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ABSTRACT 
 

The Incisive Plan to Closure Methodology (IPCM), announced earlier this year, offers the blueprint for a complete 

verification process, from creating automated and executable plans to achieving system level closure. On the other 

hand, project windows continue to shrink and systems continue to grow, containing an ever increasing number of 

subsystems, clusters and blocks, most of which are often provided by 3rd party IP vendors. The effective integration 

of such elements into a coherent system has created a number of advanced verification applications that require 

increased efficiency in the way engineers can reuse verification environments at different levels of system 

abstraction. In order to enable such advanced verification applications, a scalable process is needed to seamlessly 

enable test sequence reuse across design layers, engineering teams and support chains. 

 

This paper presents a mixed-language verification environment design process based on a “reverse-waterfall” model 

of stimulus generation. The solution enables sequence drivers at different layers to properly communicate and 

exchange test stimuli based on a concept of separation of protocol from data. A set of guidelines is proposed, 

complementary to IPCM, which provide a scalable solution for re-using sequences across design abstraction layers. 



Introduction 
As systems become ever more complex, encapsulating a plethora of subsystems, clusters and blocks, and 3rd party IP 

accounting for the majority of such components, it appears that the verification effort slowly shifts from verifying 

the components themselves, to verifying their integration into a larger unit. 

 

In the following sections, we shall examine the verification applications that facilitate an effective integration 

process, as well as the related problems that arise. Furthermore, we compare the typical system level data generation 

model against the proposed “reverse-waterfall” model and highlight its use in facilitating the integration process. 

Finally, we present real life experiences of the process using Globetech Solutions’ own implementation as part of a 

recent customer testcase. 

Verification Applications for Integration 
As mentioned above, the increased integration challenges have created a number of advanced verification 

applications that require increased efficiency in the way engineers can reuse verification environments at different 

levels of system abstraction. These applications are discussed in the sections below. 

Test Reuse 
System integration testing requires specialized tests to be 

executed at different levels of abstraction. Such specialized tests 

often include interface intensive tests, targeted at exposing bugs 

at the block’s interface specification. These tests are usually 

developed by the integrator, who has no intimate knowledge of 

the block(s) involved, thus making the process quite error-prone. 

Even worse, an invalid test that compromises a block’s interface 

specification might be mistaken for an integration failure and 

needless effort will be spent investigating the entire system. 

Furthermore, the tests have to be re-written at every level of 

integration up to the system, and even across systems, with little 

or no reuse. With an expanding system complexity and emerging 

deep embedded core hierarchies, this proves to be a daunting, 

long and extremely error prone task.  

Test Debug 
System integration debug requires certain test replay at various 

system level abstractions, in order to better isolate bugs that arise 

from the integration testing mentioned above, and verify their fix. With any number of blocks/clusters/subsystems 

suspect and little or no expertise on them available during integration, it is becoming increasingly difficult to isolate 

a bug at a particular interface and verify the fix using additional tests tailored to the particular scenario. 

 

A methodology is required, which will allow the system integrator to replay failing tests at various system level 

abstractions until the bug is isolated. Also, new tests need to be easily reproducible and executable at any abstraction 

in order to verify that the bug has been fixed. 

3rd Party IP Vendor Support 
Design IP vendors are finding it increasingly difficult to support their customers’ integration efforts due to the wide 

range of design parameters and varying system topologies, with little or no information regarding the latter. This 

means that vendor provided tests, while extremely important for verifying the IP itself, have little use to the system 

integrator, since they can not easily scale to the system level. Such tests would need to be rewritten by the integrator, 

with little or no expertise on the IP itself. 
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With 3
rd
 party IP accounting for the majority and some of the most critical components in a system, it is clear that 

such vendors need to be part of the overall integration process in order to enable test reuse across design layers, 

engineering teams and support chains. 

Typical Stimuli Generation 
The advanced verification applications mentioned above make it clear that a new way of generating stimuli in a 

complex and hierarchical system is required. When generating data for a typical cluster/subsystem/system, stimuli 

flow from top to bottom. A multi-channel sequence generator usually sits at the top and co-ordinates traffic to the 

sub systems, whereas downstream sequence generators are mostly passive and relay the transactions issued by the 

top-level generator (see Figure 1). 

 

The generated sequences from the top level multi-channel sequence generator are propagated down to the 

appropriate sub sequence drivers, where they are scheduled for delivery, using the appropriate Bus Functional 

Model (BFM), to the DUT. This process resembles a waterfall model, where data starts out from the top and flows 

downstream to the sub sequence drivers (Block A, B and C sequence drivers) and eventually to the DUT. 

 

This flow offers great control and synchronization over the data flowing downstream to the blocks, but has some 

limitations during the integration of such a cluster into a larger system, where the cluster’s native interface may no 

longer exist. In this case, the DUT still exists, but is embedded under a different interface, like a system-wide bus. 

This means that the DUT is only accessible through a new, system level interface and the cluster’s test suite can no 

longer be executed (see Figure 2).  

 

New, system level tests would have to be developed that use the new interface and target the cluster, incurring the 

problems mentioned in previous sections. The integrator would have to attempt to re-write any tests for the system 

level, a process that is inherently difficult since: 

 

• No block/cluster level expertise may be available 

• Protocol restrictions between the system and the cluster must be followed 

• Other system components must be taken into account in order for the correct data to arrive at the cluster 
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A scalable and re-usable process is clearly needed in order to overcome these challenges. A specification for such a 

process would include: 

 

• Separation of data and protocol 
A sequence item already separates raw data from semantic information. However, protocol information is 

not necessarily separated from the raw data values. For example, consider a UART sequence item that 

encapsulates UART protocol specific information, such as start/stop bits and parity along with the actual 

payload to be transmitted. 

  

• Data communication to higher level entities 

Once data is properly separated from protocol, it needs to be communicated to a higher level sequence 

driver. Since modern systems and verification environments may include components in different 

languages, e.g. SystemVerilog or SystemC, or abstraction layers (RTL/TLM), it is important that such 

communication is not limited to any specific language specific. 

 

• Data encapsulation within higher level entity 

Once the data is received in the higher level entity, it must be encapsulated in the local format and protocol, 

in order to enable delivery by a local BFM. The verification environment must be intelligent enough in 

order to process the current system topology and shape the data to target the particular component that 

originated the data. 

 

• Delivery of data from higher level entity 

Once the encapsulated data is ready, it can be fed to the local sequence driver like any other generated item. 

It can then be pushed to/pulled from the BFM and seamlessly delivered to the component that originated 

the data. 

Reverse-Waterfall Stimuli Generation 
Having considered the specification mentioned above, a new paradigm of generating sequence data can be 

developed, based on the “reverse-waterfall” model. Essentially, the test is now directed from bottom-to-top, instead 

of top-to-bottom in the typical stimuli generation model. The sequence at the block level executes like it would in 
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standalone mode, however, the sequence items are “trapped” and relayed to the parent (cluster) sequence driver. 

From this point, the parent can decide whether to satisfy the sequence items locally, using a different sub-sequence 

driver that has an available and compatible interface to the DUT. If this is not possible, the sequence driver can 

attempt to bounce the item to a higher-level sequence driver until a suitable driver is found, or drop the item 

altogether. 

 

The sequence driver is now extended with the following functionality: 

 

• Accept Port 

o Used to accept sequences from its sub sequence drivers. The implementation of this port should be 

language independent to account for sequence drivers in other languages. 

• Routing Logic 

o Used to inspect incoming sequence items and decide on the appropriate action to be taken by the 

sequence driver. Typical actions for the routing logic are: 

� Drop a sequence item 

� Drive a sequence item using an appropriate sub-sequence driver. Optionally translate the 

data from the item into a new protocol/format if interfaces are being crossed at this level 

� Combine compatible sequence items into a single transaction 

� Bounce a sequence item to a higher level sequence driver 

• Translation Layer 

o Used to encapsulate the extracted data from incoming sequences into a new protocol or format, in 

order to be delivered via a new interface.  

• Bounce Port 

o Used to bounce sequences to higher level sequence drivers, if they can not be driven locally. The 

implementation of this port should be language independent to account for sequence drivers in 

other languages. 

 

This process scales very well in a system with deep embedded core hierarchies, as sequence items can bounce 

upstream through the sequence driver hierarchy until a suitable driver is found. If no such sequence driver is found 

and there are no further upstream drivers, the item can be dropped and the test optionally aborted. Another 
interesting application would be to check such items in coverage, thus producing interesting co-relations between 

varying system architectures. An example of a system-wide application of the “reverse-waterfall” model is shown in 

Figure 4. 
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Essentially, the test developed for Block B of Cluster A, is retargeted to use one of the available transport 

mechanisms in Cluster A. Since Block B is unaware of the system topology and available transport mechanisms in 

the system, it relays its test information further upstream until a suitable sequence driver is found. Once the 

sequence item is picked up by the system sequence driver, its data is extracted. The driver uses system topology 

information in order to select an appropriate transport mechanism through Cluster A and translates the data 

accordingly using the translation layer. The item is then relayed to the appropriate sequence and loaded in its 

respective sequence driver to be scheduled for delivery. 

This process adds several benefits to the advanced verification applications mentioned in previous sections. First, 

block level tests can be easily reused in higher levels of integration testing, improving reuse across the verification 

flow. Second, block level tests can be further randomized in order to isolate a bug discovered during integration and 

new tests can be developed to verify the fix. Finally, IP vendors can now deliver new tests that use specific design 

parameters and target specific IP behavior, while the integrator can reliably reuse such tests within different system 

topologies. 

IPCM Compatibility 
This “reverse-waterfall” process needs to be carefully implemented in order to be fully compatible with the IPCM 

framework. An implementation should use the predefined uRM constructs, like sequence drivers, sequences and 

BFMs in a non-obtrusive way, so both approaches (top-down and reverse-waterfall) can co-exist in the same 

verification environment. This is very important, as both approaches would be employed at different stages of the 

design and integration process.  

 

An implementation of this process can take advantage of e’s powerful Aspect Orientation Programming (AOP) 

capabilities in order to “hide” the functionality inside an aspect. This would allow for the required functionality to 

become active simply by changing the aspect of the sequence driver according to the verification scenario. 

 

uRM’s mixed language environment support provides the necessary constructs for effective communication of 

verification environments implemented in different languages (e.g. SystemC/SystemVerilog/e) and also at different 

abstraction layers (e.g. RTL/TLM). An implementation of the “reverse-waterfall” process would have to take 

advantage of this support to enable effective communication across verification environments in a system: 

 

 

Figure 4: Test Reuse using Reverse Waterfall 
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• Intra-sequence driver communication 

uRM’s method ports can be used to implement language and abstraction independent communication 

e.g. bouncing a sequence item from one sequence driver to another 

• Intra-sequence driver synchronization 

uRM’s event ports can be used to synchronize transactions across a hierarchy of sequence drivers 

e.g. transmit the item_done event to a blocked downstream sequence driver in PULL_MODE 

• Intra-sequence driver data extraction and processing 

uRM’s support for common language constructs can be used to extract the data from the protocol and 

translate it for delivery from a new interface 

Customer Evaluation 
The “reverse-waterfall” process was implemented and used as part of a customer testcase of Globetech Solutions’ 

Verification for Test (VFT) Compiler. VFT Compiler provides the automation required when verifying complex 

embedded test component topologies, allowing for tests developed for embedded blocks to be seamlessly reused at a 

variety of system configurations and levels of abstraction. 

 

The first process of this customer testcase involved verifying the integration of 3rd party provided memory built-in 

self test (MBIST) controllers into an IEEE 1500 compliant wrapped core architecture. The IEEE 1500 is a scalable 

standard architecture for enabling test reuse and integration for embedded cores and associated circuitry. It uses 

serial and parallel test access mechanisms and a rich set of instructions suitable for testing cores, SoC interconnect 

and circuitry. The provider also made available the verification environment and test suite used to verify the IP 

itself, which would have to be used to verify the integration within the IEEE 1500 wrapper (see Figure 5). 

 
 

Figure 5: MBIST embedded in IEEE 1500 wrapper 
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VFT Compiler was used to generate a core-level verification environment which implemented “reverse-waterfall” as 

a new aspect of the existing environment. Using this new model, we were able to replay the 3rd party provided test 

suite by relaying sequences to an instance of an IEEE 1500 uVC, also instantiated by VFT Compiler, and translating 

them into IEEE 1500 transactions that target the embedded MBIST controller. Test stimuli were hence delivered to 

the MBIST DUT as if its native interface was still available (see Figure 6). 

 

The second phase consisted of a broader system level 

scenario, involving several IEEE 1500 wrappers with 
embedded MBISTs, interconnected in a daisy chain 

(see Figure 7). This was a very interesting scenario 

for integration, as it was no longer sufficient only to 

translate the MBIST data into IEEE 1500 

transactions, but also to account for system topology. 

Data would have to be properly offset, to account for 

the position of the IEEE 1500 wrapper inside the 

wrapper daisy chain in order to be properly delivered 

to the wrapper that contains the MBIST that 

requested it. 

 

If, for example, the test is directed by the MBIST 

contained in the third wrapper in the daisy chain, 

then the data delivered by the system level generator 

must also take into account the two previous 

wrappers that precede the third one. Since IEEE 

1500 is a serial scan based protocol, that would mean that the two previous wrappers should go into a bypass state, 
hence adding two extra bits in the data vector to be delivered. 

 

More complex verification scenarios may also 

allowed for several MBISTs to direct the overall 

integration verification process (see Figure 7). In 

this case, the parent sequence driver chose to merge 

these transactions into a single transaction, as long 

as the merge did not violate the test flow or protocol 

rules. The full scan chain length was used and data 

from all MBISTs was concatenated to form a 

uniform data vector, which was eventually delivered 

to all the memory controllers in the system. 

 

The full test suite developed by the IP vendor was 

successfully replayed, at all system levels and even 

with varying system topologies, with little or no 

need for manual intervention. At the end, the 

“reverse-waterfall” process was able to uncover 

several design bugs, related to violating the 

MBIST’s and IEEE 1500 wrapper’s interface 

specification, without any dedicated engineering 

effort. 

Conclusions/Future Work 
The successful customer evaluation proved that the “reverse-waterfall” model can offer a great deal of automation 

and functionality during the integration of embedded cores in a complex test architecture. The main advantages of 

following a test sequence reuse approach to verifying block integration are productivity and predictability. 
Implementing environments per our proposed methodology allows for verification to begin very early in the 

integration process and with high levels of automation. Engineers can take advantage of this productivity gain to 
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also develop additional system-level scenarios using higher-level interfaces and flows for completeness. Schedule 

predictability is also improved using our approach. By describing the integration process as part of the core-level 

deliverable verification plan, IP vendors can thoroughly communicate aspects of their designs that need to be 

validated during integration. One of the resulting core benefits is that vendors’ support overhead is hence 

significantly reduced. 

 

Design for test topologies, such as the one presented in this paper, are structured and constrained architectures, 

making it easier to implement the “reverse-waterfall” model. However, since the process is scalable and uses 

predefined verification constructs, it could also be employed in other protocol based environments, and even custom 
designs. For the latter, it is expected that additional manual configuration will be required, thus decreasing the 

amount of automation possible. System topology information is critical for this type of application. System-level 

architectural description languages, a variety of which are currently being developed in the industry, can be used to 

drive and could greatly enhance the “reverse-waterfall” model and provide even more functionality and automation. 
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