

Test Sequence Reuse from Block to System within IPCM

CDNLive! 2007 EMEA

Session 3.5

Iraklis Diamantidis
(iraklis@globetechsolutions.com)

Globetech Solutions
http://www.globetechsolutions.com

ABSTRACT

The Incisive Plan to Closure Methodology (IPCM), announced earlier this year, offers the blueprint for a complete

verification process, from creating automated and executable plans to achieving system level closure. On the other

hand, project windows continue to shrink and systems continue to grow, containing an ever increasing number of

subsystems, clusters and blocks, most of which are often provided by 3rd party IP vendors. The effective integration

of such elements into a coherent system has created a number of advanced verification applications that require

increased efficiency in the way engineers can reuse verification environments at different levels of system

abstraction. In order to enable such advanced verification applications, a scalable process is needed to seamlessly

enable test sequence reuse across design layers, engineering teams and support chains.

This paper presents a mixed-language verification environment design process based on a “reverse-waterfall” model

of stimulus generation. The solution enables sequence drivers at different layers to properly communicate and

exchange test stimuli based on a concept of separation of protocol from data. A set of guidelines is proposed,

complementary to IPCM, which provide a scalable solution for re-using sequences across design abstraction layers.

Introduction
As systems become ever more complex, encapsulating a plethora of subsystems, clusters and blocks, and 3rd party IP

accounting for the majority of such components, it appears that the verification effort slowly shifts from verifying

the components themselves, to verifying their integration into a larger unit.

In the following sections, we shall examine the verification applications that facilitate an effective integration

process, as well as the related problems that arise. Furthermore, we compare the typical system level data generation

model against the proposed “reverse-waterfall” model and highlight its use in facilitating the integration process.

Finally, we present real life experiences of the process using Globetech Solutions’ own implementation as part of a

recent customer testcase.

Verification Applications for Integration
As mentioned above, the increased integration challenges have created a number of advanced verification

applications that require increased efficiency in the way engineers can reuse verification environments at different

levels of system abstraction. These applications are discussed in the sections below.

Test Reuse
System integration testing requires specialized tests to be

executed at different levels of abstraction. Such specialized tests

often include interface intensive tests, targeted at exposing bugs

at the block’s interface specification. These tests are usually

developed by the integrator, who has no intimate knowledge of

the block(s) involved, thus making the process quite error-prone.

Even worse, an invalid test that compromises a block’s interface

specification might be mistaken for an integration failure and

needless effort will be spent investigating the entire system.

Furthermore, the tests have to be re-written at every level of

integration up to the system, and even across systems, with little

or no reuse. With an expanding system complexity and emerging

deep embedded core hierarchies, this proves to be a daunting,

long and extremely error prone task.

Test Debug
System integration debug requires certain test replay at various

system level abstractions, in order to better isolate bugs that arise

from the integration testing mentioned above, and verify their fix. With any number of blocks/clusters/subsystems

suspect and little or no expertise on them available during integration, it is becoming increasingly difficult to isolate

a bug at a particular interface and verify the fix using additional tests tailored to the particular scenario.

A methodology is required, which will allow the system integrator to replay failing tests at various system level

abstractions until the bug is isolated. Also, new tests need to be easily reproducible and executable at any abstraction

in order to verify that the bug has been fixed.

3rd Party IP Vendor Support
Design IP vendors are finding it increasingly difficult to support their customers’ integration efforts due to the wide

range of design parameters and varying system topologies, with little or no information regarding the latter. This

means that vendor provided tests, while extremely important for verifying the IP itself, have little use to the system

integrator, since they can not easily scale to the system level. Such tests would need to be rewritten by the integrator,

with little or no expertise on the IP itself.

Test

Re-Use

Test

Debug

IP

Vendor

Support

Integra-

tion

With 3
rd
 party IP accounting for the majority and some of the most critical components in a system, it is clear that

such vendors need to be part of the overall integration process in order to enable test reuse across design layers,

engineering teams and support chains.

Typical Stimuli Generation
The advanced verification applications mentioned above make it clear that a new way of generating stimuli in a

complex and hierarchical system is required. When generating data for a typical cluster/subsystem/system, stimuli

flow from top to bottom. A multi-channel sequence generator usually sits at the top and co-ordinates traffic to the

sub systems, whereas downstream sequence generators are mostly passive and relay the transactions issued by the

top-level generator (see Figure 1).

The generated sequences from the top level multi-channel sequence generator are propagated down to the

appropriate sub sequence drivers, where they are scheduled for delivery, using the appropriate Bus Functional

Model (BFM), to the DUT. This process resembles a waterfall model, where data starts out from the top and flows

downstream to the sub sequence drivers (Block A, B and C sequence drivers) and eventually to the DUT.

This flow offers great control and synchronization over the data flowing downstream to the blocks, but has some

limitations during the integration of such a cluster into a larger system, where the cluster’s native interface may no

longer exist. In this case, the DUT still exists, but is embedded under a different interface, like a system-wide bus.

This means that the DUT is only accessible through a new, system level interface and the cluster’s test suite can no

longer be executed (see Figure 2).

New, system level tests would have to be developed that use the new interface and target the cluster, incurring the

problems mentioned in previous sections. The integrator would have to attempt to re-write any tests for the system

level, a process that is inherently difficult since:

• No block/cluster level expertise may be available

• Protocol restrictions between the system and the cluster must be followed

• Other system components must be taken into account in order for the correct data to arrive at the cluster

Cluster Sequence Driver

(virtual)

Block A

Sequence Driver
Block B
Sequence Driver

Block C

Sequence Driver

Virt.

seq

Block A

Seq drv

Block B

Seq drv

Block C

Seq drv

BFM BFM BFM

DUT

Figure 1: Typical Stimuli Generation Flow

A scalable and re-usable process is clearly needed in order to overcome these challenges. A specification for such a

process would include:

• Separation of data and protocol
A sequence item already separates raw data from semantic information. However, protocol information is

not necessarily separated from the raw data values. For example, consider a UART sequence item that

encapsulates UART protocol specific information, such as start/stop bits and parity along with the actual

payload to be transmitted.

• Data communication to higher level entities

Once data is properly separated from protocol, it needs to be communicated to a higher level sequence

driver. Since modern systems and verification environments may include components in different

languages, e.g. SystemVerilog or SystemC, or abstraction layers (RTL/TLM), it is important that such

communication is not limited to any specific language specific.

• Data encapsulation within higher level entity

Once the data is received in the higher level entity, it must be encapsulated in the local format and protocol,

in order to enable delivery by a local BFM. The verification environment must be intelligent enough in

order to process the current system topology and shape the data to target the particular component that

originated the data.

• Delivery of data from higher level entity

Once the encapsulated data is ready, it can be fed to the local sequence driver like any other generated item.

It can then be pushed to/pulled from the BFM and seamlessly delivered to the component that originated

the data.

Reverse-Waterfall Stimuli Generation
Having considered the specification mentioned above, a new paradigm of generating sequence data can be

developed, based on the “reverse-waterfall” model. Essentially, the test is now directed from bottom-to-top, instead

of top-to-bottom in the typical stimuli generation model. The sequence at the block level executes like it would in

Cluster B Sequence Driver

(virtual)

I/O dev:

UART,
USB,

Ethernet

Block A

Sequence Driver
Block B
Sequence Driver

Block C

Sequence Driver

Block A

seq

Block B

seq

Block C

seq

BFM BFM BFM

Cluster A Sequence Driver

(virtual)

BUS dev

AMBA,
XBUS,

JTAG

Block A

Sequence Driver
Block B
Sequence Driver

Block C

Sequence Driver

Block A

seq

Block B

seq

Block C

seq

BFM BFM BFM

DUT

System Level Interface

System Sequence Driver

(virtual)

Virt.

seq

Cluster A

seq

Cluster B

seq

Figure 2: Cluster Integration in System

standalone mode, however, the sequence items are “trapped” and relayed to the parent (cluster) sequence driver.

From this point, the parent can decide whether to satisfy the sequence items locally, using a different sub-sequence

driver that has an available and compatible interface to the DUT. If this is not possible, the sequence driver can

attempt to bounce the item to a higher-level sequence driver until a suitable driver is found, or drop the item

altogether.

The sequence driver is now extended with the following functionality:

• Accept Port

o Used to accept sequences from its sub sequence drivers. The implementation of this port should be

language independent to account for sequence drivers in other languages.

• Routing Logic

o Used to inspect incoming sequence items and decide on the appropriate action to be taken by the

sequence driver. Typical actions for the routing logic are:

� Drop a sequence item

� Drive a sequence item using an appropriate sub-sequence driver. Optionally translate the

data from the item into a new protocol/format if interfaces are being crossed at this level

� Combine compatible sequence items into a single transaction

� Bounce a sequence item to a higher level sequence driver

• Translation Layer

o Used to encapsulate the extracted data from incoming sequences into a new protocol or format, in

order to be delivered via a new interface.

• Bounce Port

o Used to bounce sequences to higher level sequence drivers, if they can not be driven locally. The

implementation of this port should be language independent to account for sequence drivers in

other languages.

This process scales very well in a system with deep embedded core hierarchies, as sequence items can bounce

upstream through the sequence driver hierarchy until a suitable driver is found. If no such sequence driver is found

and there are no further upstream drivers, the item can be dropped and the test optionally aborted. Another
interesting application would be to check such items in coverage, thus producing interesting co-relations between

varying system architectures. An example of a system-wide application of the “reverse-waterfall” model is shown in

Figure 4.

Cluster Sequence Driver

(virtual)

Block A

Sequence Driver

Block B

Sequence Driver

Block C

Sequence Driver

Relay to higher

level sequence

driver

Accept Port

Bounce

Port

Translation

Layer

Figure 3: Reverse-Waterfall Stimuli Generation

Routing Logic
Drop Item

Drive Item

Essentially, the test developed for Block B of Cluster A, is retargeted to use one of the available transport

mechanisms in Cluster A. Since Block B is unaware of the system topology and available transport mechanisms in

the system, it relays its test information further upstream until a suitable sequence driver is found. Once the

sequence item is picked up by the system sequence driver, its data is extracted. The driver uses system topology

information in order to select an appropriate transport mechanism through Cluster A and translates the data

accordingly using the translation layer. The item is then relayed to the appropriate sequence and loaded in its

respective sequence driver to be scheduled for delivery.

This process adds several benefits to the advanced verification applications mentioned in previous sections. First,

block level tests can be easily reused in higher levels of integration testing, improving reuse across the verification

flow. Second, block level tests can be further randomized in order to isolate a bug discovered during integration and

new tests can be developed to verify the fix. Finally, IP vendors can now deliver new tests that use specific design

parameters and target specific IP behavior, while the integrator can reliably reuse such tests within different system

topologies.

IPCM Compatibility
This “reverse-waterfall” process needs to be carefully implemented in order to be fully compatible with the IPCM

framework. An implementation should use the predefined uRM constructs, like sequence drivers, sequences and

BFMs in a non-obtrusive way, so both approaches (top-down and reverse-waterfall) can co-exist in the same

verification environment. This is very important, as both approaches would be employed at different stages of the

design and integration process.

An implementation of this process can take advantage of e’s powerful Aspect Orientation Programming (AOP)

capabilities in order to “hide” the functionality inside an aspect. This would allow for the required functionality to

become active simply by changing the aspect of the sequence driver according to the verification scenario.

uRM’s mixed language environment support provides the necessary constructs for effective communication of

verification environments implemented in different languages (e.g. SystemC/SystemVerilog/e) and also at different

abstraction layers (e.g. RTL/TLM). An implementation of the “reverse-waterfall” process would have to take

advantage of this support to enable effective communication across verification environments in a system:

Figure 4: Test Reuse using Reverse Waterfall

Cluster A Sequence Driver
(virtual)

BUS dev

AMBA,
XBUS,

JTAG

Block A

Sequence Driver
Block B
Sequence Driver

Block C

Sequence Driver

Block A

seq

Block B

seq

Block C

seq

BFM BFM BFM

DUT

System level interface

Cluster B Sequence Driver
(virtual)

I/O dev:

UART,

USB,

Ethernet

Block A
Sequence Driver

Block B

Sequence Driver

Block C
Sequence Driver

Bounce

Port

Accept

Port

Transl.

Layer

Routing Logic

System Sequence Driver

(virtual)

Cluster A

seq

Bounce

Port

Accept

Port

Transl.

Layer

Virtual

Sequenc Routing Logic

• Intra-sequence driver communication

uRM’s method ports can be used to implement language and abstraction independent communication

e.g. bouncing a sequence item from one sequence driver to another

• Intra-sequence driver synchronization

uRM’s event ports can be used to synchronize transactions across a hierarchy of sequence drivers

e.g. transmit the item_done event to a blocked downstream sequence driver in PULL_MODE

• Intra-sequence driver data extraction and processing

uRM’s support for common language constructs can be used to extract the data from the protocol and

translate it for delivery from a new interface

Customer Evaluation
The “reverse-waterfall” process was implemented and used as part of a customer testcase of Globetech Solutions’

Verification for Test (VFT) Compiler. VFT Compiler provides the automation required when verifying complex

embedded test component topologies, allowing for tests developed for embedded blocks to be seamlessly reused at a

variety of system configurations and levels of abstraction.

The first process of this customer testcase involved verifying the integration of 3rd party provided memory built-in

self test (MBIST) controllers into an IEEE 1500 compliant wrapped core architecture. The IEEE 1500 is a scalable

standard architecture for enabling test reuse and integration for embedded cores and associated circuitry. It uses

serial and parallel test access mechanisms and a rich set of instructions suitable for testing cores, SoC interconnect

and circuitry. The provider also made available the verification environment and test suite used to verify the IP

itself, which would have to be used to verify the integration within the IEEE 1500 wrapper (see Figure 5).

Figure 5: MBIST embedded in IEEE 1500 wrapper

MBIST I/F Register

WBY

WIR

Core

WBR

IEEE 1500 Wrapper

WFI WFO

WSI WSO

IEEE 1500 uVC

MBIST Engine

Target

Memory

Comparator

MBIST 0

MBIST VE

MBIST Engine

Target

Memory

Comparator

MBIST 1

MBIST VE

VFT Compiler was used to generate a core-level verification environment which implemented “reverse-waterfall” as

a new aspect of the existing environment. Using this new model, we were able to replay the 3rd party provided test

suite by relaying sequences to an instance of an IEEE 1500 uVC, also instantiated by VFT Compiler, and translating

them into IEEE 1500 transactions that target the embedded MBIST controller. Test stimuli were hence delivered to

the MBIST DUT as if its native interface was still available (see Figure 6).

The second phase consisted of a broader system level

scenario, involving several IEEE 1500 wrappers with
embedded MBISTs, interconnected in a daisy chain

(see Figure 7). This was a very interesting scenario

for integration, as it was no longer sufficient only to

translate the MBIST data into IEEE 1500

transactions, but also to account for system topology.

Data would have to be properly offset, to account for

the position of the IEEE 1500 wrapper inside the

wrapper daisy chain in order to be properly delivered

to the wrapper that contains the MBIST that

requested it.

If, for example, the test is directed by the MBIST

contained in the third wrapper in the daisy chain,

then the data delivered by the system level generator

must also take into account the two previous

wrappers that precede the third one. Since IEEE

1500 is a serial scan based protocol, that would mean that the two previous wrappers should go into a bypass state,
hence adding two extra bits in the data vector to be delivered.

More complex verification scenarios may also

allowed for several MBISTs to direct the overall

integration verification process (see Figure 7). In

this case, the parent sequence driver chose to merge

these transactions into a single transaction, as long

as the merge did not violate the test flow or protocol

rules. The full scan chain length was used and data

from all MBISTs was concatenated to form a

uniform data vector, which was eventually delivered

to all the memory controllers in the system.

The full test suite developed by the IP vendor was

successfully replayed, at all system levels and even

with varying system topologies, with little or no

need for manual intervention. At the end, the

“reverse-waterfall” process was able to uncover

several design bugs, related to violating the

MBIST’s and IEEE 1500 wrapper’s interface

specification, without any dedicated engineering

effort.

Conclusions/Future Work
The successful customer evaluation proved that the “reverse-waterfall” model can offer a great deal of automation

and functionality during the integration of embedded cores in a complex test architecture. The main advantages of

following a test sequence reuse approach to verifying block integration are productivity and predictability.
Implementing environments per our proposed methodology allows for verification to begin very early in the

integration process and with high levels of automation. Engineers can take advantage of this productivity gain to

MBIST

VE

(passive)

MBIST

DUT

SECT

DUT

SECT

uVC VE

(active)

Reverse
Waterfall

Layer

Figure 6: Test Retargeting

SECT

Test
SECT

Test
SECT

Test

SECT

Test
SECT

Test
MBIST

Test

SECT

uVC
SECT

uVC

SECT

DUT

SECT

DUT
MBIST

DUT

MBIST

DUT

MBIST

VE
MBIST

VE
MBIST

VE

(passive)

MBIST

DUT

SECT

DUT

SECT

uVC VE

(passive)

Reverse

Waterfall

Layer

Figure 7: Multiple tests in single transaction

SECT

Test
SECT

Test
SECT

Test

SECT

Test
SECT

Test
MBIST

Test

also develop additional system-level scenarios using higher-level interfaces and flows for completeness. Schedule

predictability is also improved using our approach. By describing the integration process as part of the core-level

deliverable verification plan, IP vendors can thoroughly communicate aspects of their designs that need to be

validated during integration. One of the resulting core benefits is that vendors’ support overhead is hence

significantly reduced.

Design for test topologies, such as the one presented in this paper, are structured and constrained architectures,

making it easier to implement the “reverse-waterfall” model. However, since the process is scalable and uses

predefined verification constructs, it could also be employed in other protocol based environments, and even custom
designs. For the latter, it is expected that additional manual configuration will be required, thus decreasing the

amount of automation possible. System topology information is critical for this type of application. System-level

architectural description languages, a variety of which are currently being developed in the industry, can be used to

drive and could greatly enhance the “reverse-waterfall” model and provide even more functionality and automation.

References
1) Incisive Plan-To-Closure Methodology, v 6.0, Cadence Design Systems, 2007

2) Verification for Test (VFT) Methodology v 1.0, Globetech Solutions, 2007

3) IEEE Computer Society, "IEEE Standard Testability Method for Embedded Core-based Integrated Circuits -

IEEE Std. 1500-2005", New York: IEEE 2005.
4) I. Diamantidis, T. Oikonomou, and S. Diamantidis. "Towards an IEEE P1500 Verification Infrastructure: A

Comprehensive Approach", presented at the 3rd IEEE International Workshop on Infrastructure IP (IIP), Santa

Clara, CA, USA, May 4-5, 2005

