performingctfanal verification using
SystemVerilog. It covers the essential testbenaleldpment topics and guidelines for
developing BFMs, monitors, protocol checkers (Sydterilog Assertions), interfaces
and overall verification environment architectuliealso discusses how designers can
make use of assertions for static and dynamic éhgcl he scope of the paper is the
verification of block level or chip level verifigan. It does not address the advanced
verification that requires the design teams torldae entire systemVerilog language or
advanced programming language techniques.

The paper illustrates through a complete veriforatexample - how designers can
compose their block level environment with assesdjacoverage and a testbench which
finds more bugs and is also reusable. It shows toogonstruct different components of
verification environment (for example BFMs, mongpstimulus generation etc.) for ease
of reuse in multiple projects and platforms. Thamtapics covered in the paper are

* Overview

» Using Assertions for Checking

* Writing Bus Functional Models

» Bus Monitors

» Protocol Checkers using SVA

* Top Level Connectivity

* Generating Test Stimulus

1.1. Example Used

The example used in this paper is to build a \e&ifon environment for a bus based
protocol named XBus. XBus is designed to demotesialh the important features of a
typical modern bus standard while keeping the cewipyl to a minimum. The detailed

spec for XBus protocol is out of scope for this graprhe bus protocol is deliberately
simple so that attention is focused on the vetiicarather than the difficulties in coding

the complex BFMs, and so on. The protocol has mgsttaves, and an arbiter. The
XBus is a simple non-multiplexed, synchronous bith wo pipelining (to ensure simple

bus functional models). The address bus is 16wide and the data bus is byte-wide (to
avoid alignment issues). Simple burst transfersafiosved and slaves are able to throttle
data rates by inserting wait states. The bus care lany number of masters and
slaves(the number of masters is only limited bydHstration implementation). Masters

and slaves are collectively known as ‘bus agents’.

The transfer of data is split into three phasesitfation Phase, Address Phase and Data
Phase. Because no pipelining is allowed, theseeshaeppen sequentially for each burst
of data. The Arbitration and Address Phase, eddh @aactly one clock cycle. The Data
Phase may take one or more clock cycles.

The example of overall architecture for verificatienvironment is shown in following
figure.

xbus_tb_top

v)
MASTER SLAVE ARBITER
Protocol . BFM BFM BFM
Monitor
Checker

LAO XBus

In the following sections we will use above examigdearn how to create a complete
verification testbench in systemVerilog and how define assertions for static and
dynamic checking. Following testbench componentisbsicovered:

* Master BFM: The master BFM in above diagram is usedrive transfers over
the bus to the DUT slave. It is capable of genegadill types of XBus transfers.
The verification environment should be configurabde emulate an unlimited
number of XBus masters.

» Slave BFM: The XBus slave BFM responds to the itafh the bus. Verification
environments should be configured to have any nurobslaves which can be
active or passive. An active slave is used to etaulae behavior of an XBus
slave device. A passive slave is used to moniterbghavior of an XBus slave
device that is part of the DUT.

* Arbiter: The arbiter emulates behavior of the XBuiiter device.

* Bus Monitor: The Bus monitor is responsible for morng all the bus traffic. It
collects each transfer that is executed over thesxnd also collects coverage
information on the bus traffic.

* Protocol Checker: This checks for adherence tdotiseprotocol. SystemVerilog
assertions are written to check for correct behavim assertion is fired if any
protocol violation is detected.

» Test scenarios: Tests are written to drive stimtduthe DUT. Examples of test
scenarios that are concise and that can specifyplesnset of constraints for
generation will be provided.

Relevant excerpt of the code for all the above comepts will be shared in the paper.
Following sections will go in detail of each of ttestbench components and how they
can be developed for reusability.

2. Using Assertions for Checking
Assertions are basically active verification eletsehat
» Watch for forbidden behavior within a design blaskon its interfaces
* Track expected behavior documented in the assertion
* Are statements that specify required behavior.
* Allow the designer to capture the design intent asgslimptions in a manner that
can be verified.
* Provide benefits relative to bug detection, impngvireuse, and capturing
coverage information.
 Can be used to create transactions that aid inrnabgehow the testbench is
stimulating the design.

Assertion based verification (ABV) can be used witlltiple tools such as formal
analysis tools, simulators and accelerators.

* Formal tools attempt to prove that a given desiginaves as required when used
correctly. Assertions specify the required behavisumptions specify how the
design must be used. A formal analysis tool doeésequire any input stimulus,
but does require that the behavior of the inputsgeeified to avoid false failures.

* Simulators, including emulators and simulation #regors, stimulate design
inputs and observe the resulting behavior. Thegntegrrors when an asserted or
assumed behavior is violated, and provide couritergover points. ABV in a
simulator is also known as dynamic ABV. ABV in amuator or simulation
accelerator is referred to as Assertion-Based A&cagbn (ABA).

ABV provides a comprehensive verification approaehngeting common assertions with
complementary technologies. It is recommended designers write assertions while
writing RTL. Formal analysis can then be used #otsterification before the testbench is
ready at the designers’ desktop. The same assert®n then be used with simulation
and acceleration at cluster and full-chip level.

To add the assertions, once you have identified bigleavior you are interested in
verifying, capture the behavior in simple Englislext, determine the type of assertion in
context of the module to be either assert or assume. When you begin adding
assertions, you might benefit by starting with asse libraries. These will enable you to
get more comfortable with assertion usage. Thencgumigrate to writing your own
SystemVerilog Assertions (SVA) once you start wgtimore assertions that are at higher
levels of abstraction, where languages are moraesit than simple library cells.

The assertions can be either embedded in the RTe put in an external file.
Depending on the number and nature of the assertiomay be desirable to write the

assertions so they can be optionally included eeitha ifdef statements or by placing
them in an external file.

Verification engineers should always place assestiln an external file or in the
testbench to avoid file conflicts with the design&lso you must remember, assertions
associated with design modules get elaborated @rceach instance of the module,
whereas assertions associated with the testbemchitfothe top module of the design)
get elaborated only once.

2.1. Writing Assertions

For performance reasons, you may want to turn tirafty one category of assertions at
different stages of the development process. Famgle, there may be little value in
looking at functional coverage until the major bage worked out. Typically the initial
focus is on bug catching, and later, coverage. sketion viewing only is needed when
waveform analysis is planned. For mature designsay be desirable to focus only on
interface assertions that ensure that the devibeirgy driven correctly. Here are some of
examples of assertions embedded in the RTL foDtheé.

/lread must have zero wait response

assert_read_zero_wait : assert property (@ (posedge xbus_clock) (xbus_start_c
==1'b1) && (xbus_selected == 1'b1) && (xbus_read = =1'b1) |[=>(xbus_wait
== 1'b0));

* The nameassert_read_zero_waitbefore the colon “” specifies the name of the
assertion.

* The clock to be used for evaluation of the asseiticspecified using® (posedge
xbus_clock).

» A property just defines a behavior pattern; it & nntil a property is asserted
using kewordassertthat an obligation is imposed on the design to belss the
property specifies.

» The keywordproperty specifies that the statement that follows is tineck to be
performed

* The output of the SVA assertion is a failure messég associated waveform and
coverage information.

Other examples of embedded assertions are as ®llow

/IThe xbus_addr[15:8] must match base_addr [15:8]

assert_xbus_selected : assert property (@ (posedg e xbus_clock)
(xbus_addr[15:8] == base_addr[15:8]) |-> (xbus_sele cted == 1'b1));
/I sv assertions to check decoding of registers
assert_xbus_reg0_select : assert property (@(pos edge xbus_clock)
(xbus_addr[7:0] == 8'b00000000) |-> (xbus_reg0 == 'bl));
assert_xbus_regl_select : assert property (@(pos edge xbus_clock)
(xbus_addr[7:0] == 8'b00000001) |-> (xbus_regl == 'bl));
assert_xbus_reg2_select : assert property (@(pos edge xbus_clock)
(xbus_addr[7:0] == 8'b00000010) |-> (xbus_reg2 == 'bl));
assert_xbus_reg3_select : assert property (@(pos edge xbus_clock)

(xbus_addr[7:0] == 8'b00000011) |-> (xbus_reg3 == 'bl));

Note that above specified assertions run with béihmal analysis(static) and
simulation(dynamic) tools.

The example of external assertions is in the patolsecker topic.

3. Writing Bus Functional Models

Bus Functional Model(BFM) for a device interactdhwihe DUT by both driving and
sampling the DUT signals. One of the BFM’s requieaihs for reusability is the ability to
connect and interface to higher layers of testbesogiporting multiple languages as well
as support of different levels of RTL abstracti®ior example support of Transaction
Level Models or acceleration.

To develop a BFM first you need to create the d#tact for transfer and then write the
protocol implementation to drive the signals. Th#oiving examples walk you through
all the significant details involved in developiagous functional model. Before we dive
into example details, let us discuss some guidelioemodeling a BFM:

 Declare a data item for transfer as a struct tlat d&ll the relevant fields for
passing the data transaction to the BFM.

 Data item is preferably declared using packed struat BFM level for
synthesizability support and communication to othaguages.

* BFM is written as a module that implements the grot

* The communication to BFM is via tasks defined imbihterface while the actual
implementation of protocol is in the BFM module.

* On one side BFM is connected to the DUT through Dht&rface to connect to
DUT signals and on the other side it is conneabetthé testbench through the task
interface.

In the example, to facilitate the cross languagenroanication and support the
requirement from acceleration synthesis style, ekea struct is used to represent the
transfers on the bus. This struct contains infoimnadn the required physical fields of
the transaction, like address, data, size, typa sanforth but also the meta fields related
to transaction, such as the delay for transmissith&,gap, and so on.

Example — Struct for the Master BFM transfer

typedef enum {NOP, READ, WRITE} vr_xbus_read_write_ t;
typedef bit VR_XBUS_ADDR_WIDTH - 1:0] vr_xbus_addr t;

/[This struct represents base transaction data item
typedef struct packed{
vr_xbus_addr_t addr; //address field

vr_xbus_read_write_t read_write; //read write field

int size; //size field

bit [VR_XBUS_SIZE - 1:0][7:0] data; //data con tents

int error_pos_m; //position of error

int transmit_delay; //transmission delay befor e driving

int idle_gap; //idle gap, no signal driven

}vr_xbus_trans_s;

The following example shows the tasks that impledhe Master BFM protocol,
making use of above struct for communication. BENVritten as a module that contains
following tasks

Example — Task implementing Master transfer

//Drives all phases of transfer.

task drive_transfer (input vr_xbus_trans_s t);
messagef(MEDIUM," "Transfer accepted: ");
print_trans(t);
messagef(MEDIUM, "Transfer started: ");
repeat(bfm_trans.transfer.transmit_delay) @ (posedge sig_clock);
arbitrate_for_bus(); //arbitration phase
messagef(MEDIUM,"Arbitration succeeded: ");
drive_address_phase(t); //address phase
messagef(MEDIUM,"Address Phase completed: ");
drive_data_phase(t); //data phase
messagef(MEDIUM,"Data Phase completed: ");
print_trans(t);

endtask: drive_transfer

/lother tasks

endmodule

It is the main task of the master to drive all mwa®ef transfers. Note the usage of
“messagef’ task for consistent format of printihgtttakes in the verbosity of message as
argument.

Following code shows the example of data phasendrivask:

/IDrives data phase of the transfer
task drive_data_phase(input vr_xbus_trans_s t);

bit err;
for(inti =0; i <=t.size-1; i ++)
begin
if (i == (t.size-1))
xbus.sig_bip <= 0; //Drive the xbus signal sig_bip
else

xbus.sig_bip <=1,
case (t.read_write)

READ : read_byte(t, i, err);/ call read_byte task
WRITE : write_byte(t, i, err);//call write_byte task
endcase

end //for loop

xbus.sig_data_out <= 8'bz;

xbus.sig_bip <= 1'bz;
endtask: drive_data_phase

For reusability, the implementation of the BFM ftiopality should be kept as
independent of the communication to the BFM asiit be. The SystemVerilog interface
language construct and support of the tasks inrttezface provides a simpler way to
implement this.

The BFM itself is written as a module as shown. dammunicate to the BFM,
put_transaction and get_transaction tasks are etefim the BFM interface. To send a
data item to the BFM, you can populate the fieléishe struct and send it through the
put_transcaction provided in the BFM interface. Example:

/IDeclare the xbus transaction data item - my_data

/Ipopulate the struct fields or randomize

//Send to the BFM where bfm_if is BFM interface tha t has task
/Iput_transaction

bfm_if.put_transaction(my_data);

BFM module also has the always block that lookstler data item to be ready and gets
the transaction as soon as it sees it. This dam its transferred to the main
drive_transfer task of the master BFM.

/[This always block pulls the transaction from the higher layers when
/I it sees the data item ready.
vr_xbus_seq_s bfm_trans; //defined below
always @ (bfm_if.item_ready)
begin
bfm_if.get_transaction(bfm_trans);
drive_transfer(bfm_trans.transfer);
->pfm_if.item_done;
end

Note that the transaction that represents the xtvamsfer is obtained by the
bfm_if.get_transaction task as “bfm_trans” struthe transaction that represents the
master BFM data item struct is passed onto the ednensfer task as
“bfm_trans.transfer” struct. The xbus “bfm_transfust(declared as vr_xbus_seq_s as
shown below) has extra fields associated withat #re not required by the master but by
the bus for example error position and wait states.

Below is the data item struct that represents tineptete xbus transfer.

/[This struct represents the transfer struct for Xb us
typedef struct packed{

vr_xbus_trans_s transfer;

bit[7:0][31:0] wait_states;

int error_pos;
Jvr_xbus_seq_s;

Notice that it has the transfer struct and extedd§ for wait states per byte of data
transfer and also an extra field for the error s

The interface access tasks for the BFM can be iigieéed as shown below. These tasks
are implemented in a generic way and can be usethyyf the BFMs. Following tasks
reside in an interface.

interface bfm_if();
task automatic put_transaction(input vr_xbus_seq_s T);
/IGet the bus lock
bus_request();
/ICopy the transaction to local sequence

seq=T;

/[Trigger event item_ready
->jitem_ready;

/I\Wait for event item_done
@item_done;

/IRelease the bus lock
bus_release();

endtask: put_transaction

task automatic get_transaction(output vr_xbus_seq_s T);
/ICopy the transaction to BFM.
T = seq;

endtask: get_transaction

endinterface

Both of these tasks are automatic tasks so thaipleusources can call these at the same
time. The put_transaction task asks for the busestgand triggers an event item_ready,
notifying the BFM that the data item is ready fie ttransfer. The BFM gets this
transaction and triggers the item_done event, ynogfthe initiating task that the transfer
is done. At this point the control to the bus idincpished. The bus request and
bus_release tasks are implemented as shown below:

task get(input int n = 1);
wait(n <= keys);
keys = keys - n;

endtask: get

task put(input int n = 1);
keys = keys + n;
endtask: put

task bus_request();

get();
endtask: bus_request

task bus_release();

put();
endtask: bus_release

3.1. Slave BFM

The Slave BFM in the Xbus example is implementesl ghme way as recommended.
The actual task implementing the protocol that oesis to the transfers on the bus is
called respond_to_transfers(). The slave BFM iseoted to the slave ports of the DUT
interface. The interface for communication to sI®FEM is via the same bfm interface
tasks.

3.2. Connectivity to the DUT

We discussed the connectivity of BFMs to the tasthevia interface tasks. Here, let us
discuss connectivity of the BFMs to the DUT.

It is recommended to use the interface to conmeBXUT for connection to DUT signals.
In most cases, because of legacy the DUT is wriitdthout providing any actual

systemVerilog interface for the ports in which caserapper can be created so that the
BFMs are connected to the DUT through an interf&tere is an example of the DUT
interface for Xbus:

Example — DUT Interface
interface xbus_if (input logic xbus_clock, input | ogic xbus_reset);
logic xbus_request;
logic xbus_grant;
logic [VR_XBUS_ADDR_WIDTH-1:0] xbus_addr;
logic [VR_XBUS_SIZE:0] xbus_size;
logic xbus_read,;
logic xbus_write;
logic xbus_start;
logic xbus_bip;
wire [VR_XBUS_DATA-1:0] xbus_data;
logic xbus_wait;
logic xbus_error;
modport master(output xbus_request,

input xbus_error);
modport slave (input xbus_clock,

output xbus_error);
endinterface

Note the use of modports in the interface. Modmrequired for the interface port to
behave as the output for one module and the inpubther. Modports configure the
directions of various variables inside the integfbased on which module is passed to the
interface in its port list. For example sig_waitdagig_error are inputs to the master but
outputs to the slave. So, in this case, thereveoemiodports defined: one for master and
one for slave. When the master and slave areniisted, the master connection uses the
“xbus_if.master’ and the slave uses “xbus_if.slave”

Inside the master and slave BFMs, the access tontegace is directly through the
interface name. For example, inside master or sl#we xbus_error can be seen as
“dut_if.xbus_error” not “dut_if.master.xbus_errat “dut_if.slave.xbus_error”.

4. Bus Monitor

The bus monitor is responsible for extracting signéormation from the DUT and
translating it into the meaningful events and sainformation. This information is
available to other components and to the test mwiltlee monitor should never rely on the
information collected by other components such bBs BFM. The bus monitor
functionality has to be limited to the basic monitg that is always required. The
additional high-level functionality that might bequired can be implemented separately
on top of the monitor. This includes protocol chersk scoreboards, coverage, and such.
The bus monitor in the XBus example is providea ggobal monitor. The main features
of Xbus monitors are:

* Generates events based on bus activity

» BFMs and monitors depend on these events for the awivities happening on

the protocol.
» Collects the data for transfers

All the bus monitor events to be shared are inckage that is imported by master, slave
and other modules.

As stated, the events that the XBus bus monitoisa global to the XBus environment
and are shared by different components throughaglddclarations in the XBus package.
Below are few examples of such events that argerieg by the monitor.

/laddress phase triggered one cycle after the sig_s tart
always @ (posedge sig_start)

@(posedge sig_clock)

->address_phase;

/INop cycle
always @(address_phase)
if((sig_read == 0) && (sig_write == 0))

->nop_cycle;
/[Following always blocks triggers event at normal address phase
always @(posedge sig_clock)

if((sig_read ==1) || (sig_write ==1)) ->normal_add ress_phase;

Here is the example monitor code that collectditesfer information from the bus:

task monitor_address_phase();
monitor_resp.transfer.addr = sig_addr;
monitor_resp.transfer.size = get_size();
monitor_resp.transfer.read_write = get_read_wri te();
monitor_resp.wait_states[g_i] = 0;
monitor_resp.slave_id = 0;

endtask: monitor_address_phase

task monitor_wait_states();
monitor_resp.wait_states[g_i] = monitor_resp.wa it_states[g_i] + 1;
endtask: monitor_wait_states

always @ (data_start)
g_i=0;

task monitor_data_byte();
monitor_resp.transfer.data[g_i] = sig_data;
g_i++;
if (sig_error == 1)
monitor_resp.transfer.error_pos_m=g_i+ 1;
else monitor_resp.transfer.error_pos_m = 0;
if ((g_i == (monitor_resp.transfer.size)) |
(monitor_resp.transfer.error_pos_m > 0))
handle_transfer_end();
else monitor_resp.wait_states[g_i] = 0;
endtask: monitor_data_byte

task handle_transfer_end();
num_transfers++;
-> transfer_end,;
print_monitor_resp(monitor_resp);
endtask: handle_transfer_end

task show_status();
messagef(MEDIUM,"Bus monitor detected %d transf ers",num_transfers);
endtask: show_status

Monitor can also collect the coverage information. In this examgie toverage is
collected based on each of the transfers. Thewwilp code is an example of coverage
group defined in the master agent. It collectsdineerage information at the end of each
transfer:

covergroup transfer_end_cg @(transfer_end);
option.auto_bin_max=4;

trans_data : coverpoint data_cg;

trans_type : coverpoint rw_cg;

trans_addr : coverpoint addr_cg;

endgroup

transfer_end_cg transfer_end_inst = new();

The coverpoints are updated at end of transfer in m onitor task as
follows:
rw_cg = m_t.read_write; //m_t is the current transa ction

data_cg = m_t.data;
addr_cg = m_t.addr;

5. Protocol Checker

Typically, the protocol checker is used to verihatt the protocol specification is not
violated. The checker can be implemented as a a&parodule, or can be part of the
monitor. The checker operates based on the evadtslaa collected by the monitor. It
validates the basic data item that is transferned the related timing requirements
according to the protocol. The implemention isdated by assertions that get fired when
the checks are violated.

The protocol checker provided in the XBus environtms a separate module that is
instantiated at the top-level environment. It cae bisabled by setting up the
configuration for HAS_CHECKS at the environmentdevihe checks are written using
SVA assertions. Here are some examples:

/I Only one gnt line may be asserted at a time
/I (Spec section 3)
always @ (arbitration_phase)

begin
if(!sig_reset)
assertOneGrant:assert ($onehot0(gnt))
else
dut_error("ERR_READ_AND_WRITE\n Both read and write signals were
asserted together");
end

/I Read must not be X or Z during Address Phase
/I (Spec section 4)
always @(normal_address_phase)

begin
assertReadNotXorZ:assert ({($isunknown(mon_clk. sig_read)))
else
dut_error("ERR_READ\n READ went to X or Z du ring Address Phase");

end

/I Start must not be X or Z except during reset
/I (Spec section 3)
assertStartNotXorZ:assert property (

@posedge(sig_clock) disable iff (sig_reset) (sig_st art ==1) || (sig_start ==
0)

else
dut_error("ERR_START_XZ\n Start went to X or Z");

The dut_error is another utility task used here #tlaws the user to have control of the
action taken on protocol violations such as stopgimre simulation or continuing and
updating the simulation with total number of errorsvarnings that have been found.

The clocking block can be used at the protocol kbieto make sure that the signals are
sampled for checking with regard to the positivgeedf clock when they are stable.

default clocking mon_clk @(posedge sig_clock);
default input #VR_XBUS_CLOCK/10; //Input delay o f1ns.
input sig_size;
input sig_read;
input sig_write;
input sig_bip;
input sig_wait;
input sig_error;
endclocking

6. Top Level connectivity

Following code shows the top-level testbench cotivicusing a DUT interface:

module xbus_tb_top():
/IDeclarations

dut_dummy_if xbus(xbus_clock,xbus_reset); //instan tiate dut interface
dut_wrap dut(xbus); //instantiate dut
vr_xbus_bus_monitor_wrap Monitor(xbus); //instanti ate monitor
vr_xbus_bfm_if mbfm_if(); //instantiate master bfm interface
vr_xbus_bfm_if sbfm_if(); //instantiate slave bfm i nterface
vr_xbus_slave_bfm Slave(xbus.slave, sbfm_if); //in stantiare slave
vr_xbus_protocol_checker Protocol_checker(xbus); / /protocol checker
vr_xbus_master_bfm Master(xbus.master, mbfm_if); / /master BFM
test tests(mbfm_if); //Test
always

#5 xbus_clock = ~xbus_clock;
endmodule

For making the above connectivity more configurdidsed on parameters, you can use
the “generate” language construct as in the exatmgew. Above definition of module
will change for protocol checker and slave insttns as follows:

/[For protocol checker instantiate based on the VR_ XBUS_HAS_CHECKER
/lparameter.

generate

if(VR_XBUS_HAS_CHECKER)

begin:pc

vr_xbus_protocol_checker checker(xbus);
end
endgenerate

/lInstantiate the slave instances based on how many SLAVE_INSTANCES defined
/I in XBus environemnt setup.

generate

genvar si;

for (si=0; si < VR_XBUS_SLAVE_INSTANCES; si++)

begin: sl
vr_xbus_slave_bfm slave(xbus.slave, shfm_if);
end

endgenerate

The hierarchical access to these components willxbes tb top.pc.checker and
xbus_tb_top.sl[0].slave (for first instance of @avespectively.

6.1. Package Declarations

The package construct is provided in SystemVerftogthe declarations that can be
shared among different modules, macromodules, fates, programs, or other packages.
It also groups commonly used type declarationsre iieexample of usage of package in

XBus env:

package vr_xbus_pkg;

/IAll these parameters define the configuration rel

parameter VR_XBUS_MASTER_INSTANCES = 2; //Number
parameter VR_XBUS_SLAVE_INSTANCES =1; //Number
parameter VR_XBUS_SIZE = 8; /ISize of

typedef enum {NOP, READ, WRITE} vr_xbus_read_write_
typedef bit VR_XBUS_ADDR_WIDTH - 1:0] vr_xbus_addr

/[This struct represents base transaction data item
typedef struct packed{
vr_xbus_addr_t addr;
vr_xbus_read_write_t read_write;
int size;
bit [VR_XBUS_SIZE - 1:0][7:0] data;
bit check_error;
int error_pos_m;
int transmit_delay;
int idle_gap;
}vr_xbus_trans_s;

/ISome utiltites for printing the structs

/I Global declarations for Bus Monitor
vr_xbus_monitor_response_s monitor_resp;

event normal_address_phase;

event reset_end;

event data_valid;

event arbitration_phase;

event wait_state;

event transfer_end;

int num_transfers;

endpackage: vr_xbus_pkg

ated to Xbus environment
of Master instances

of Slave instances

data array of bytes

t
t;

The package file provides the following three typédeclarations:

* The typedef declarations are used for for commasigd structs ,which are the
xbus transaction data item for master, slave anditoro The typedef declarations
are also used for the configuration setup strutsnaster and slave BFMs.

* The utility tasks are used for printing above dfsuc

» The global declarations are used for the bus monititne global events to be
shared by other components of xbus environment.

To use the package, it is imported using the fahgwstatement:
import vr_xbus_pkg::*

While integrating different environments with difémt packages, name collisions must
be avoided.

7. Generating Test Stimulus

Tests drive stimulus to the DUT via BFMs. A typitast creates a data item to be sent to
the BFM and calls the BFM task to drive this ddtasts connect to the BFM through the
interfaces and remain independent and reusablearmrhave direct calls to the BFM
access tasks.

Following is an example of a test using interfades defined as a program block that
sends the stimulus to the DUT through the BFM. Td® defines a new transaction,
randomizes its fields, and passes the transactido the BFM. The test is instantiated in
top level as shown in example for top level connégt

program test(vr_xbus_bfm_if bfm_if);
xbus_trans_c transl; //xbus_trans_c is a class data item
initial
begin
start_test(); /Call utility task to start the te st.
transl = new();
for (inti=0;i<=10;i++)//Send 10 transacti ons
begin
transl.set_size(1);//set the size for transac tionto 1
success = transl.randomize();
assert(success);
bfm_if.put_transaction(transl.data);
end
end_test(); /Call utility task to end the test
end
endprogram

The class object used in example below is defirseid ows:

class xbus_trans_c;
rand vr_xbus_seq_s data;
int size_val;
bit read_write;
//define the constraint block
constraint c1 {
seq_data.transfer.addr >= min_addrs;
seq_data.transfer.addr <= max_addrs;
if(size_val == 0) seq_data.transfer.size inside {1 2,48},
else seq_data.transfer.size == size_val;
seq_data.transfer.idle_gap == 0;
if(read_write == 0) seq_data.transfer.read_write == 2;
else if(read_write == 1) seq_data.transfer.read_wri te==1,

seq_data.wait_states == 0;
}

/IConstructor for the class.
function new();

min_addrs = 13;
max_addrs = 100;
read_write = 0;

size_val = 0;

endfunction

/IFunctions to set the constraints
task set_size(input int sz);
size_val = sz;

endtask

endtask
endclass

Tests can share common functionality from a librdnyis library defines a common set
of tasks that are required by different tests i@ fbrm of generalized scenarios. For
example, each test requires some initializatiorusege that can be generalized and put
in that shares common tasks defined in the libimas follows:

program test();
int num_of_writes;

initial
begin
set_seed();
for(inti=0;i<10;i++)
begin
randcase

10: seq_lib.BASIC();
20: seq_lib. WRITE_READ_RANDOM(5);
30: seq_lib.RAND_SIZE(10);
endcase
end
end

endprogram the library and made available as a task to besaedeby each tegtn
example of a test

8. References

1. Incisive Plan to Closure Methodology, CadencsifpeSystems, Inc.

2. SystemVerilog 3.1a Language Reference Manual

3. SystemVerilog For Design : A Guide to Using 8ysVerilog for Hardware Design
and Modeling -- by Stuart Sutherland, et al;

