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Abstract 
This paper discusses some best practices in functional verification by making use of 
SystemVerilog for testbench, assertions for static or dynamic checking and functional 
coverage. It also discusses how to construct different components of verification 
environment (for example BFMs, monitors, stimulus generation etc.) for ease of reuse in 
multiple projects and platforms.  It illustrates through a complete verification example - 
how designers can compose their block level environment with assertions, coverage and a 
testbench that finds more bugs and is also reusable. 
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1. Overview 
This paper focuses on techniques for performing functional verification using 
SystemVerilog. It covers the essential testbench development topics and guidelines for 
developing BFMs, monitors, protocol checkers (SystemVerilog Assertions), interfaces 
and overall verification environment architecture. It also discusses how designers can 
make use of assertions for static and dynamic checking. The scope of the paper is the 
verification of block level or chip level verification. It does not address the advanced 
verification that requires the design teams to learn the entire systemVerilog language or 
advanced programming language techniques.  
 
The paper illustrates through a complete verification example - how designers can 
compose their block level environment with assertions, coverage and a testbench which 
finds more bugs and is also reusable. It shows how to construct different components of 
verification environment (for example BFMs, monitors, stimulus generation etc.) for ease 
of reuse in multiple projects and platforms. The main topics covered in the paper are 

• Overview  
• Using Assertions for Checking 
• Writing Bus Functional Models 
• Bus Monitors 
• Protocol Checkers using SVA 
• Top Level Connectivity 
• Generating Test Stimulus 

 

1.1. Example Used 

The example used in this paper is to build a verification environment for a bus based 
protocol named XBus.  XBus is designed to demonstrate all the important features of a 
typical modern bus standard while keeping the complexity to a minimum. The detailed 
spec for XBus protocol is out of scope for this paper. The bus protocol is deliberately 
simple so that attention is focused on the verification rather than the difficulties in coding 
the complex BFMs, and so on. The protocol has masters, slaves, and an arbiter. The 
XBus is a simple non-multiplexed, synchronous bus with no pipelining (to ensure simple 
bus functional models). The address bus is 16 bits wide and the data bus is byte-wide (to 
avoid alignment issues). Simple burst transfers are allowed and slaves are able to throttle 
data rates by inserting wait states.  The bus can have any number of masters and 
slaves(the number of masters is only limited by the arbitration implementation). Masters 
and slaves are collectively known as ‘bus agents’. 

The transfer of data is split into three phases: Arbitration Phase, Address Phase and Data 
Phase. Because no pipelining is allowed, these phases happen sequentially for each burst 
of data. The Arbitration and Address Phase, each take exactly one clock cycle. The Data 
Phase may take one or more clock cycles. 

The example of overall architecture for verification environment is shown in following 
figure.  



 

 
In the following sections we will use above example to learn how to create a complete 
verification testbench in systemVerilog and how to define assertions for static and 
dynamic checking. Following testbench components will be covered: 

• Master BFM: The master BFM in above diagram is used to drive transfers over 
the bus to the DUT slave. It is capable of generating all types of XBus transfers. 
The verification environment should be configurable to emulate an unlimited 
number of XBus masters.  

• Slave BFM: The XBus slave BFM responds to the traffic on the bus. Verification 
environments should be configured to have any number of slaves which can be 
active or passive. An active slave is used to emulate the behavior of an XBus 
slave device. A passive slave is used to monitor the behavior of an XBus slave 
device that is part of the DUT.  

• Arbiter: The arbiter emulates behavior of the XBus arbiter device. 
• Bus Monitor: The Bus monitor is responsible for monitoring all the bus traffic. It 

collects each transfer that is executed over the xbus and also collects coverage 
information on the bus traffic.  

• Protocol Checker: This checks for adherence to the bus protocol. SystemVerilog 
assertions are written to check for correct behavior. An assertion is fired if any 
protocol violation is detected. 



• Test scenarios: Tests are written to drive stimulus to the DUT. Examples of test 
scenarios that are concise and that can specify complex set of constraints for 
generation will be provided.  

Relevant excerpt of the code for all the above components will be shared in the paper. 
Following sections will go in detail of each of the testbench components and how they 
can be developed for reusability. 
 

2. Using Assertions for Checking 
Assertions are basically active verification elements that  

• Watch for forbidden behavior within a design block or on its interfaces 
• Track expected behavior documented in the assertions. 
• Are statements that specify required behavior. 
• Allow the designer to capture the design intent and assumptions in a manner that 

can be verified. 
• Provide benefits relative to bug detection, improving reuse, and capturing 

coverage information. 
• Can be used to create transactions that aid in observing how the testbench is 

stimulating the design. 
 

Assertion based verification (ABV) can be used with multiple tools such as formal 
analysis tools, simulators and accelerators.  
 

• Formal tools attempt to prove that a given design behaves as required when used 
correctly. Assertions specify the required behavior. Assumptions specify how the 
design must be used. A formal analysis tool does not require any input stimulus, 
but does require that the behavior of the inputs be specified to avoid false failures. 

• Simulators, including emulators and simulation accelerators, stimulate design 
inputs and observe the resulting behavior. They report errors when an asserted or 
assumed behavior is violated, and provide counters for cover points. ABV in a 
simulator is also known as dynamic ABV. ABV in an emulator or simulation 
accelerator is referred to as Assertion-Based Acceleration (ABA). 

ABV provides a comprehensive verification approach, targeting common assertions with 
complementary technologies. It is recommended that designers write assertions while 
writing RTL. Formal analysis can then be used to start verification before the testbench is 
ready at the designers’ desktop.  The same assertions can then be used with simulation 
and acceleration at cluster and full-chip level.  
To add the assertions, once you have identified the behavior you are interested in 
verifying, capture the behavior in simple English. Next, determine the type of assertion in 
context of the module to be either an assert  or assume. When you begin adding 
assertions, you might benefit by starting with assertion libraries. These will enable you to 
get more comfortable with assertion usage. Then you can migrate to writing your own  
SystemVerilog Assertions (SVA) once you start writing more assertions that are at higher 
levels of abstraction, where languages are more efficient than simple library cells. 
The assertions can be either embedded in the RTL code or put in an external file. 
Depending on the number and nature of the assertions, it may be desirable to write the 



assertions so they can be optionally included, either via ifdef statements or by placing 
them in an external file. 
Verification engineers should always place assertions in an external file or in the 
testbench to avoid file conflicts with the designer. Also you must remember, assertions 
associated with design modules get elaborated once for each instance of the module, 
whereas assertions associated with the testbench (or with the top module of the design) 
get elaborated only once. 
 

2.1. Writing Assertions 
For performance reasons, you may want to turn on /off any one category of assertions at 
different stages of the development process. For example, there may be little value in 
looking at functional coverage until the major bugs are worked out. Typically the initial 
focus is on bug catching, and later, coverage. Transaction viewing only is needed when 
waveform analysis is planned. For mature designs, it may be desirable to focus only on 
interface assertions that ensure that the device is being driven correctly. Here are some of 
examples of assertions embedded in the RTL for the DUT.  

//read must have zero wait response 

assert_read_zero_wait : assert property (@(posedge xbus_clock) (xbus_start_c 
== 1'b1) && (xbus_selected == 1'b1) && (xbus_read = = 1'b1) |=>( xbus_wait 
== 1'b0)); 

• The name assert_read_zero_wait before the colon “:” specifies the name of the 
assertion. 

• The clock to be used for evaluation of the assertion is specified using @ (posedge 
xbus_clock).  

• A property just defines a behavior pattern; it is not until a property is asserted 
using keword assert that an obligation is imposed on the design to behave as the 
property specifies. 

• The keyword property  specifies that the statement that follows is the check to be 
performed 

• The output of the SVA assertion is a failure message, its associated waveform and 
coverage information. 

 
Other examples of embedded assertions are as follows: 
 
//The xbus_addr[15:8] must match base_addr [15:8]    
   assert_xbus_selected : assert property (@(posedg e xbus_clock) 
(xbus_addr[15:8] == base_addr[15:8]) |-> (xbus_sele cted == 1'b1)); 
 
// sv assertions to check decoding of registers 
   assert_xbus_reg0_select : assert property (@(pos edge xbus_clock) 
(xbus_addr[7:0] == 8'b00000000) |-> (xbus_reg0 == 1 'b1)); 
   assert_xbus_reg1_select : assert property (@(pos edge xbus_clock) 
(xbus_addr[7:0] == 8'b00000001) |-> (xbus_reg1 == 1 'b1)); 
   assert_xbus_reg2_select : assert property (@(pos edge xbus_clock) 
(xbus_addr[7:0] == 8'b00000010) |-> (xbus_reg2 == 1 'b1)); 
   assert_xbus_reg3_select : assert property (@(pos edge xbus_clock) 
(xbus_addr[7:0] == 8'b00000011) |-> (xbus_reg3 == 1 'b1)); 

 



Note that above specified assertions run with both formal analysis(static) and 
simulation(dynamic) tools. 
 
The example of external assertions is in the protocol checker topic. 
 

3. Writing Bus Functional Models 

Bus Functional Model(BFM) for a device interacts with the DUT by both driving and 
sampling the DUT signals. One of the BFM’s requirements for reusability is the ability to 
connect and interface to higher layers of testbench supporting multiple languages as well 
as support of different levels of RTL abstraction. For example support of Transaction 
Level Models or acceleration.  

To develop a BFM first you need to create the data struct for transfer and then write the 
protocol implementation to drive the signals. The following examples walk you through 
all the significant details involved in developing a bus functional model. Before we dive 
into example details, let us discuss some guidelines for modeling a BFM: 

• Declare a data item for transfer as a struct that has all the relevant fields for 
passing the data transaction to the BFM.  

• Data item is preferably declared using packed struct  at BFM level  for 
synthesizability support and communication to other languages. 

• BFM is written as a module that implements the protocol. 

• The communication to BFM is via tasks defined in bfm interface while the actual 
implementation of protocol is in the BFM module. 

• On one side BFM is connected to the DUT through DUT interface to connect to 
DUT signals and on the other side it is connected to the testbench through the task 
interface. 

In the example, to facilitate the cross language communication and support the 
requirement from acceleration synthesis style, a packed struct is used to represent the 
transfers on the bus. This struct contains information on the required physical fields of 
the transaction, like address, data, size, type, and so forth but also the meta fields related 
to transaction, such as the delay for transmission, idle gap, and so on.  

Example  – Struct for the Master BFM transfer 

typedef enum {NOP, READ, WRITE} vr_xbus_read_write_ t; 
typedef bit [VR_XBUS_ADDR_WIDTH - 1:0] vr_xbus_addr _t ; 

 
//This struct represents base transaction data item  
typedef struct packed{ 
     vr_xbus_addr_t  addr;  //address field 
     vr_xbus_read_write_t read_write;  //read write  field 
     int size;  //size field 
     bit [VR_XBUS_SIZE - 1:0][7:0] data; //data con tents 
     int error_pos_m;  //position of error 
     int transmit_delay; //transmission delay befor e driving 
     int idle_gap; //idle gap, no signal driven 



     } vr_xbus_trans_s; 

The following example shows the tasks that implements the Master BFM protocol, 
making use of above struct for communication. BFM is written as a module that contains 
following tasks: 

Example – Task implementing Master transfer 
 

module vr_xbus_master_bfm(input…….); 
……………  
//Drives all phases of transfer.  
task drive_transfer (input vr_xbus_trans_s t);  
        messagef(MEDIUM,"Transfer accepted: ");  
        print_trans(t);  
        messagef(MEDIUM,"Transfer started: ");  
        repeat(bfm_trans.transfer.transmit_delay) @ (posedge sig_clock);  
        arbitrate_for_bus(); //arbitration phase  
        messagef(MEDIUM,"Arbitration succeeded: ");  
        drive_address_phase(t); //address phase  
        messagef(MEDIUM,"Address Phase completed: " );  
        drive_data_phase(t); //data phase  
        messagef(MEDIUM,"Data Phase completed: ");  
        print_trans(t);  
endtask: drive_transfer 
//other tasks 
………… 
endmodule  

It is the main task of the master to drive all phases of transfers. Note the usage of 
“messagef” task for consistent format of printing that takes in the verbosity of message as 
argument. 

Following code shows the example of data phase driving  task: 

//Drives data phase of the transfer  
task drive_data_phase(input vr_xbus_trans_s t);  
        bit err;  
        for(int i = 0; i <= t.size-1; i ++)  
         begin  
            if (i == (t.size-1))  
                xbus.sig_bip <= 0; //Drive the xbus  signal sig_bip  
            else  
                xbus.sig_bip <= 1;  
            case (t.read_write)  
                READ    :   read_byte(t, i, err);// call read_byte task  

 
                WRITE   :      write_byte(t, i, err );//call write_byte task  
            endcase  
        end //for loop  
        xbus.sig_data_out <= 8'bz;  
        xbus.sig_bip <= 1'bz;  
endtask: drive_data_phase  

 

For reusability, the implementation of the BFM functionality should be kept as 
independent of the communication to the BFM as it can be. The SystemVerilog interface 
language construct and support of the tasks in the interface provides a simpler way to 
implement this. 



The BFM itself is written as a module as shown. To communicate to the BFM, 
put_transaction and get_transaction tasks are defined in the BFM interface. To send a 
data item to the BFM, you can populate the fields of the struct and send it through the 
put_transcaction provided in the BFM interface. For example: 

//Declare the xbus transaction data item - my_data 
//populate the struct fields or randomize 
//Send to the BFM where bfm_if is BFM interface tha t has task 
//put_transaction 
bfm_if.put_transaction(my_data); 

 

BFM module also has the always block that looks for the data item to be ready and gets 
the transaction as soon as it sees it. This data item is transferred to the main 
drive_transfer task of the master BFM. 

 
//This always block pulls the transaction from the higher layers when  
// it sees the data item ready. 
vr_xbus_seq_s bfm_trans;  //defined below  
always @(bfm_if.item_ready)  
begin  
        bfm_if.get_transaction(bfm_trans);  
        drive_transfer(bfm_trans.transfer);  
        ->bfm_if.item_done;  
end 

 

Note that the transaction that represents the xbus transfer is obtained by the 
bfm_if.get_transaction task as “bfm_trans” struct. The transaction that represents the 
master BFM data item struct is passed onto the drive_transfer task as 
“bfm_trans.transfer” struct. The xbus “bfm_trans” struct(declared as vr_xbus_seq_s as 
shown below) has extra fields associated with it that are not required by the master but by 
the bus for example error position and wait states. 

Below is the data item struct that represents the complete xbus transfer. 

//This struct represents the transfer struct for Xb us 
typedef struct packed{ 
     vr_xbus_trans_s transfer; 
     bit[7:0][31:0] wait_states; 
     int error_pos; 
}vr_xbus_seq_s;   

 

Notice that it has the transfer struct and extra fields for wait states per byte of data 
transfer and also an extra field for the error position. 

The interface access tasks for the BFM can be implemented  as shown below. These tasks 
are implemented in a generic way and can be used by any of the BFMs. Following tasks 
reside in an interface. 

interface bfm_if(); 
        …………………… 

task automatic put_transaction(input vr_xbus_seq_s T);  
       //Get the bus lock  
        bus_request();  
       //Copy the transaction to local sequence  



        seq = T;  
       //Trigger event item_ready  
        ->item_ready;  
       //Wait for event item_done  
        @item_done;  
       //Release the bus lock  
        bus_release();  
endtask: put_transaction  

 
task automatic get_transaction(output vr_xbus_seq_s  T);  
       //Copy the transaction to BFM.  
       T = seq;  
endtask: get_transaction 
…………. 

endinterface  
 

Both of these tasks are automatic tasks so that multiple sources can call these at the same 
time. The put_transaction task asks for the bus request and triggers an event item_ready, 
notifying the BFM that the data item is ready for the transfer. The BFM gets this 
transaction and triggers the item_done event, notifying the initiating task that the transfer 
is done. At this point the control to the bus is relinquished. The bus_request and 
bus_release tasks are implemented as shown below: 

 
task get(input int n = 1);  
       wait(n <= keys);  
       keys = keys - n;  
endtask: get  

 
task put(input int n = 1);  
       keys = keys + n;  
endtask: put  

 
task bus_request();  
       get();  
endtask: bus_request  

 
task bus_release();  
       put();  
endtask: bus_release  

 

3.1. Slave BFM 
The Slave BFM in the Xbus example is implemented the same way as recommended. 
The actual task implementing the protocol that responds to the transfers on the bus is 
called respond_to_transfers(). The slave BFM is connected to the slave ports of the DUT 
interface. The interface for communication to slave BFM is via the same bfm interface 
tasks. 
 

3.2. Connectivity to the DUT 
We discussed the connectivity of BFMs to the testbench via interface tasks. Here, let us 
discuss connectivity of the BFMs to the DUT. 
It is recommended to use the interface to connect to DUT for connection to DUT signals. 
In most cases, because of legacy the DUT is written without providing any actual 



systemVerilog interface for the ports in which case a wrapper can be created so that the 
BFMs are connected to the DUT through an interface. Here is an example of the DUT 
interface for Xbus: 
Example – DUT Interface 

interface xbus_if ( input logic xbus_clock, input l ogic xbus_reset); 
   logic xbus_request; 
   logic xbus_grant; 
   logic [VR_XBUS_ADDR_WIDTH-1:0] xbus_addr; 
   logic [VR_XBUS_SIZE:0] xbus_size; 
   logic xbus_read; 
   logic xbus_write; 
   logic xbus_start; 
   logic xbus_bip; 
   wire  [VR_XBUS_DATA-1:0] xbus_data; 
   logic xbus_wait; 
   logic xbus_error; 
   modport master(output  xbus_request, 
                  .......... 
                  input  xbus_error); 
   modport slave (input xbus_clock, 
                  ......... 
                  output xbus_error); 
endinterface 

 
Note the use of modports in the interface. Modport is required for the interface port to 
behave as the output for one module and the input for other. Modports configure the 
directions of various variables inside the interface based on which module is passed to the 
interface in its port list. For example sig_wait and sig_error are inputs to the master but 
outputs to the slave. So, in this case, there are two modports defined: one for master and 
one for slave. When  the master and slave are instantiated, the master connection uses the 
“xbus_if.master’ and the slave uses “xbus_if.slave”. 
Inside the master and slave BFMs, the access to the interface is directly through the 
interface name. For example, inside master or slave, the xbus_error can be seen as 
“dut_if.xbus_error” not “dut_if.master.xbus_error” or “dut_if.slave.xbus_error”.  
 

4. Bus Monitor 
 
The bus monitor is responsible for extracting signal information from the DUT and 
translating it into the meaningful events and status information. This information is 
available to other components and to the test writer. The monitor should never rely on the 
information collected by other components such as the BFM. The bus monitor 
functionality has to be limited to the basic monitoring that is always required. The 
additional high-level functionality that might be required can be implemented separately 
on top of the monitor. This includes protocol checkers, scoreboards, coverage, and such.  
The bus monitor in the XBus example is provided as a global monitor. The main features 
of Xbus monitors are: 

• Generates events based on bus activity 
• BFMs and monitors depend on these events for the main activities happening on 

the protocol. 
• Collects the data for transfers 



All the bus monitor events to be shared are in a package that is imported by master, slave 
and other modules. 
As stated, the events that the XBus bus monitors emit are global to the XBus environment 
and are shared by different components through global declarations in the XBus package.  
Below are few examples of such events that are triggered by the monitor. 
 
//address phase triggered one cycle after the sig_s tart  
always @(posedge sig_start)  
  @(posedge sig_clock)  
  ->address_phase;  
 
//Nop cycle  
always @(address_phase)  
  if((sig_read == 0) && (sig_write == 0))  
  ->nop_cycle;  
 
//Following always blocks triggers event at normal address phase  
always @(posedge sig_clock)  
 if((sig_read ==1) || (sig_write ==1)) ->normal_add ress_phase;  
 

Here is the example monitor code that collects the transfer information from the bus: 
 
task monitor_address_phase();  
    monitor_resp.transfer.addr = sig_addr;  
    monitor_resp.transfer.size = get_size();  
    monitor_resp.transfer.read_write = get_read_wri te();  
    monitor_resp.wait_states[g_i] = 0;  
    monitor_resp.slave_id = 0;  
endtask: monitor_address_phase  
 
task monitor_wait_states();  
    monitor_resp.wait_states[g_i] = monitor_resp.wa it_states[g_i] + 1;  
endtask: monitor_wait_states  
 
always @(data_start)  
g_i = 0;  
 
task monitor_data_byte();  
    monitor_resp.transfer.data[g_i] = sig_data;  
    g_i++;  
    if (sig_error == 1)  
       monitor_resp.transfer.error_pos_m = g_i + 1;  
    else monitor_resp.transfer.error_pos_m = 0;  
    if ((g_i == (monitor_resp.transfer.size)) | 
(monitor_resp.transfer.error_pos_m > 0))  
          handle_transfer_end();  
    else monitor_resp.wait_states[g_i] = 0;  
endtask: monitor_data_byte  
 
task handle_transfer_end();  
    num_transfers++;  
    -> transfer_end;  
    print_monitor_resp(monitor_resp);  
endtask: handle_transfer_end  
 
task show_status();  
    messagef(MEDIUM,"Bus monitor detected %d transf ers",num_transfers);  
endtask: show_status 
 



Monitor can also collect the coverage information. In this example the coverage is 
collected based on each of the transfers. The following code is an example of coverage 
group defined in the master agent. It collects the coverage information at the end of each 
transfer: 
 

covergroup transfer_end_cg @(transfer_end); 
option.auto_bin_max=4; 
trans_data : coverpoint data_cg; 
trans_type : coverpoint rw_cg; 
trans_addr : coverpoint addr_cg; 
endgroup 
transfer_end_cg transfer_end_inst = new(); 

The coverpoints are updated at end of transfer in m onitor task as 
follows: 

rw_cg = m_t.read_write; //m_t is the current transa ction 
        data_cg = m_t.data; 
        addr_cg = m_t.addr;  

 
 

5. Protocol Checker 
Typically, the protocol checker is used to verify that the protocol specification is not 
violated. The checker can be implemented as a separate module, or can be part of the 
monitor. The checker operates based on the events and data collected by the monitor. It 
validates the basic data item that is transferred and the related timing requirements 
according to the protocol. The implemention is validated by assertions that get fired when 
the checks are violated.  
 
The protocol checker provided in the XBus environment is a separate module that is 
instantiated at the top-level environment. It can be disabled by setting up the 
configuration for HAS_CHECKS at the environment level. The checks are written using 
SVA assertions. Here are some examples: 
 
// Only one gnt line may be asserted at a time  
// (Spec section 3)  
always @(arbitration_phase)  
begin  
   if(!sig_reset)  
     assertOneGrant:assert ($onehot0(gnt))  
     else  
     dut_error("ERR_READ_AND_WRITE\n Both read and write signals were 
asserted together");  
end 
 
// Read must not be X or Z during Address Phase  
// (Spec section 4)  
always @(normal_address_phase)  
 begin  
    assertReadNotXorZ:assert (!($isunknown(mon_clk. sig_read)))  
    else  
       dut_error("ERR_READ\n READ went to X or Z du ring Address Phase");  
end 
 
// Start must not be X or Z except during reset  
// (Spec section 3)  
assertStartNotXorZ:assert property (  



@posedge(sig_clock) disable iff (sig_reset) (sig_st art == 1) || (sig_start == 
0))  
else  
 dut_error("ERR_START_XZ\n Start went to X or Z");  
 

The dut_error is another utility task used here that allows the user to have control of the 
action taken on protocol violations such as stopping the simulation or continuing and 
updating the simulation with total number of errors or warnings that have been found. 
The clocking block can be used at the protocol checker to make sure that the signals are 
sampled for checking with regard to the positive edge of clock when they are stable. 
 
default clocking mon_clk @(posedge sig_clock);  
   default input #VR_XBUS_CLOCK/10; //Input delay o f 1 ns.  
   input sig_size;  
   input sig_read;  
   input sig_write;  
   input sig_bip;  
   input sig_wait;  
   input sig_error;  
endclocking 
 

6. Top Level connectivity 

Following code shows the top-level testbench connectivity using a DUT interface: 

module xbus_tb_top();  
//Declarations  
dut_dummy_if xbus(xbus_clock,xbus_reset);  //instan tiate dut interface 
dut_wrap dut( xbus); //instantiate dut  
vr_xbus_bus_monitor_wrap Monitor( xbus); //instanti ate monitor  
vr_xbus_bfm_if mbfm_if(); //instantiate master bfm interface  
vr_xbus_bfm_if sbfm_if(); //instantiate slave bfm i nterface  
vr_xbus_slave_bfm Slave( xbus.slave, sbfm_if); //in stantiare slave  
vr_xbus_protocol_checker Protocol_checker( xbus); / /protocol checker  
vr_xbus_master_bfm Master( xbus.master, mbfm_if); / /master BFM  
test tests(mbfm_if);  //Test  
always  
   #5 xbus_clock = ~xbus_clock;  
endmodule  

 
For making the above connectivity more configurable based on parameters, you can use 
the “generate” language construct as in the example below. Above definition of module 
will change for protocol checker and slave instantiations as follows: 
 
      //For protocol checker instantiate based on the VR_ XBUS_HAS_CHECKER    
    //parameter. 

generate 
if(VR_XBUS_HAS_CHECKER) 
begin:pc 
  vr_xbus_protocol_checker checker(xbus); 
end 
endgenerate 

 
//Instantiate the slave instances based on how many  SLAVE_INSTANCES defined 
// in XBus environemnt setup. 
generate 
genvar si; 
for (si=0; si < VR_XBUS_SLAVE_INSTANCES; si++) 



begin: sl 
  vr_xbus_slave_bfm slave(xbus.slave, sbfm_if); 

      end 
      endgenerate   
 
The hierarchical access to these components will be xbus_tb_top.pc.checker and 
xbus_tb_top.sl[0].slave (for first instance of slave) respectively. 
 

6.1. Package Declarations 
 
The package construct is provided in SystemVerilog for the declarations that can be 
shared among different modules, macromodules, interfaces, programs, or other packages. 
It also groups commonly used type declarations.  Here is example of usage of package in 
XBus env: 

 
package vr_xbus_pkg;  

 
//All these parameters define the configuration rel ated to Xbus environment  
parameter VR_XBUS_MASTER_INSTANCES = 2;   //Number of Master instances  
parameter VR_XBUS_SLAVE_INSTANCES  = 1;   //Number of Slave instances  
parameter VR_XBUS_SIZE = 8;               //Size of  data array of bytes  

    …………………………….. 
typedef enum {NOP, READ, WRITE} vr_xbus_read_write_ t;  
typedef bit [VR_XBUS_ADDR_WIDTH - 1:0] vr_xbus_addr _t ;  

 
//This struct represents base transaction data item  
typedef struct packed{  
     vr_xbus_addr_t  addr;  
     vr_xbus_read_write_t read_write;  
     int size;  
     bit [VR_XBUS_SIZE - 1:0][7:0] data;  
      bit check_error;  
     int error_pos_m;  
     int transmit_delay;  
     int idle_gap;  
     } vr_xbus_trans_s;  

 
 

//Some utiltites for printing the structs  
 

// Global declarations for Bus Monitor  
vr_xbus_monitor_response_s monitor_resp;  
  event normal_address_phase;  
  event reset_end;  
  event data_valid;  
  event arbitration_phase;  
  event wait_state;  
  event transfer_end;  
  int num_transfers; 
……………………………….. 

 
endpackage: vr_xbus_pkg  

 

The package file provides the following three types of declarations: 



• The typedef declarations are used for for commonly used structs ,which are the 
xbus transaction data item for master, slave and monitor. The typedef declarations 
are also used for the configuration setup structs for master and slave BFMs.  

• The utility tasks are used for printing above structs. 
• The global declarations are used for the bus monitor - the global events to be 

shared by other components of xbus environment. 
To use the package, it is imported using the following statement: 

import vr_xbus_pkg::* 

While integrating different environments with different packages, name collisions must 
be avoided. 
 
 

7. Generating Test Stimulus 
Tests drive stimulus to the DUT via BFMs. A typical test creates a data item to be sent to 
the BFM and calls the BFM task to drive this data. Tests connect to the BFM through the 
interfaces and remain independent and reusable or can have direct calls to the BFM 
access tasks.  
Following is an example of a test using interfaces. It is defined as a program block that 
sends the stimulus to the DUT through the BFM. The test defines a new transaction, 
randomizes its fields, and passes the transaction on to the BFM. The test is instantiated in 
top level as shown in example for top level connectivity. 
 

program test(vr_xbus_bfm_if bfm_if);  
xbus_trans_c trans1; //xbus_trans_c is a class data  item 
initial 
begin 
  start_test(); //Call utility task to start the te st. 
  trans1 = new(); 
  for (int i = 0; i <= 10; i ++)//Send 10 transacti ons 
    begin 
      trans1.set_size(1);//set the size for transac tion to 1 
      success = trans1.randomize(); 
      assert(success); 
    bfm_if.put_transaction(trans1.data); 
    end 
   end_test(); //Call utility task to end the test 
end 
endprogram 

The class object used in example below is defined as follows: 
class xbus_trans_c;  
   rand vr_xbus_seq_s data;  
   int size_val;  
   bit read_write;  
   ….. 
//define the constraint block  
constraint c1 {  
seq_data.transfer.addr >= min_addrs;  
seq_data.transfer.addr <= max_addrs;  
if(size_val == 0)  seq_data.transfer.size inside {1 ,2,4,8};  
else  seq_data.transfer.size == size_val;  
seq_data.transfer.idle_gap == 0;  
if(read_write == 0) seq_data.transfer.read_write ==  2;  
else if(read_write == 1) seq_data.transfer.read_wri te == 1;  



seq_data.wait_states == 0;  
}  
//Constructor for the class.  
function new();  
min_addrs = 13;  
max_addrs = 100;  
read_write = 0;  
size_val = 0;  
endfunction  
//Functions to set the constraints  
task set_size(input int sz);  
size_val = sz;  
endtask  
......  
task print();  
.........  
endtask  
endclass  
 

Tests can share common functionality from a library. This library defines a common set 
of tasks that are required by different tests in the form of generalized scenarios. For 
example, each test requires some initialization sequence that can be generalized and put 
in that shares common tasks defined in the library is as follows: 

program test(); 
 int num_of_writes; 
 initial 
 begin 
   set_seed(); 
   for(int i = 0; i < 10; i ++) 
   begin 
     randcase 
       10: seq_lib.BASIC(); 
       20: seq_lib.WRITE_READ_RANDOM(5); 
       30: seq_lib.RAND_SIZE(10); 
    endcase 
  end 
end 

endprogram the library and made available as a task to be accessed by each test. An 
example of a test  
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