
Slides © 2006-7 Doulos Ltd. All rights reserved.

David Long, John Aynsley
and Jonathan Bromley,
Doulos

Building a SystemVerilog
Universal Verification
Component with the
Incisive Plan-to-Closure
Methodology

Session 2.12

Building a SystemVerilog
Universal Verification Component

• Introduction

• The Verification Plan

• Assertions, Coverage and Constraints

• SystemVerilog Testbench Architecture

CONTENTS

Slides © 2006-7 Doulos Ltd. All rights reserved.

SystemVerilog for Verification

• SystemVerilog has verification features not found in VHDL or Verilog:

• Assertions and a temporal sequence language

• Functional coverage

• Constrained random test vectors

• Dynamic creation of transaction objects

• Extensible classes for verification components and transactions

• Features to avoid simulation races between test bench and DUT

• But can be a steep learning curve for RTL/HDL designers

• Some sort of framework for block-level test benches would help …

Slides © 2006-7 Doulos Ltd. All rights reserved.

Incisive Plan-to-Closure Methodology

• URM (Universal Reuse Methodology) / “Design Team Verification”

• Module-Based with Classes URM

• SystemVerilog verification environment

• Classes for transaction objects

• Does not require expertise in OOP (polymorphism, virtual methods, etc)

• Guidelines to create reusable Universal Verification Components (UVCs)

• Our experience of actually getting this to work ...

Slides © 2006-7 Doulos Ltd. All rights reserved.

System to be Verified

module
cpu

module
cpu

module
sram

module
sram

module
rom

module
rom

module
serial_io
module
serial_io

module
bus_arbiter

module
bus_arbiter

Bus

• Bus-based sub-system with CPU

• CPU, Serial IO and arbiter are RTL SystemVerilog

Slides © 2006-7 Doulos Ltd. All rights reserved.

UVC used with Verification Plan

• Identify key requirements and verification strategy for each
requirement before starting to develop testbench!

• Assertion-Based Verification - uses SystemVerilog property to
continuously check design behaviour, e.g. interface protocol

• Coverage-Driven Verification - uses SystemVerilog covergroup
to record how many times a condition has been met

Following a write there must not be a read for at
least 1 clock cycle.

The write enables should each stay high for only
one clock cycle

Following a write there must not be a read for at
least 1 clock cycle.

The write enables should each stay high for only
one clock cycle

Forward and backward jump operations for every step
in the range 1 to 15 should be exercised.
Forward and backward jump operations for every step
in the range 1 to 15 should be exercised.

Copyright © 2006-7 Doulos Ltd. All rights reserved.Slides © 2006-7 Doulos Ltd. All rights reserved.

Verification PlanVerification Plan

The Verification Process

RTL DesignRTL Design

TestsTestsCoverage
Model

Coverage
Model

Verification
Environment
Verification

Environment

SpecificationSpecification

SimulationSimulation

RunMeasure

Coverage-centric processCoverage-centric process

AssertionsAssertions
FeaturesFeatures

CodeCode

DocumentsDocuments

Management (prioritisation, resource utilisation)

Copyright © 2006-7 Doulos Ltd. All rights reserved.Slides © 2006-7 Doulos Ltd. All rights reserved.

From Features to Tests

• The NBG output
pin will reflect the
status of the
internal FAIL
register bit

• A checksum
calculated using
the CCITT-16
polynomial is
appended

•

• The NBG output
pin will reflect the
status of the
internal FAIL
register bit

• A checksum
calculated using
the CCITT-16
polynomial is
appended

•

program test1;
random_seed = ...
verif_env(bus_if)

program test1;
random_seed = ...
verif_env(bus_if)

program test2;
constraint { ... }
verif_env(bus_if)

program test2;
constraint { ... }
verif_env(bus_if)

Features Tests

• Features grouped by specification, implementation, and functionality
• Many-to-many mapping between features and coverage points
• Coverage and tests implemented in verification language or scripts
• Grade tests by coverage achieved, bugs found, run times etc

covergroup ...
covergroup...
covergroup...
covergroup

covergroup ...
covergroup...
covergroup...
covergroup

Coverage Model

cover ...
cover ...
cover ...
cover ...

5: if (en)
5: q <= d;
0: else

5: if (en)
5: q <= d;
0: elseBack-annotate

coverage

Tests inspired
by features

Slides © 2006-7 Doulos Ltd. All rights reserved.

Top

env Bus Slave UVC

Test program

URM Testbench Structure

initial

Sequence task callsSequence task calls

Environment contains
multiple UVC modules
Environment contains
multiple UVC modules

Test definitionTest definition

Monitor

DUT

Bus Master UVC
Master Agent

BFM module

BFM interface

Sequence
driverConfig

DUT interface
Interface encapsulates

bus signals
Interface encapsulates

bus signals

Monitor

Protocol check
Coverage
collector

Protocol-specific
"Interface UVCs" built
from 1 or more agents

Protocol-specific
"Interface UVCs" built
from 1 or more agents

Slides © 2006-7 Doulos Ltd. All rights reserved.

Agent in SystemVerilog URM

Monitor

Master Agent

BFM module

BFM interface

Sequence
driverConfig

Module containing "standard" tasksModule containing "standard" tasks

Class objectClass object

Task calls, eventsTask calls, events

Same architecture as eRMSame architecture as eRM

Monitor

Protocol check

Coverage
collector

Standardized task callsStandardized task calls

DUT

DUT interface

Slides © 2006-7 Doulos Ltd. All rights reserved.

Sequence Pushes Transactions

module ex_seq_driver_m
(ex_bfm_if bfm_if);

ex_bfm_trans_c cur_trans;

task simple (...);
ex_bfm_trans_c trans;

trans = new cur_trans;
assert(trans.randomize());
bfm_if.put (trans);

endtask : simple

task scenario_x (...);
...
simple (...);
...

module ex_seq_driver_m
(ex_bfm_if bfm_if);

ex_bfm_trans_c cur_trans;

task simple (...);
ex_bfm_trans_c trans;

trans = new cur_trans;
assert(trans.randomize());
bfm_if.put (trans);

endtask : simple

task scenario_x (...);
...
simple (...);
...

BFM interface

Sequence
driver

BFM module Independent of
BFM details

Independent of
BFM details

Sequence built from
other sequences

Sequence built from
other sequences

Template for new transactionsTemplate for new transactions

DUT

DUT interface

Slides © 2006-7 Doulos Ltd. All rights reserved.

Transaction Class

class ex_bfm_trans_c;
rand ex_bfm_trans_s tx;

int min_delay;
int max_delay;
bit enable_delay_constraint;

constraint tx_delay_range {
if (enable_delay_constraint)
tx.delay inside{[min_delay:max_delay]};

}

function new();
min_delay = 1;
...

endclass: ex_bfm_trans_c

class ex_bfm_trans_c;
rand ex_bfm_trans_s tx;

int min_delay;
int max_delay;
bit enable_delay_constraint;

constraint tx_delay_range {
if (enable_delay_constraint)
tx.delay inside{[min_delay:max_delay]};

}

function new();
min_delay = 1;
...

endclass: ex_bfm_trans_c

ex_bfm_trans_cex_bfm_trans_c

1min_delay

15max_delay

1
enable_
delay_
constraint

...tx

tx_delay_
range ...

Transaction data structTransaction data struct

ControlControl

ConstraintConstraint

ConstructorConstructor

Slides © 2006-7 Doulos Ltd. All rights reserved.

Derived Transaction Class

class derived_trans_c extends ex_bfm_trans_c;

constraint tx_delay_odd {
if (enable_delay_constraint)
tx.delay[0] == 1;

}

function new();
super.new();
...

class derived_trans_c extends ex_bfm_trans_c;

constraint tx_delay_odd {
if (enable_delay_constraint)
tx.delay[0] == 1;

}

function new();
super.new();
...

Additional constraintAdditional constraint

Calls base class constructorCalls base class constructor

task simple (...);
ex_bfm_trans_c trans;

trans = new cur_trans;
assert(trans.randomize());

...

task simple (...);
ex_bfm_trans_c trans;

trans = new cur_trans;
assert(trans.randomize());

...

Handle can point to derived classHandle can point to derived class

Includes derived class constraintsIncludes derived class constraints

Shallow copyShallow copy

Slides © 2006-7 Doulos Ltd. All rights reserved.

interface ex_bfm_if;

ex_bfm_trans_s trans;

task automatic put
(input ex_bfm_trans_c T);

. . . endtask
task automatic get

(output ex_bfm_trans_c T);

. . . endtask
task automatic done

(input ex_bfm_trans_c T);

. . . endtask

. . .

interface ex_bfm_if;

ex_bfm_trans_s trans;

task automatic put
(input ex_bfm_trans_c T);

. . . endtask
task automatic get

(output ex_bfm_trans_c T);

. . . endtask
task automatic done

(input ex_bfm_trans_c T);

. . . endtask

. . .

The BFM Interface

DUT

BFM module

BFM interface

Sequence
driver

Standardised access to any BFM
copied from URM library

Standardised access to any BFM
copied from URM library

DUT interface

Slides © 2006-7 Doulos Ltd. All rights reserved.

BFM Pulls Transactions

module ex_bfm_m (
ex_bfm_if bfm_if ,
input wire DUT_clk ,
...);

ex_bfm_trans_c trans;

initial
forever begin
bfm_if.get(trans);
drive_transaction(trans);
bfm_if.done(trans);

end

task drive_transaction
(input ex_bfm_trans_c T);

...

module ex_bfm_m (
ex_bfm_if bfm_if ,
input wire DUT_clk ,
...);

ex_bfm_trans_c trans;

initial
forever begin
bfm_if.get(trans);
drive_transaction(trans);
bfm_if.done(trans);

end

task drive_transaction
(input ex_bfm_trans_c T);

...

BFM interface

Sequence
driver

BFM module

Signal wigglesSignal wiggles

DUT signalsDUT signals

InterfaceInterface

BlockingBlocking

DUT

DUT interface

Slides © 2006-7 Doulos Ltd. All rights reserved.

Monitor

Monitor Detects Bus Activity

DUT

DUT interface

module ex_bus_mon_m (
input wire DUT_clk , ...);

mem_write: cover property (
@(posedge DUT_clk)
first_match(
bus_if.wr
##1[1:$]
bus_if.wack)

) cover_mem_wr(bus_if.addr, ...);

property after_we;
@(posedge bus_if.clk) disable iff

(bus_if.reset)
bus_if.we |=> (

!bus_if.we && !bus_if.re);
endproperty: after_we
assert property (after_we);

module ex_bus_mon_m (
input wire DUT_clk , ...);

mem_write: cover property (
@(posedge DUT_clk)
first_match(
bus_if.wr
##1[1:$]
bus_if.wack)

) cover_mem_wr(bus_if.addr, ...);

property after_we;
@(posedge bus_if.clk) disable iff

(bus_if.reset)
bus_if.we |=> (

!bus_if.we && !bus_if.re);
endproperty: after_we
assert property (after_we);

Called when sequence matchesCalled when sequence matches

Slides © 2006-7 Doulos Ltd. All rights reserved.

Functional Coverage

• Coverage points do not reveal how conditions are met

• SystemVerilog covergroup can record sampled value occurrence
in bins and cross-coverage between coverpoint pairs to
measure “Functional” coverage

• Performed by coverage collector module

Slides © 2006-7 Doulos Ltd. All rights reserved.

Monitor

Coverage
Collector

Writing to Coverage Collector

DUT

DUT interface

module ex_bus_mon_m (
input wire DUT_clk , ...);

ex_trans_fifo tx();

ex_cov_collector_m c1(.trans(tx));

function void cover_mem_wr(...);
mem_trans_t tdata;
...
tx.put(tdata);

endfunction
...

module ex_bus_mon_m (
input wire DUT_clk , ...);

ex_trans_fifo tx();

ex_cov_collector_m c1(.trans(tx));

function void cover_mem_wr(...);
mem_trans_t tdata;
...
tx.put(tdata);

endfunction
...

Interface "channel"Interface "channel"

Call interface methodCall interface method

Called when sequence matchesCalled when sequence matches

Slides © 2006-7 Doulos Ltd. All rights reserved.

Monitor

Coverage
Collector

The Coverage Collector

DUT

DUT interface

module ex_cov_collector_m (
ex_trans_fifo trans);

addr_t addr_cp;
mode_t rw_cp; ...

covergroup cov_mem_acc;
mon_addr: coverpoint addr_cp {
bins all[] = { [0:15] };
ignore_bins bad = {0,5,8}; }

...
mem_w: cross mon_addr, mon_rw;

endgroup

cov_mem_acc mem_c = new;

always
begin ...
trans.get(tx);
addr = tx.addr; ...
mem_c.sample();

module ex_cov_collector_m (
ex_trans_fifo trans);

addr_t addr_cp;
mode_t rw_cp; ...

covergroup cov_mem_acc;
mon_addr: coverpoint addr_cp {
bins all[] = { [0:15] };
ignore_bins bad = {0,5,8}; }

...
mem_w: cross mon_addr, mon_rw;

endgroup

cov_mem_acc mem_c = new;

always
begin ...
trans.get(tx);
addr = tx.addr; ...
mem_c.sample();

InstanceInstance

BlockingBlocking

Mirror registersMirror registers

Slides © 2006-7 Doulos Ltd. All rights reserved.

program vs. module

Test program

Monitor

Master Agent

BFM module

BFM interface

Sequence
driverConfig

initial

SystemVerilog program-level code:

• program
• Randomization, classes
• Postponed sampling and updating
• Dynamic creation of objects

SystemVerilog module-level code:

• module, interface
• Verilog simulation semantics
• Static object hierarchy

Monitor

Protocol check

Coverage
collector

DUT

DUT interface

Slides © 2006-7 Doulos Ltd. All rights reserved.

Test Configuration and Control

program test_p();
initial
begin
randcase
60: begin
derived_trans_c t;

t = new;
env.master.a0.seq_inst.set_generated_trans(t);

end

40: begin ...
endcase
start_test();
...
#100;
end_test();

program test_p();
initial
begin
randcase
60: begin
derived_trans_c t;

t = new;
env.master.a0.seq_inst.set_generated_trans(t);

end

40: begin ...
endcase
start_test();
...
#100;
end_test();

Transaction templateTransaction template

Alternative test casesAlternative test cases

URM Package methodsURM Package methods

Sequence generatorSequence generator

Slides © 2006-7 Doulos Ltd. All rights reserved.

Conclusions

• Testbench architecture consists of modules plus a program

• Coding style similar to Verilog and VHDL

• DUT, BFM and sequence driver are independent

• Classes used for transactions only

• Test program can pass randomized transactions to sequence driver

• Does not require expertise in object-oriented programming

• Test program is compact and easy to modify

• Uses "standard" infrastructure provided by UVCs

• Assertions check protocol throughout simulation

• Coverage from properties and covergroups recorded in coverage database

Copyright © 2006-7 Doulos Ltd. All rights reserved.Slides © 2006-7 Doulos Ltd. All rights reserved.

	Slide Number 1
	Slide Number 2
	SystemVerilog for Verification
	Incisive Plan-to-Closure Methodology
	System to be Verified
	UVC used with Verification Plan
	The Verification Process
	From Features to Tests
	URM Testbench Structure
	Agent in SystemVerilog URM
	Sequence Pushes Transactions
	Transaction Class
	Derived Transaction Class
	The BFM Interface
	BFM Pulls Transactions
	Monitor Detects Bus Activity
	Functional Coverage
	Writing to Coverage Collector
	The Coverage Collector
	program vs. module
	Test Configuration and Control
	Conclusions
	Slide Number 23

