
DesignCon 2006

Leveraging Assertions in
SystemVerilog Testbench to get
to Closure

Leena Singh, Cadence Design Systems, Inc.

Tim Pylant, Cadence Design Systems, Inc.

Abstract
This paper discusses some best practices in functional verification by making use of
SystemVerilog for testbench, assertions for static or dynamic checking and functional
coverage. It also discusses how to construct different components of verification
environment (for example BFMs, monitors, stimulus generation etc.) for ease of reuse in
multiple projects and platforms. It illustrates through a complete verification example -
how designers can compose their block level environment with assertions, coverage and a
testbench that finds more bugs and is also reusable.

Author(s) Biography
Leena Singh is a Senior Member of Consulting Staff in the Verification Division Methodology
group of Cadence Design Systems, Inc and is author of following books on Verification:
System-on-a-Chip Verification - Methodology and Techniques, Kluwer Academic Publishers
(KAP), 1999.
Advanced Verification Techniques: A SystemC Based Approach for Successful Tapeout, Kluwer
Academic Publishers (KAP), 2004.

1. Overview
This paper focuses on techniques for performing functional verification using
SystemVerilog. It covers the essential testbench development topics and guidelines for
developing BFMs, monitors, protocol checkers (SystemVerilog Assertions), interfaces
and overall verification environment architecture. It also discusses how designers can
make use of assertions for static and dynamic checking. The scope of the paper is the
verification of block level or chip level verification. It does not address the advanced
verification that requires the design teams to learn the entire systemVerilog language or
advanced programming language techniques.

The paper illustrates through a complete verification example - how designers can
compose their block level environment with assertions, coverage and a testbench which
finds more bugs and is also reusable. It shows how to construct different components of
verification environment (for example BFMs, monitors, stimulus generation etc.) for ease
of reuse in multiple projects and platforms. The main topics covered in the paper are

• Overview
• Using Assertions for Checking
• Writing Bus Functional Models
• Bus Monitors
• Protocol Checkers using SVA
• Top Level Connectivity
• Generating Test Stimulus

1.1. Example Used

The example used in this paper is to build a verification environment for a bus based
protocol named XBus. XBus is designed to demonstrate all the important features of a
typical modern bus standard while keeping the complexity to a minimum. The detailed
spec for XBus protocol is out of scope for this paper. The bus protocol is deliberately
simple so that attention is focused on the verification rather than the difficulties in coding
the complex BFMs, and so on. The protocol has masters, slaves, and an arbiter. The
XBus is a simple non-multiplexed, synchronous bus with no pipelining (to ensure simple
bus functional models). The address bus is 16 bits wide and the data bus is byte-wide (to
avoid alignment issues). Simple burst transfers are allowed and slaves are able to throttle
data rates by inserting wait states. The bus can have any number of masters and
slaves(the number of masters is only limited by the arbitration implementation). Masters
and slaves are collectively known as ‘bus agents’.

The transfer of data is split into three phases: Arbitration Phase, Address Phase and Data
Phase. Because no pipelining is allowed, these phases happen sequentially for each burst
of data. The Arbitration and Address Phase, each take exactly one clock cycle. The Data
Phase may take one or more clock cycles.

The example of overall architecture for verification environment is shown in following
figure.

In the following sections we will use above example to learn how to create a complete
verification testbench in systemVerilog and how to define assertions for static and
dynamic checking. Following testbench components will be covered:

• Master BFM: The master BFM in above diagram is used to drive transfers over
the bus to the DUT slave. It is capable of generating all types of XBus transfers.
The verification environment should be configurable to emulate an unlimited
number of XBus masters.

• Slave BFM: The XBus slave BFM responds to the traffic on the bus. Verification
environments should be configured to have any number of slaves which can be
active or passive. An active slave is used to emulate the behavior of an XBus
slave device. A passive slave is used to monitor the behavior of an XBus slave
device that is part of the DUT.

• Arbiter: The arbiter emulates behavior of the XBus arbiter device.
• Bus Monitor: The Bus monitor is responsible for monitoring all the bus traffic. It

collects each transfer that is executed over the xbus and also collects coverage
information on the bus traffic.

• Protocol Checker: This checks for adherence to the bus protocol. SystemVerilog
assertions are written to check for correct behavior. An assertion is fired if any
protocol violation is detected.

• Test scenarios: Tests are written to drive stimulus to the DUT. Examples of test
scenarios that are concise and that can specify complex set of constraints for
generation will be provided.

Relevant excerpt of the code for all the above components will be shared in the paper.
Following sections will go in detail of each of the testbench components and how they
can be developed for reusability.

2. Using Assertions for Checking
Assertions are basically active verification elements that

• Watch for forbidden behavior within a design block or on its interfaces
• Track expected behavior documented in the assertions.
• Are statements that specify required behavior.
• Allow the designer to capture the design intent and assumptions in a manner that

can be verified.
• Provide benefits relative to bug detection, improving reuse, and capturing

coverage information.
• Can be used to create transactions that aid in observing how the testbench is

stimulating the design.

Assertion based verification (ABV) can be used with multiple tools such as formal
analysis tools, simulators and accelerators.

• Formal tools attempt to prove that a given design behaves as required when used
correctly. Assertions specify the required behavior. Assumptions specify how the
design must be used. A formal analysis tool does not require any input stimulus,
but does require that the behavior of the inputs be specified to avoid false failures.

• Simulators, including emulators and simulation accelerators, stimulate design
inputs and observe the resulting behavior. They report errors when an asserted or
assumed behavior is violated, and provide counters for cover points. ABV in a
simulator is also known as dynamic ABV. ABV in an emulator or simulation
accelerator is referred to as Assertion-Based Acceleration (ABA).

ABV provides a comprehensive verification approach, targeting common assertions with
complementary technologies. It is recommended that designers write assertions while
writing RTL. Formal analysis can then be used to start verification before the testbench is
ready at the designers’ desktop. The same assertions can then be used with simulation
and acceleration at cluster and full-chip level.
To add the assertions, once you have identified the behavior you are interested in
verifying, capture the behavior in simple English. Next, determine the type of assertion in
context of the module to be either an assert or assume. When you begin adding
assertions, you might benefit by starting with assertion libraries. These will enable you to
get more comfortable with assertion usage. Then you can migrate to writing your own
SystemVerilog Assertions (SVA) once you start writing more assertions that are at higher
levels of abstraction, where languages are more efficient than simple library cells.
The assertions can be either embedded in the RTL code or put in an external file.
Depending on the number and nature of the assertions, it may be desirable to write the

assertions so they can be optionally included, either via ifdef statements or by placing
them in an external file.
Verification engineers should always place assertions in an external file or in the
testbench to avoid file conflicts with the designer. Also you must remember, assertions
associated with design modules get elaborated once for each instance of the module,
whereas assertions associated with the testbench (or with the top module of the design)
get elaborated only once.

2.1. Writing Assertions
For performance reasons, you may want to turn on /off any one category of assertions at
different stages of the development process. For example, there may be little value in
looking at functional coverage until the major bugs are worked out. Typically the initial
focus is on bug catching, and later, coverage. Transaction viewing only is needed when
waveform analysis is planned. For mature designs, it may be desirable to focus only on
interface assertions that ensure that the device is being driven correctly. Here are some of
examples of assertions embedded in the RTL for the DUT.

//read must have zero wait response

assert_read_zero_wait : assert property (@(posedge xbus_clock) (xbus_start_c
== 1'b1) && (xbus_selected == 1'b1) && (xbus_read = = 1'b1) |=>(xbus_wait
== 1'b0));

• The name assert_read_zero_wait before the colon “:” specifies the name of the
assertion.

• The clock to be used for evaluation of the assertion is specified using @ (posedge
xbus_clock).

• A property just defines a behavior pattern; it is not until a property is asserted
using keword assert that an obligation is imposed on the design to behave as the
property specifies.

• The keyword property specifies that the statement that follows is the check to be
performed

• The output of the SVA assertion is a failure message, its associated waveform and
coverage information.

Other examples of embedded assertions are as follows:

//The xbus_addr[15:8] must match base_addr [15:8]
 assert_xbus_selected : assert property (@(posedg e xbus_clock)
(xbus_addr[15:8] == base_addr[15:8]) |-> (xbus_sele cted == 1'b1));

// sv assertions to check decoding of registers
 assert_xbus_reg0_select : assert property (@(pos edge xbus_clock)
(xbus_addr[7:0] == 8'b00000000) |-> (xbus_reg0 == 1 'b1));
 assert_xbus_reg1_select : assert property (@(pos edge xbus_clock)
(xbus_addr[7:0] == 8'b00000001) |-> (xbus_reg1 == 1 'b1));
 assert_xbus_reg2_select : assert property (@(pos edge xbus_clock)
(xbus_addr[7:0] == 8'b00000010) |-> (xbus_reg2 == 1 'b1));
 assert_xbus_reg3_select : assert property (@(pos edge xbus_clock)
(xbus_addr[7:0] == 8'b00000011) |-> (xbus_reg3 == 1 'b1));

Note that above specified assertions run with both formal analysis(static) and
simulation(dynamic) tools.

The example of external assertions is in the protocol checker topic.

3. Writing Bus Functional Models

Bus Functional Model(BFM) for a device interacts with the DUT by both driving and
sampling the DUT signals. One of the BFM’s requirements for reusability is the ability to
connect and interface to higher layers of testbench supporting multiple languages as well
as support of different levels of RTL abstraction. For example support of Transaction
Level Models or acceleration.

To develop a BFM first you need to create the data struct for transfer and then write the
protocol implementation to drive the signals. The following examples walk you through
all the significant details involved in developing a bus functional model. Before we dive
into example details, let us discuss some guidelines for modeling a BFM:

• Declare a data item for transfer as a struct that has all the relevant fields for
passing the data transaction to the BFM.

• Data item is preferably declared using packed struct at BFM level for
synthesizability support and communication to other languages.

• BFM is written as a module that implements the protocol.

• The communication to BFM is via tasks defined in bfm interface while the actual
implementation of protocol is in the BFM module.

• On one side BFM is connected to the DUT through DUT interface to connect to
DUT signals and on the other side it is connected to the testbench through the task
interface.

In the example, to facilitate the cross language communication and support the
requirement from acceleration synthesis style, a packed struct is used to represent the
transfers on the bus. This struct contains information on the required physical fields of
the transaction, like address, data, size, type, and so forth but also the meta fields related
to transaction, such as the delay for transmission, idle gap, and so on.

Example – Struct for the Master BFM transfer

typedef enum {NOP, READ, WRITE} vr_xbus_read_write_ t;
typedef bit [VR_XBUS_ADDR_WIDTH - 1:0] vr_xbus_addr _t ;

//This struct represents base transaction data item
typedef struct packed{
 vr_xbus_addr_t addr; //address field
 vr_xbus_read_write_t read_write; //read write field
 int size; //size field
 bit [VR_XBUS_SIZE - 1:0][7:0] data; //data con tents
 int error_pos_m; //position of error
 int transmit_delay; //transmission delay befor e driving
 int idle_gap; //idle gap, no signal driven

 } vr_xbus_trans_s;

The following example shows the tasks that implements the Master BFM protocol,
making use of above struct for communication. BFM is written as a module that contains
following tasks:

Example – Task implementing Master transfer

module vr_xbus_master_bfm(input…….);
……………
//Drives all phases of transfer.
task drive_transfer (input vr_xbus_trans_s t);
 messagef(MEDIUM,"Transfer accepted: ");
 print_trans(t);
 messagef(MEDIUM,"Transfer started: ");
 repeat(bfm_trans.transfer.transmit_delay) @ (posedge sig_clock);
 arbitrate_for_bus(); //arbitration phase
 messagef(MEDIUM,"Arbitration succeeded: ");
 drive_address_phase(t); //address phase
 messagef(MEDIUM,"Address Phase completed: ");
 drive_data_phase(t); //data phase
 messagef(MEDIUM,"Data Phase completed: ");
 print_trans(t);
endtask: drive_transfer
//other tasks
…………
endmodule

It is the main task of the master to drive all phases of transfers. Note the usage of
“messagef” task for consistent format of printing that takes in the verbosity of message as
argument.

Following code shows the example of data phase driving task:

//Drives data phase of the transfer
task drive_data_phase(input vr_xbus_trans_s t);
 bit err;
 for(int i = 0; i <= t.size-1; i ++)
 begin
 if (i == (t.size-1))
 xbus.sig_bip <= 0; //Drive the xbus signal sig_bip
 else
 xbus.sig_bip <= 1;
 case (t.read_write)
 READ : read_byte(t, i, err);// call read_byte task

 WRITE : write_byte(t, i, err);//call write_byte task
 endcase
 end //for loop
 xbus.sig_data_out <= 8'bz;
 xbus.sig_bip <= 1'bz;
endtask: drive_data_phase

For reusability, the implementation of the BFM functionality should be kept as
independent of the communication to the BFM as it can be. The SystemVerilog interface
language construct and support of the tasks in the interface provides a simpler way to
implement this.

The BFM itself is written as a module as shown. To communicate to the BFM,
put_transaction and get_transaction tasks are defined in the BFM interface. To send a
data item to the BFM, you can populate the fields of the struct and send it through the
put_transcaction provided in the BFM interface. For example:

//Declare the xbus transaction data item - my_data
//populate the struct fields or randomize
//Send to the BFM where bfm_if is BFM interface tha t has task
//put_transaction
bfm_if.put_transaction(my_data);

BFM module also has the always block that looks for the data item to be ready and gets
the transaction as soon as it sees it. This data item is transferred to the main
drive_transfer task of the master BFM.

//This always block pulls the transaction from the higher layers when
// it sees the data item ready.
vr_xbus_seq_s bfm_trans; //defined below
always @(bfm_if.item_ready)
begin
 bfm_if.get_transaction(bfm_trans);
 drive_transfer(bfm_trans.transfer);
 ->bfm_if.item_done;
end

Note that the transaction that represents the xbus transfer is obtained by the
bfm_if.get_transaction task as “bfm_trans” struct. The transaction that represents the
master BFM data item struct is passed onto the drive_transfer task as
“bfm_trans.transfer” struct. The xbus “bfm_trans” struct(declared as vr_xbus_seq_s as
shown below) has extra fields associated with it that are not required by the master but by
the bus for example error position and wait states.

Below is the data item struct that represents the complete xbus transfer.

//This struct represents the transfer struct for Xb us
typedef struct packed{
 vr_xbus_trans_s transfer;
 bit[7:0][31:0] wait_states;
 int error_pos;
}vr_xbus_seq_s;

Notice that it has the transfer struct and extra fields for wait states per byte of data
transfer and also an extra field for the error position.

The interface access tasks for the BFM can be implemented as shown below. These tasks
are implemented in a generic way and can be used by any of the BFMs. Following tasks
reside in an interface.

interface bfm_if();
 ……………………

task automatic put_transaction(input vr_xbus_seq_s T);
 //Get the bus lock
 bus_request();
 //Copy the transaction to local sequence

 seq = T;
 //Trigger event item_ready
 ->item_ready;
 //Wait for event item_done
 @item_done;
 //Release the bus lock
 bus_release();
endtask: put_transaction

task automatic get_transaction(output vr_xbus_seq_s T);
 //Copy the transaction to BFM.
 T = seq;
endtask: get_transaction
………….

endinterface

Both of these tasks are automatic tasks so that multiple sources can call these at the same
time. The put_transaction task asks for the bus request and triggers an event item_ready,
notifying the BFM that the data item is ready for the transfer. The BFM gets this
transaction and triggers the item_done event, notifying the initiating task that the transfer
is done. At this point the control to the bus is relinquished. The bus_request and
bus_release tasks are implemented as shown below:

task get(input int n = 1);
 wait(n <= keys);
 keys = keys - n;
endtask: get

task put(input int n = 1);
 keys = keys + n;
endtask: put

task bus_request();
 get();
endtask: bus_request

task bus_release();
 put();
endtask: bus_release

3.1. Slave BFM
The Slave BFM in the Xbus example is implemented the same way as recommended.
The actual task implementing the protocol that responds to the transfers on the bus is
called respond_to_transfers(). The slave BFM is connected to the slave ports of the DUT
interface. The interface for communication to slave BFM is via the same bfm interface
tasks.

3.2. Connectivity to the DUT
We discussed the connectivity of BFMs to the testbench via interface tasks. Here, let us
discuss connectivity of the BFMs to the DUT.
It is recommended to use the interface to connect to DUT for connection to DUT signals.
In most cases, because of legacy the DUT is written without providing any actual

systemVerilog interface for the ports in which case a wrapper can be created so that the
BFMs are connected to the DUT through an interface. Here is an example of the DUT
interface for Xbus:
Example – DUT Interface

interface xbus_if (input logic xbus_clock, input l ogic xbus_reset);
 logic xbus_request;
 logic xbus_grant;
 logic [VR_XBUS_ADDR_WIDTH-1:0] xbus_addr;
 logic [VR_XBUS_SIZE:0] xbus_size;
 logic xbus_read;
 logic xbus_write;
 logic xbus_start;
 logic xbus_bip;
 wire [VR_XBUS_DATA-1:0] xbus_data;
 logic xbus_wait;
 logic xbus_error;
 modport master(output xbus_request,

 input xbus_error);
 modport slave (input xbus_clock,

 output xbus_error);
endinterface

Note the use of modports in the interface. Modport is required for the interface port to
behave as the output for one module and the input for other. Modports configure the
directions of various variables inside the interface based on which module is passed to the
interface in its port list. For example sig_wait and sig_error are inputs to the master but
outputs to the slave. So, in this case, there are two modports defined: one for master and
one for slave. When the master and slave are instantiated, the master connection uses the
“xbus_if.master’ and the slave uses “xbus_if.slave”.
Inside the master and slave BFMs, the access to the interface is directly through the
interface name. For example, inside master or slave, the xbus_error can be seen as
“dut_if.xbus_error” not “dut_if.master.xbus_error” or “dut_if.slave.xbus_error”.

4. Bus Monitor

The bus monitor is responsible for extracting signal information from the DUT and
translating it into the meaningful events and status information. This information is
available to other components and to the test writer. The monitor should never rely on the
information collected by other components such as the BFM. The bus monitor
functionality has to be limited to the basic monitoring that is always required. The
additional high-level functionality that might be required can be implemented separately
on top of the monitor. This includes protocol checkers, scoreboards, coverage, and such.
The bus monitor in the XBus example is provided as a global monitor. The main features
of Xbus monitors are:

• Generates events based on bus activity
• BFMs and monitors depend on these events for the main activities happening on

the protocol.
• Collects the data for transfers

All the bus monitor events to be shared are in a package that is imported by master, slave
and other modules.
As stated, the events that the XBus bus monitors emit are global to the XBus environment
and are shared by different components through global declarations in the XBus package.
Below are few examples of such events that are triggered by the monitor.

//address phase triggered one cycle after the sig_s tart
always @(posedge sig_start)
 @(posedge sig_clock)
 ->address_phase;

//Nop cycle
always @(address_phase)
 if((sig_read == 0) && (sig_write == 0))
 ->nop_cycle;

//Following always blocks triggers event at normal address phase
always @(posedge sig_clock)
 if((sig_read ==1) || (sig_write ==1)) ->normal_add ress_phase;

Here is the example monitor code that collects the transfer information from the bus:

task monitor_address_phase();
 monitor_resp.transfer.addr = sig_addr;
 monitor_resp.transfer.size = get_size();
 monitor_resp.transfer.read_write = get_read_wri te();
 monitor_resp.wait_states[g_i] = 0;
 monitor_resp.slave_id = 0;
endtask: monitor_address_phase

task monitor_wait_states();
 monitor_resp.wait_states[g_i] = monitor_resp.wa it_states[g_i] + 1;
endtask: monitor_wait_states

always @(data_start)
g_i = 0;

task monitor_data_byte();
 monitor_resp.transfer.data[g_i] = sig_data;
 g_i++;
 if (sig_error == 1)
 monitor_resp.transfer.error_pos_m = g_i + 1;
 else monitor_resp.transfer.error_pos_m = 0;
 if ((g_i == (monitor_resp.transfer.size)) |
(monitor_resp.transfer.error_pos_m > 0))
 handle_transfer_end();
 else monitor_resp.wait_states[g_i] = 0;
endtask: monitor_data_byte

task handle_transfer_end();
 num_transfers++;
 -> transfer_end;
 print_monitor_resp(monitor_resp);
endtask: handle_transfer_end

task show_status();
 messagef(MEDIUM,"Bus monitor detected %d transf ers",num_transfers);
endtask: show_status

Monitor can also collect the coverage information. In this example the coverage is
collected based on each of the transfers. The following code is an example of coverage
group defined in the master agent. It collects the coverage information at the end of each
transfer:

covergroup transfer_end_cg @(transfer_end);
option.auto_bin_max=4;
trans_data : coverpoint data_cg;
trans_type : coverpoint rw_cg;
trans_addr : coverpoint addr_cg;
endgroup
transfer_end_cg transfer_end_inst = new();

The coverpoints are updated at end of transfer in m onitor task as
follows:

rw_cg = m_t.read_write; //m_t is the current transa ction
 data_cg = m_t.data;
 addr_cg = m_t.addr;

5. Protocol Checker
Typically, the protocol checker is used to verify that the protocol specification is not
violated. The checker can be implemented as a separate module, or can be part of the
monitor. The checker operates based on the events and data collected by the monitor. It
validates the basic data item that is transferred and the related timing requirements
according to the protocol. The implemention is validated by assertions that get fired when
the checks are violated.

The protocol checker provided in the XBus environment is a separate module that is
instantiated at the top-level environment. It can be disabled by setting up the
configuration for HAS_CHECKS at the environment level. The checks are written using
SVA assertions. Here are some examples:

// Only one gnt line may be asserted at a time
// (Spec section 3)
always @(arbitration_phase)
begin
 if(!sig_reset)
 assertOneGrant:assert ($onehot0(gnt))
 else
 dut_error("ERR_READ_AND_WRITE\n Both read and write signals were
asserted together");
end

// Read must not be X or Z during Address Phase
// (Spec section 4)
always @(normal_address_phase)
 begin
 assertReadNotXorZ:assert (!($isunknown(mon_clk. sig_read)))
 else
 dut_error("ERR_READ\n READ went to X or Z du ring Address Phase");
end

// Start must not be X or Z except during reset
// (Spec section 3)
assertStartNotXorZ:assert property (

@posedge(sig_clock) disable iff (sig_reset) (sig_st art == 1) || (sig_start ==
0))
else
 dut_error("ERR_START_XZ\n Start went to X or Z");

The dut_error is another utility task used here that allows the user to have control of the
action taken on protocol violations such as stopping the simulation or continuing and
updating the simulation with total number of errors or warnings that have been found.
The clocking block can be used at the protocol checker to make sure that the signals are
sampled for checking with regard to the positive edge of clock when they are stable.

default clocking mon_clk @(posedge sig_clock);
 default input #VR_XBUS_CLOCK/10; //Input delay o f 1 ns.
 input sig_size;
 input sig_read;
 input sig_write;
 input sig_bip;
 input sig_wait;
 input sig_error;
endclocking

6. Top Level connectivity

Following code shows the top-level testbench connectivity using a DUT interface:

module xbus_tb_top();
//Declarations
dut_dummy_if xbus(xbus_clock,xbus_reset); //instan tiate dut interface
dut_wrap dut(xbus); //instantiate dut
vr_xbus_bus_monitor_wrap Monitor(xbus); //instanti ate monitor
vr_xbus_bfm_if mbfm_if(); //instantiate master bfm interface
vr_xbus_bfm_if sbfm_if(); //instantiate slave bfm i nterface
vr_xbus_slave_bfm Slave(xbus.slave, sbfm_if); //in stantiare slave
vr_xbus_protocol_checker Protocol_checker(xbus); / /protocol checker
vr_xbus_master_bfm Master(xbus.master, mbfm_if); / /master BFM
test tests(mbfm_if); //Test
always
 #5 xbus_clock = ~xbus_clock;
endmodule

For making the above connectivity more configurable based on parameters, you can use
the “generate” language construct as in the example below. Above definition of module
will change for protocol checker and slave instantiations as follows:

 //For protocol checker instantiate based on the VR_ XBUS_HAS_CHECKER
 //parameter.

generate
if(VR_XBUS_HAS_CHECKER)
begin:pc
 vr_xbus_protocol_checker checker(xbus);
end
endgenerate

//Instantiate the slave instances based on how many SLAVE_INSTANCES defined
// in XBus environemnt setup.
generate
genvar si;
for (si=0; si < VR_XBUS_SLAVE_INSTANCES; si++)

begin: sl
 vr_xbus_slave_bfm slave(xbus.slave, sbfm_if);

 end
 endgenerate

The hierarchical access to these components will be xbus_tb_top.pc.checker and
xbus_tb_top.sl[0].slave (for first instance of slave) respectively.

6.1. Package Declarations

The package construct is provided in SystemVerilog for the declarations that can be
shared among different modules, macromodules, interfaces, programs, or other packages.
It also groups commonly used type declarations. Here is example of usage of package in
XBus env:

package vr_xbus_pkg;

//All these parameters define the configuration rel ated to Xbus environment
parameter VR_XBUS_MASTER_INSTANCES = 2; //Number of Master instances
parameter VR_XBUS_SLAVE_INSTANCES = 1; //Number of Slave instances
parameter VR_XBUS_SIZE = 8; //Size of data array of bytes

 ……………………………..
typedef enum {NOP, READ, WRITE} vr_xbus_read_write_ t;
typedef bit [VR_XBUS_ADDR_WIDTH - 1:0] vr_xbus_addr _t ;

//This struct represents base transaction data item
typedef struct packed{
 vr_xbus_addr_t addr;
 vr_xbus_read_write_t read_write;
 int size;
 bit [VR_XBUS_SIZE - 1:0][7:0] data;
 bit check_error;
 int error_pos_m;
 int transmit_delay;
 int idle_gap;
 } vr_xbus_trans_s;

//Some utiltites for printing the structs

// Global declarations for Bus Monitor
vr_xbus_monitor_response_s monitor_resp;
 event normal_address_phase;
 event reset_end;
 event data_valid;
 event arbitration_phase;
 event wait_state;
 event transfer_end;
 int num_transfers;
………………………………..

endpackage: vr_xbus_pkg

The package file provides the following three types of declarations:

• The typedef declarations are used for for commonly used structs ,which are the
xbus transaction data item for master, slave and monitor. The typedef declarations
are also used for the configuration setup structs for master and slave BFMs.

• The utility tasks are used for printing above structs.
• The global declarations are used for the bus monitor - the global events to be

shared by other components of xbus environment.
To use the package, it is imported using the following statement:

import vr_xbus_pkg::*

While integrating different environments with different packages, name collisions must
be avoided.

7. Generating Test Stimulus
Tests drive stimulus to the DUT via BFMs. A typical test creates a data item to be sent to
the BFM and calls the BFM task to drive this data. Tests connect to the BFM through the
interfaces and remain independent and reusable or can have direct calls to the BFM
access tasks.
Following is an example of a test using interfaces. It is defined as a program block that
sends the stimulus to the DUT through the BFM. The test defines a new transaction,
randomizes its fields, and passes the transaction on to the BFM. The test is instantiated in
top level as shown in example for top level connectivity.

program test(vr_xbus_bfm_if bfm_if);
xbus_trans_c trans1; //xbus_trans_c is a class data item
initial
begin
 start_test(); //Call utility task to start the te st.
 trans1 = new();
 for (int i = 0; i <= 10; i ++)//Send 10 transacti ons
 begin
 trans1.set_size(1);//set the size for transac tion to 1
 success = trans1.randomize();
 assert(success);
 bfm_if.put_transaction(trans1.data);
 end
 end_test(); //Call utility task to end the test
end
endprogram

The class object used in example below is defined as follows:
class xbus_trans_c;
 rand vr_xbus_seq_s data;
 int size_val;
 bit read_write;
 …..
//define the constraint block
constraint c1 {
seq_data.transfer.addr >= min_addrs;
seq_data.transfer.addr <= max_addrs;
if(size_val == 0) seq_data.transfer.size inside {1 ,2,4,8};
else seq_data.transfer.size == size_val;
seq_data.transfer.idle_gap == 0;
if(read_write == 0) seq_data.transfer.read_write == 2;
else if(read_write == 1) seq_data.transfer.read_wri te == 1;

seq_data.wait_states == 0;
}
//Constructor for the class.
function new();
min_addrs = 13;
max_addrs = 100;
read_write = 0;
size_val = 0;
endfunction
//Functions to set the constraints
task set_size(input int sz);
size_val = sz;
endtask
......
task print();
.........
endtask
endclass

Tests can share common functionality from a library. This library defines a common set
of tasks that are required by different tests in the form of generalized scenarios. For
example, each test requires some initialization sequence that can be generalized and put
in that shares common tasks defined in the library is as follows:

program test();
 int num_of_writes;
 initial
 begin
 set_seed();
 for(int i = 0; i < 10; i ++)
 begin
 randcase
 10: seq_lib.BASIC();
 20: seq_lib.WRITE_READ_RANDOM(5);
 30: seq_lib.RAND_SIZE(10);
 endcase
 end
end

endprogram the library and made available as a task to be accessed by each test. An
example of a test

8. References

1. Incisive Plan to Closure Methodology, Cadence Design Systems, Inc.
2. SystemVerilog 3.1a Language Reference Manual
3. SystemVerilog For Design : A Guide to Using SystemVerilog for Hardware Design
and Modeling -- by Stuart Sutherland, et al;

