
Packaging Reusable Components
EZ-Start Guide

September 2006

© 1995-2006 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Packaging Reusable Components
EZ-Start Guide

About EZ-Start Guides
EZ-Start guides are provided by Cadence Design Systems as entry point tutorials for
various technologies. EZ-Start guides are meant to quickly review high-level concepts of a
specific technology, and allow the user to independently experience and explore it. For a
deeper understanding of how to architect a quality verification environment, consult a
Cadence methodology specialist or refer to the Plan-to-Closure Methodology User Guide.

Introduction
The complexity of today’s designs and protocols demand verification reuse, a fast-growing
trend common in ASIC design houses and commercial component vendors. Verification
reuse starts with breaking a desired environment into generic sub-components that can
laterbe used collaboratively to verify the current DUT, as well as other DUTs. By creating
and developing these types of components, you can distribute the development effort,
minimize the required protocol knowledge, and reduce the overall verification effort.

Because typical system-on-chip devices (SoCs) have multiple interfaces, they can benefit
greatly from multiple verification component integration. However, it can be challenging to
understand and use components that originated from multiple sources and are constructed
differently. For example, how do you adjust a generic component to your local
requirements, or how difficult will it be to learn the test user interface of each component?
You might also face challenges with the packaging and integration of verification
components. For example, do you have all of the files, documentation, and usage
examples for this component, and can the component code coexist with your own files?

Although common sense should govern the right directory structure for your environment, it
is still most beneficial to adhere to some type of standard. In this case, adhering to a
standard will enable you to smoothly adopt a component developed by another team that
you might not be familiar with, or that might be working for a different company.

This EZ-Start guide outlines simple rules that can help component developers and
integrators successfully share and reuse verification components. The standards
recommended in this EZ-Start guide have been proven to work with different requirements
and in different application domains.

September 2006 1

Packaging Reusable Components
EZ-Start Guide

Universal Verification Components (uVCs)
While this guide focuses on SystemVerilog, the past and present indicate that the future is
a multi-language one. Factors like language inherent differences, existing legacy code, and
personal preferences create a colorful world with multiple languages.

Universal verification components (uVCs) are verification components that are implemented
in one or more computer languages. Typically, these components contain all the logic
required for a verification task (such as coverage, checking, and stimuli generation). The
Universal Reuse Methodology (uRM) is a combination of a methodology and technology
that enables rapid reusable component development. Among others, the uRM defines
standard packaging guidelines for delivering verification components, regardless of their
implementation language. A uVC package is a standard directory structure, and it is the
basic unit for developing and sharing any verification logic.

The following lists the different types of packages that can be shared:
• Interface verification components—This package captures the logic of an interface

protocol and provides all of the logic required to verify a device which supports that
interface. Examples include PCI-E uVCs and Ethernet uVCs.

• Module verification components—This package is a container for design-specific
verification logic. Examples include reference-models for checking, high-level models for
faster simulation, whitebox checking, and assertions. Module verification components
travel with the design IP, which enables verification of this IP within various contexts.

• Common utilities—Wrapping utilities as packages is beneficial, because it can facilitate
easier usage of the utilities. Examples of utilities include math tasks, visualization, and
debugging aids.

• A verification environment—A verification environment is a collection of collaborating
verification components with some logic. Organizing all of your packages in a consistent
way allows easy integration and reduces the support required for sharing code.

Note: For more guidelines on code sharing, such as environment structure, configuration,
and test writer interfaces, refer to the Plan-to-Closure Methodology Guide..

Reusable Packages
A package is the basic unit for sharing code, which can be for uVCs or other utilities. This
section describes how you can use the uRM guidelines to build your uVC packages so that
they can be easily explored and used by other in their own local environments.

September 2006 2

Packaging Reusable Components
EZ-Start Guide

Directory Structure for Packages

The following illustrates a typical uVC package directory structure.

Figure 1 uVC Package Structure

cdn_atm/
 PACKAGE_README.txt

The package must contain a text file that indentifies the
package. (PACKAGE_README.txt)

 demo.sh
 sv/
 e/ Most packages should contain the following:
 sc/

• A script that runs a full demo of the package
(demo.sh)

 docs/
 examples/
 verilog/

• A directory that contains reusable SystemVerilog
source files (sv/)
Note: This directory can have subdirectories.

• Directories that contain all e and SystemC source files
(e/ and sc/)

• A directory that contains the documentation and
release notes (docs/)

• A directory that contains configuration and usage
examples.\ (examples/)

Packages can also include other optional directories (such as for Verilog, misc. files, and so on).

Note the following when developing the directory structure of a uVC package:

• The PACKAGE_README.txt file is a structured text file that describes the content of the
uVC, its directory structure, and any accompanying scripts.

For example, the following is the content of the PACKAGE_README.txt file included
with this EZ-Start.

1 * Title: EZ start packaging tutorial
2 * Name: my_first_package
3 * Version: 0.1
4 * Requires:
5 * Modified: Aug-2006
6 * Category: Tutorial
7 * Support: sharonr@cadence.com
8 * Description:
9
10 It contains the following files and directories:
11
12 demo.sh : The demo script
13 docs/ : Contains a short document to describe the lab

September 2006 3

Packaging Reusable Components
EZ-Start Guide

14 sv/
15 examples/

For more information on the required fields in the PACKAGE_README.txt, refer to the
Plan-to-Closure Methodology Guide.

Tip A quick way to create a PACKAGE_README.txt file is to copy an existing one
and modify it to suit your environment. Sample PACKAGE_README.txt files are
included as a part of the golden examples located in the urm_lib directory.

• Most often, users will want to check a complete installation of a reusable component.
The demo.sh script runs an independent check of the environment.

• For SystemVerilog uVC packages, you should have a run.f script in the examples/
directory that will load all of the reusable code.

• Packaged code must be generic and reusable, so that it can apply to the verification of
multiple devices. Thus, the configuration and settings of the reusable code for a target
environment must be done in a config file.

Tip Usually, examples of package usage are in the examples/ directory.

• Use standard naming conventions when naming your uVC packages. This is described
in the following section.

Standard Naming Conventions for Packages

When you use standard naming conventions, it is easy to navigate through the contents of
a uVC package. You find things easily when you know how files and directories should be
named. This also makes it easier to predict the contents of a directory.

In order to prevent naming collisions, uVC packages should have unique names and use
the following form:
<prefix>_<descriptive_name>

where:

• <prefix>_ is two to four characters and usually denotes the company name (for
example, cdn_ for Cadence, or arm_ for ARM).

Note: Cadence monitors company prefixes to prevent duplication. If you do not know
your company’s prefix or need to register a new one, ask your local customer engineer
or send an e-mail to urm_admin@cadence.com.

The following are other types of prefixes:

 shr_—Denotes shareware. Use this if you do not want to attach the package to a
company name.

September 2006 4

Packaging Reusable Components
EZ-Start Guide

 ex_ —Use this for small example packages.

• <descriptive_name> provides a unique identifier for the package. For example,
cdn_atm or vr_xbus.

The uVC package name precedes all global names within the package. For example:

• vr_xbus_types.sv and vr_xbus_env.sv (for filenames)

• vr_xbus_master_t and vr_xbus_transfer_t (for type names)

For more information about packaging, refer to the Plan-to-Closure Methodology Guide.

Reusable Libraries
Now that you know the standard directory structure and naming conventions for a uVC
package, you need to know how to organize uVC packages on the disk. This section will
help answer the following questions:

• Can I arbitrarily place packages in various directories?

• How can I find a specific uVC?

• What versions of a specific uVC exist on my disk?

Libraries offer a solution to these questions. A library is a UNIX directory that contains uVC
packages (as illustrated below). Libraries organize your packages on the disk so that they
are easier to use and locate.

The following illustrates how packages can be grouped inside of libraries.

LIBRARIES /proj/uvc_lib/ : /cdn/cdn_lib/usr/joe/private_lib/ :

PACKAGES cdn_pcie/ co_atm/ shr_visualizer/ vr_ahb/

PACKAGE_README.txt PACKAGE_README.txt PACKAGE_README.txt PACKAGE_README.txt
demo.sh demo.sh demo.sh demo.sh

sv/ e/ sv/ e/
docs/ docs/ docs/ docs/
examples/ examples/examples/
verilog/

examples/
misc/

September 2006 5

Packaging Reusable Components
EZ-Start Guide

Note the following when defining your libraries:

• Choose the order of your directories carefully.

Libraries should be listed in the $IPCM_PATH in the order in which they should be
searched. For example (as illustrated in the previous figure):
/usr/joe/private_lib/:/proj/uvc_lib/:/cdn/cdn_lib...

• To control things like visibility and compilation order, organize uVC packages into a
combination of private, project, company, and commercial libraries (as illustrated in the
previous figure).

• Each library directory should contain a text file called LIBRARY_README.txt, which
describes the contents of the library, such as the various uVC packages and sub-
directories.

For example, the following is the content of the LIBRARY_README.txt included with
this EZ-Start.
1 * Title: my_first_library library
2 * Version: 0.1
3 * Modified: Aug-2006
4 * Description:
5
6 The my_first_library is part of the EZ start tutorials

As for packages, you can copy an existing file and modify it for your local environment.

• Each library should contain various packages as subdirectories

Locating a Package
Cadence provides a script called ipcm_which.sh, which will go through the IPCM_PATH
and identify all of the packages installed on the disc.

For example, you set the IPCM_PATH to:

%setenv IPCM_PATH /user/sharon/my_lib:/projects/sbt_router_lib:/company/company_lib

Now, you can use the ipcm_which.sh script to search for a package along this path. For
example, if you type the following from the command prompt:

% ipcm_which.sh ex_my_first_package

you will get:

/home/sharonr/EZStartPackaging/solutions/my_first_library/ex_my_first_package

September 2006 6

Packaging Reusable Components
EZ-Start Guide

Simulation Verification Environments (SVEs)
Now that you have learned about organizing and packaging reusable code, this section will
describe the directory structure for using your code on a target device under verification
(DUV).

uVC packages and reusable code use the same directory structure. The following figure
illustrates the directory for reusable code and notes any extensions to the structure for uVC
packages.

 For reusable code, the /sv directory should also
contain the logic that configures and glues together
the multiple components. For instance, it contains all
of the whitebox and integration logic for the device.

csco_router1/

 PACKAGE_README.txt
 demo.sh
 sv/
 main_sve/ The main_sve/ directory, which is an extension to

the packaging directory structure, is unique to target
verification environments.

 main_sve.sv
 test1.sv
 test2.sv

• The main_sve.sv file instantiates the device and
the verification components for a specific
configuration.

• The testn.sv files are used when multiple tests
need to use the same main_sve configuration.

 docs/
 examples/

Note: Using a central sve file for multiple tests allows tests that are shorter, easier to read,
and easier to maintain (in case of configuration changes).

For more information about the sve/ directory structure, refer to the Plan-to-Closure
Methodology Guide.

Packaging Environments Lab
You will use the directory structures described in the previous sections to create your own
library and reusable package directory.

In this lab, you will create a library and a reusable package directory. You will ensure that
the package directory has the correct structure and that it contains the right files. You will
then set your $IPCM_PATH path so that it points to the right location. At the end of this lab,
you will check your work using a script called demo.sh.

Lab instructions:

1. Untar and unzip the EZStartPackaging*.tar.gz file included with this document:
% gtar –zxvf EZStartPackaging.tar.gz

This creates an EZStartPackaging directory.

September 2006 7

Packaging Reusable Components
EZ-Start Guide

2. Create a directory called my_first_library.

3. Within my_first_library, create a subdirectory called my_first_package.

4. Using the directory structures discussed in the previous sections, create three
directories: sv, examples, and docs. Place them in the correct location.

5. Copy all of the files from the EZStartPackaging/files directory into the correct
sub-directories

6. Set the $IPCM_PATH path so that it points to the correct location.

7. Use the ipcm_which.sh script to determine whether the package is in the correct
location. For example:
% ipcm_which.sh my_first_package

8. Run the demo.sh script, which is located in the EZStartPackaging/files
directory.

If you receive the “well done” message, then you have successfully completed the lab.
Otherwise, review your directory structure, make adjustments, and retry step #8.

September 2006 8

