
DO’s and DON’Ts for Systematically Implementing 
Late Engineering Changes On Your Project 

 
 
Project management and automation is quickly becoming the most critical element in the 
overall design and verification process. The key ingredients are good overall specification 
development that leverages planning with metric based checkpoints. The mentality of 
“beginning with the end in mind” allows for optimal resource usage, much higher design 
quality and realistic schedule estimates. Despite all the best planning, changes in 
requirements happen up to the last possible day. 

Today’s design teams typically do not address the problems that cause slips or productivity 
and quality issues. They tend to focus solely on individual tasks, engine performance, or 
languages, rather than defining the entire verification challenge, independent of its solution. 
In fact, most verification plans are merely a set of incomplete discussion notes that atrophy 
as the project moves forward. 

Change management of the design and verification process needs to start with the goals of 
what needs to be verified.  From this, an experienced verification team will have the ability to 
develop changes to the plan that are complete and inclusive of the intended goals. 

 

Figure 1: An example of a Verification Plan: which features we want to verify, by what date, by whom etc. 
 
 



 
What is needed is a system that enables efficient introduction and tracking of changes as 
well as the right team approach to the required planning and implementation activities. Here 
are some of the basic do’s and don’t that you and your team needs to be aware of to 
introduce project changes effectively: 

 
 
Do's 
• Must have a plan that is kept always up-to-date and is executable: your total coverage 

results after regressions will be mapped directly into your plan. This is used as the measure 
against which progress and completion is measured. 

 
 

 
Figure 2: An executable plan – the coverage grades are mapped to the features in the plan 
 
 
 
• You will need to identify all parts of the system that are impacted by each change and 

incorporate that into the overall plan before making any changes to the specification. 
 
• Identify an owner of the change process that will be committed to following the process to 

completion.  This person needs to have a good overall view of the project and maintain a 
high attention to detail.  



 
Measure the impact of changes by the scope of the change to the verification plan. 
Especially consider impa

• 
ct to various dependencies outside of your control -- such as 

any third-party cores; designs that may use third party soft or hard IP; or any 

 
• t the end 

hould be used as a learning 
experience and categorized for future projects.  

dependencies on support from a semiconductor vendor.  

Review the effectiveness and quality of your process on a regular basis, and a
of each project. Each change forced by errors in the past s

 

Only Slave 
In the AHB
Interface

Only Slave 
In the AHB
Interface

 
Figure 3:  An example of a verification plan with an AHB interface and slave only – left. On the right – the 
executable plan that was created by reading in this verification plan 



 
Figure 4: 
v

 Lets assume that we want to add a master to the AHB Interface. We will first add it to our 
erification plan. The executable plan on the right shows the master added with its coverage grade after 

running the regressions. 
 
Don’ts  

 
• Don’t assume a change is completed until specific system behaviors exhibiting the 

change have been verified. Especially take care of changes up and down the entire 

 
 etion. Effectiveness in 

 es, a simple change may 
create a "butterfly effect" and morph the system being verified from relatively stable to 

 

process that reach fare within other areas of specialization. 

Don't assume one person can implement a change to compl•
Verification is a lot higher with redundancy and cross-checks. 

 
Don't assume that a "simple change" is the best solution. At tim•

utterly chaotic. Watch out for the fallacy of simple solutions by reviewing changes with all 
adjacent groups and the architecture team. 



• Avoid short cuts by not updating plans and all necessary metrics of quality. Short cuts 

 
 Don't change multiple parts of the system all at once without first assessing 

, well-

 

y following these simple guidelines, "good" planning based on verification managment can 

Ilana Golan is a Principal Product Engineer at Cadence Design Systems responsible for Verification 

 

Prior to Cadence, Ms. Golan was a Logic Verification and EDA engineer at Intel, Haifa, where she 
d 

s a B.Sc. in Computer and Software Engineering from the Technion -  Israel Institute of 

may lesson quality, and often impact predictability as well as productivity. 

•
dependencies. In some cases, it may be prudent to verify the design in a few
defined iterations. 

 
B
be realized.  Your organization will benefit as all stakeholders begin to leverage the ability to 
capture and review the verification plan as you drive you next design to closure. 
 
 

Planning, Methodology and Management solutions. Ms. Golan is an expert in functional and formal 
verification technologies, with extensive domain experience in security, storage, networking and 
telecommunications systems. She has worked with several industry-standard protocols including 
ARM, PCI-E, PCI and SPI and supported many key customers including Agere, Broadcom, Cisco,
NEC and Philips to achieve unprecedented plan to closure.  

managed development of a sequential verification tool, received the Division Recognition Award, an
the best presentation award at the Design, Test and Technology Conference. Prior to Intel, Ms. Golan 
served as Lieutenant, Commander of the F16 Flight Simulator instructors, where she led training of air 
force pilots.  

Ms. Golan hold
Technology, Haifa, Israel. 
 
 
 
 
 


