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Abstract 
Memory macros are typical examples of mixed signals 
circuits in which the amount of information to be 
processed in verification is very high (many operative 
modes, many configurations, many signals to control, etc) 
and where the analog and digital portions are closely 
linked and generally cannot be separated in the design 
hierarchy.   

In a traditional methodology, beside high automated 
approach for the digital side, the verification of analog 
part is usually based on visual inspection of waveforms, 
poorly automated and mainly executed in the post-
processing phase. A methodology and a flow able to 
provide a rigorous checking on both digital and analog 
signals and to extend to the analog domain the concept of 
functional coverage is now required. 

The YOGITECH AMSvKit makes all of this possible as a 
fully automated verification environment using Cadence 
Specman Elite as the best-in-class verification tool and a 
mixed signal simulator. 

A detailed verification plan has been created describing 
the goals of the verification and the architecture of the 
AMS verification components based on AMSvKit. Each 
component addresses a defined set of checks and/or 
stimuli and is e language re-use methodology (eRM) 
compliant to ensure interoperability and reusability.  

One part of the verification plan was implemented and 
executed. The resulting verification environment was able 
to detect all the possible failures and out-of-spec 
conditions and the time spent for the measurement 
campaign was significantly reduced when compared to 
the manual approach. 

 

1. Introduction 
Most System-on-Chip designs today include both analog 
and digital blocks with a high degree of interaction. Their 
joint verification in a unified environment is extremely 
hard to automate due to the very different tools and 
methodologies used in each of the digital and analog 
domains. 

Memories are very good examples of mixed circuit 
devices where the complexity of the digital has to dial 
with critical analog behaviour. For their specific nature, 
memory macros are inside a digital world but their core is 

analog. Ensuring the correct functionality of a memory 
macro means to ensure the capability to perform a lot of 
operations (many kinds of write and read tasks) among a 
wide amount of data (increasing dimension for address 
space and words length) and in many operating modes 
(normal mode, test mode, low power mode etc) but also 
match challenging requirements in timing. 

Number of operating modes, behavioural complexity, and 
circuit size contribute to make  the verification process 
more difficult. Functional failures can come in the form of 
inoperable modes and are often due to “simple” errors 
such as inverted signals, swapped bit lines, and incorrect 
power up sequencing. Functional failures tend to result in 
failed chips that are show stoppers as the end customer 
cannot begin bringing up the firmware that is typically run 
on the SoCs. In contrast, a performance failure is not as 
fatal because the system development can usually 
continue while the IC is re-spun for performance 
improvement. 
The end result of functional failures is many design 
iterations that are usually at great expense in terms of non-
recurring engineering costs (NRE) and missed market 
windows. 

For a memory macro, timing requirements are 
conceptually related to performance but due to the nature 
of these circuits are very important. 

This is especially true for last generation of such devices 
where performances in timing are pushed at the edge of 
the technology capability. Moreover, with technology 
processes downscaling, parasitic effects due to path 
lengths and interactions become the key factor for 
performance. They are difficult to predict and regardless 
of tricks and adhoc design practices, a validation at top 
level is strongly required. 

Z-RAM provides SoC designers with speed, density and 
power advantages that aren't available with other memory 
solutions. A distinctive element to ensure features and 
performances is to rely on a well defined and robust 
verification flow and methodology. 

The goal of the verification methodology is to 
systematically find error in a reproducible manner. It 
should give a rigorous approach to reduce as much as 
possible risk of having functional bugs in silicon but also 
give an objective metric to measure this risk. This is why 
functional coverage is so important.  



Verification is a complex task and as such it requires a 
good methodology but it is also time consuming with a lot 
of repetitive steps. This is why it is important to have 
flows and tools introducing reusability and automation. 

A good verification flow brings some interesting 
collaterals in terms of efficiency and predictability of 
design process and in identifying errors in specification 
document.  

 

2. Z-RAM Memory macro 
Innovative Silicon Inc. is a fast-growing, venture-backed 
company that develops and licenses the ultra-dense Z-
RAM® (Zero-Capacitor DRAM) memory technology for 
Systems on-Chip (SoC), microprocessors and portable 
consumer applications [6]. 

Z-RAM® memory technology harnesses the floating body 
effect of silicon on insulator (SOI) semiconductor devices 
[5]. Unlike conventional SRAM, which uses 6 transistors, 
or DRAM, which uses 1 transistor and a complicated 
capacitor, Z-RAM® uses a single transistor – and nothing 
else – as the memory bitcell, as shown on Figure 1. The 
density and simplicity of this technology makes Z-RAM® 
the lowest-cost memory technology – both as stand-alone 
memory and as embedded memory on microprocessors 
and other leading-edge semiconductors. 

 
Figure 1:Innovative Silicon Z-RAM®  

 

The Z-RAM memory macro design verified with this flow 
comprises 16 sub-arrays of 260 rows by 1120 columns 
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Figure 2: Z-RAM macro block diagram 
 
A full digital functional verification of Z-RAM macro is 
possible by black boxing large part of the memory macro. 
The functionality of the black boxed areas meanwhile is 

verified using an analog simulator. The two environments 
are exercised in isolation from each other. This leaves a 
hole in the verification (both functional and timing) 
mainly at the interface of the digital and analog areas. The 
functional coverage on the analog portions is minimal as 
all the instantiations of these circuits in the design are not 
verified in their unique environment. A true mixed signal 
verification environment is required to verify the digital 
and analog portions together as they interact in real time. 
Such an environment facilitates the use of a large number 
of vectors in the simulation while rigorously measuring 
and reporting analog parameters and quality metrics 
across a large portion of the design. The verification 
components (vComponents) are ready-to-use to create 
verification environments (e.g. test-benches). 
 
 

3. AMSvKit for mixed-signal functional 
verification 
The AMS functional verification of the memory macro is 
implemented using the Yogitech Analog Mixed-Signal 
Verification Kit (AMSvKit) [1]. 

The AMSvKit is a tool able to link analog and digital 
approach extending to the analog domain verification 
techniques already used in the digital one providing a 
unified environment for mixed signal verification, based 
on Cadence Specman Elite and “e” language [3]. 
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Figure 3: General verification environment using AMSvKit  

As illustrated in Figure 3 the kit is composed of three 
libraries (vTerminals, vComponents and Sequences DB) 
and all the necessary infrastructure to make working the 
full environment (simulator scripts,structures/unit, etc.) .  

The core of the kit is a library of “verification terminals” 
(vTerminals) that creates an interface between the analog 
and digital domains. The vTerminals are divided into two 
types:  

- verification sources (vSources - vS), which are models 
of signal sources configured and controlled by digital 
commands from the verification environment that 
provide continuous and time-continuous voltage and 
current signals or analog events; they include DC, pulse 
and sinusoidal signal (current and voltage) generators, 
noise injectors and parameter spread emulators;  

- verification probes (vProbes – vP), which transfer 
analog information from the mixed-signal simulator to 



the verification environment; they provide values of 
voltage, current and timing parameters and include self 
checking mechanisms (e.g. check a sampled voltage 
level within a pre-defined range); examples of vProbes 
are voltage/current/time detectors, linear behaviour and 
total harmonic distortion calculators, AC gain extractor 
etc.  

The verification components (vComponents) are ready-to-
use to create verification environments (e.g. test-benches) 
for basic analog blocks such as band gap cells, oscillators, 
voltage regulators, comparators, operational amplifiers 
and buffers.  

In order to calculate a non-trivial analog parameter it is 
necessary to properly control and configure a number of 
vSources and vProbes and to synchronize them. This is 
implemented using sequences: a structure that represents a 
stream of items signifying a high-level scenario of stimuli.  

The sequences DB provided with the kit includes all the 
sequences needed in an analog context.  

The AMSvKit includes a GUI used to create the 
environment and to instantiate, connect and configure the 
needed vTerminals and verification components.  

Using AMSvKit the powerful generators of Cadence 
Specman Elite can be used to generate also analog stimuli; 
checking mechanisms can be applied to analog 
verification items and functional coverage can be 
evaluated also based on analog metrics according to the 
defined verification plan. 

 

4. Verification strategy and planning 
The aim of the verification strategy is to mitigate the 
design risks identified by the design team. 

The fist step of the verification activity is to define the 
verification plan: it lists the issues and presents a brief 
description of how verification has to be done. 

The first section of our verification plan describes 
meaning, expected behaviour and constraints of any I/O 
ports of the circuit under test (DUT). 

 

 
Figure 4: 4Mb Z-RAM pin out 

For the 4Mb Z-RAM the pin-out is reported in Figure 4 
and Table 1 describes the ports classification. 

 

Group 
name Ports list Function 

Control 
signals 

STRB, RRB, WEB, TWL, 
RCB, WCB, RSTB, TBL 

Selection of  basic operation to be 
done in the memory and its timing 

Data 
signals 

DIN[139:0], DOUT[139:0], 
CMP_OUT[139:0], FAIL140, 
A[14:0] 

Data and address busses handling, 
including some information used 
in BIST operations 

Special 
signals 

TMODE[3:0], V0P5_EXT, 
CB_V0P5[3:0], RREDP, 
CREDE, CREDP, RA[17:0] 

Control of special functions; test 
mode 0, test mode 1, column test 
and programming of rows and 
columns redundancy. 

Analog 
signals 

IBIAS, VDD, VSS, VBGAP, 
VWLRD, V0P5, VWLHD, 
VBLRBK, VTT, VREFSA 

References voltages, bias currents 
and power supply signals. 

Table 1: I/Os ports description 

Moreover we need also to take in account some internal 
signals, both analog and digital, in order to ensure their 
correct behaviour. These signals and their short 
description are reported in Table 2. 

Signals set Type Description 

XDEC signals (SEL) Logic row decoder output signals (two for 
each memory row) 

SA control signals (SA, 
YMUX) Logic control signals for sense amplifier 

sections 

WL drv  Analog Analog driver for gate line of each 
row 

Bitcell signals Analog Bit cell signals (2 for each bit cell) 

Table 2: Internal signals to be monitored in verification 

Another element to be considered during the planning 
phase is related to the environment conditions, i.e. process 
parameters and temperature. 

Normally, designers perform a so called PVT (process, 
voltage, temperature) analysis to ensure the correct 
operation of the circuit in different conditions related to 
process parameters spread, power supply voltage and 
temperature. In this case the PVT analysis is needed as 
well and it is necessary to define a set of model cards (i.e. 
set of process parameters) and a range of temperature. In 
this way, for each set of input stimuli, it will be necessary 
to perform a number of simulations equal to the number of 
PVT corners. The results are cumulated and included in 
the functional coverage evaluation. 

The core of the verification plan is the definition of the 
verification items. Each item, identified by an ID, 
represents a measurement involving analog and/or digital 
information to be performed by a well defined procedure 
for well specified conditions.  

In this particular case, the verification items can be split in 
3 sets as described in the following. 

1) Memory functionality evaluated at I/Os level. 

This aims to check if the protocol of each possible 
operation is correctly implemented and if the memory 
functionality is there (i.e. writing a data in a specific 
address and then reading the same data from the same 
address). 

These checks are exactly the ones done in a pure 
digital verification and in principle do not involve 
any analog contents. The DUT can be described in 
RTL or by a gate-level netlist with a behavioural 
model for the bit cell array. It is worth to note that to 
perform this kind of verification is mandatory to use 
tools able to handle big amount of data and to 



evaluate functional coverage in order to measure how 
thoroughly your test-bench exercises your design.   
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Figure 5: Addresses decoding in the Z-RAM macro 

 
2) Address decoding evaluated looking into internal 

signals. 

During normal operations, in the memory macro, the 
content of the address bus is decoded by internal 
logic to address the specific set of bit cells and to 
drive into their control signals proper voltage levels 
needed for the specific operation. A block diagram 
depicting this task is in Figure 5.  In this case for each 
operation, the logic behaviour of SEL, YMUX and 
SA signals has to be checked together with the 
voltage levels of WLi. This set of items includes 
analog measurements. In Table 3 is reported the 
expected behaviour. 

 
WL Operation 

selected unselected 

RR VWLRD VWLHD 

WR - 0 VWLWR VWLHD 

WR - 1 VWLWR VWLHD 

RC VWLHD VWLHD 

WC VWLHD VWLHD 

LA/IDLE VWLHD VWLHD 

Table 3: Expected behaviour of WL in normal mode; the 
abbreviations in the table represent voltage values within general 10% 
of approximation (e.g. VWLWR = 0.5V ± 0.005V) 

 

3) Bit cell functionality and timing 

Depending on the selected operation the addressed bit 
cell is driven in a defined way as shown in Figure 6 
in two of the possible cases. The items to be checked 
are:  

- voltage values of each signal ( BL, WL) before, 
during and after the operation 

- significant delay periods (e.g. tBSRw, tSBO, tWSRw 
in Figure 6) 

- pulses width and slew rate of each expected transition   

Considering all these conditions for each operation 
generates 35 verification items to be addressed and 
covered for each bit cells. 

Of course it is not necessary to monitor all the cells. A 
smart strategy, in fact, suggests involving only the cells 
positioned at the corners of the array: these represent the 
worst case conditions for timing. 

Considering the amount of verification items and the 
complexity in size of the circuit, run time (i.e. time 
duration of meaningful simulations) is a critical 
parameter. That’s why the simulation strategy and circuit 
partition becomes really important in order to optimize the 
run time without loosing in results accuracy.  
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Figure 6: Bit cell (the addressed one) driving protocol during “write” 

operations 

 
Depending on measurements and checks we have to 
perform it is possible to use different descriptions or 
abstraction levels of the same sub-circuit. For instance to 
address “memory functionality evaluated at I/Os level”, as 
already stated, it is enough to use an RTL (fully digital) 
description of the boundary of the macro and a 
behavioural model of the array; instead once we want to 
check the “bit cell functionality and timing” it’s 
mandatory to include the actual  (analog) implementation 
at least of the monitored bit cells and the drivers of the 
voltages in question, and only for those in order to reduce 
as much as possible the run-time. The circuit partitioning 
is defined following some rules: 

- using digital (RTL or gate-level) description where 
checks or measurements involve only “logic” 
information;  

- using transistor level description only for sub-circuit 
for which voltage values and/or timing behaviours 
become important; 

- taking advantages from the symmetrical structure of 
the memory array to limit analog measurements. 

- introducing parasitic effect from layout (back-
annotation) only for sub-circuits where this is strictly 
necessary; 

The flexibility in changing descriptions of blocks is one of 
the required features driving the definition of the 
simulation environment. 

Another element to optimize the run-time is related to the 
simulator speed. Surely a mixed signal simulator is 
needed but the analog engi  ne can be a “spice” simulator 



or a “fast-spice” one. Trade off between speed and 
accuracy drives the choice.  

 
Verification environments 
To address the verification items described in the previous 
section, we have defined two environments or test-
benches. Both of them are eRM compliant [3]. 

In Figure 7 is shown the verification environment 
addressing both memory functionality evaluated at I/Os 
level and decoder section. It is composed of  a verification 
component handling digital signals named MEM eVC (e 
Verification Component). MEM eVC drives control and 
data signals according to specification [1] and checks 
protocol rules and memory functionality.  
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Figure 7: Verification environment addressing memory functionality 

and decoder section 
 

Moreover there are other two kinds of verification IPs, 
both of them handling analog information. The first one is 
called AMS_DRV VIP and it is able to monitor and to 
check the WL drivers section of the addresses decoder. 
Each AMS_DRV VIP monitors signals related to a subset 
of 4 rows of a defined sub-array (this depends on the 
macro structure) so it is possible to instantiate many of 
them increasing the overall coverage. This is ensured by 
the eRM compatibility of every VIPs[3]. 

The second one is called VS VIPand it allows generating 
all the needed reference voltages, bias currents and power 
supplies.  

The VIPs can be instantiated, connected to DUT nets and 
configured by the AMSvKit GUI. The configuration is 
also stored in a text file called config: this allows 
introducing modifications without a graphical approach. 

As explicitly depicted in Figure 7, to optimize the run 
time a specific partition has been implemented involving 
spice (or transistor) level and RTL or gate-level 
descriptions together with behavioural models. 
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Figure 8: Verification environment addressing memory functionality 

and bit cell timing 

The second environment, shown in Figure 8, has the same 
structure of the previous one but the AMS_DRV VPS is 
replaced by the BCELL VIP. The BCELL verification IPs 
instantiated are 8 in total to monitor the 8 bit cells located 
at the corners of the two sub-array sections (sub-array 0 to 
7 and sub-array 8 to 15). Moreover the circuit partition 
changes accordingly: four sub-arrays are described at 
transistor level including parasitic effects extracted for 
layout views.  

The simulation becomes very long making impossible a 
good coverage for memory functionality. Due to that the 
first environment proposed is mainly used to reach enough 
coverage about memory functionality; instead the second 
one is mainly focused on bit cells functionality and 
timing. 

Demonstration 
To prove the effectiveness of this approach for the 
verification of a memory macro we have developed a part 
of the first verification environment (Figure 7) including 
only one AMS_DRV VIP and without VS VIP. In fact 
voltage references and bias currents have been generated 
by ideal voltage and current generators.  

To match the requirements of the described simulation 
strategy, the chosen simulator was Advanced AMS from 
Mentor Graphics together with HSIM from Synopsys: the 
fast spice engine allows speeding up the simulation itself 
when there is a big analog content. 

The verification execution generates reports and logs to 
summarize results of checks and functional coverage; of 
course the waveform database is always available but 
visual inspection can actually limited to a further analysis 
of any potential issue highlighted into verification reports. 

During simulation a log file is  created in which one  can 
find a detailed messaging about each event and operation 
both in the analog and digital domains including results of 
self checking mechanism. As shown in Figure 9, during a 
single read operation, some checks on analog information 
related to the WL drivers are done. 

After the simulation every set of verification IPs generates 
its report file with all the measurements and results of the 
comparison towards the expected behaviour.  



Conclusion and future work 

 

The results of the demonstration show the capability of 
the described approach to create a true mixed signal 
verification environment as required verifying the 
interaction of analog array and drivers and digital 
decoders and state machines as they work in real time. 
The high level of automation allows performing time 
consuming simulations with acceptable level of coverage 
without spending man effort in results evaluation unless 
we find unexpected behaviour (i.e. bugs requiring further 
evaluation based on waveforms inspection). 
Moreover the reusability allows a strong reduction of set-
up time for the verification of other macros. This is a very 
important advantage differentiating this approach towards 
the traditional ones.  Figure 9: On-the fly log file; highlighted in blue events related to a 

single read operation The main limitation we faced in this phase was related to 
the implementation of the required simulation strategy. As 
explained in the previous sections, design partitioning (i.e. 
the flexibility in changing descriptions of blocks) plays an 
important role and a stable flow to change blocks 
description adding parasitic back-annotation where 
needed is mandatory. This element has to be fully defined 
before to proceed with the verification environments 
implementation and this is the goal of the next step. 
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Figure 11: Functional coverage  

The automation of the described flow limit the 
engineering effort spent to collect and analyse results, 
leaving a more accurate investigation on waveform 
database in case of unexpected behaviour highlighted by 
errors or warnings.  
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