
W
H

IT
E

 P
A

P
E

R

Reducing Block, Chip,
and System Design Risk
with a “Plan-to-Closure”
Verification Approach

http://www.cadence.com

� www.cadence.comReducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

Introduction

Verification has become a critical problem with regard to developing today’s high-end digital integrated

circuits (ASICs, ASSPs, and SoCs). Advanced devices like these can contain tens or hundreds of millions

of logic gates, cost tens of millions of dollars to develop, and take a large engineering team years to

design and verify.

This paper describes an advanced verification flow from Cadence that is scalable from block- to chip- to

system-level designs, and takes the project team all the way from plan to closure. It meets the verifica-

tion needs of today’s high-capacity, high-complexity designs and the extreme capacity/complexity

designs of tomorrow. Using this flow not only injects urgently needed predictability into project sched-

ules (you know where you are, what you’ve done, and what you still have to do) but also increases

productivity by optimizing engineering and verification resources. It further increases the quality of the

final product while reducing overall project risk.

Until recently, the verification of digital integrated circuit designs was a relatively simple process.

The major verification issues associated with the previous generation of designs may be summarized

as follows:

•	 By today’s standards, the vast majority of designs involved low capacity and complexity.

•	 The interfaces to designs were relatively simple; for example, rudimentary address and data buses

combined with read and write control signals.

•	 The team of engineers involved in designing a device was typically also in charge of verifying the

design. The disadvantage to this approach was that the same misinterpretations of the specification

made during the design process were repeated during verification.

•	D irected testbenches—which could be created reasonably quickly with relative ease—were typically

sufficient to verify even the more complex designs.

•	 Testbenches were either created using a graphical waveform editor, or using a simple text-based

stimulus/response language, or using the same hardware description language (HDL) with which the

engineers captured the design itself and with which they were intimately familiar.

•	 Each design was typically unique and simple enough that verification accounted for a relatively small

proportion of the entire development process. Designs also typically used little design IP. As a result,

creating new testbenches from the ground up was not considered to be a problem in terms of time,

effort, cost, and risk.

Now, times (and designs) have changed, and the industry is currently facing a verification crisis of the

first order. The verification challenges in today’s designs may be summarized as follows:

•	 A large proportion of designs are of extremely high capacity and complexity.

•	 The interfaces to the design can be incredibly sophisticated; for example, transactions requested on a

bus may be deferred, re-tried, terminated, or completed out of order. This increases the difficulty of

creating testbenches and tracking results.

http://www.cadence.com

www.cadence.com �Reducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

•	D esign engineers may have some responsibility with regard to early verification of individual func-

tional blocks or small clusters of such blocks. However, enterprise (multi-specialist) teams are often

tasked with verifying the entire design at the chip and system levels (where “system-level” refers to

the co-verification of the chip hardware and any embedded software). The large numbers of people

involved in the design and verification task mean that it is critical to be able to efficiently capture,

communicate, and verify design decisions and intent.

•	D irected testbenches are now typically sufficient to test only small portions of the design; for exam-

ple, a few functions associated with an individual block. However, the complexity of today’s interfaces

and protocols often requires the use of more sophisticated techniques such as constrained, random,

coverage-driven testbenches, especially when verifying the design at the chip and system levels.

•	 Although hardware design engineers still need the ability to create small, local testbenches in the

design language with which they are most familiar (SystemVerilog, for example), verification

specialists often need to create advanced verification environments that significantly leverage

object-oriented programming techniques (such as class libraries). Such environments often utilize

the more sophisticated constructs in SystemVerilog, or high-level verification languages such as e and

SystemC®, or a combination of all these languages.

•	M odern designs make extensive use of design IP. These designs are now so complex that verification

can account for as much as 70% of the entire development process, and creating new testbenches

from the ground up is a huge problem in terms of time, effort, cost, and risk. In order to address this

issue, project teams require the ability to create verification IP (VIP) and/or leverage existing internal

or third-party verification IP that can be reused throughout the design process from the block to chip

to system level and also across designs and platforms.

One problem associated with modern digital integrated circuits is that these devices are typically

required to perform multiple functions. Take the case of a cell phone, for example. In addition to its role

as a communications device, users also demand additional features including games, Internet access, a

camera, an MP3 player and global positioning system (GPS) capability. A big consideration is that these

functions are not standalone; they have to work together. If the user is using the MP3 player when a

call comes in, for example, it is necessary to interrupt the MP3 function, take the call, and then resume

the MP3 function. All of this adds to the complexity of the verification problem.

Cadence offers a new solution—a Plan-to-Closure verification approach that encompasses block-,

chip-, and system-level verification. This approach requires much more than simply providing verification

point-tools in isolation. Instead, it involves the combination of a verification methodology based on

best-known principles, practices, and procedures backed by verification infrastructure and technology.

The Cadence® Plan-to-Closure flow starts with the creation of an executable plan. This verification plan

is executable, all of the coverage metrics can be linked to this plan, including assertion coverage, func-

tional coverage, RTL code coverage, and software code coverage. The Plan-to-Closure process includes

automatically measuring and analyzing verification results including failure and coverage data from

these engines, so that all of these sources provide visability to project managers, enabling them to make

the appropriate decisions that will allow all the verifications processes to be predictably managed to

reach closure. This plan-execute-measure-react cycle is repeated until verification closure is achieved.

(see Figure 1).

This paper presents the key concepts behind the Cadence Plan-to-Closure verification approach.

First, the paper introduces the concept of creating an executable verification plan featuring executable

metrics. Next, the paper considers the need for a verification manager application that can use the

executable verification plan to take the design to verification closure.

http://www.cadence.com

� www.cadence.comReducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

Also considered are the use of transaction-level models (TLMs) for architectural exploration and

evaluation; the use of assertion-based verification (ABV) techniques throughout the design and verification

process; the creation and deployment of modular, reusable, coverage-driven verification environments and

testbenches; increasing system-level verification performance by means of transaction-based acceleration

(TBA); and full-system validation—including hardware/software co-verification—by means of in-circuit

emulation (ICE).

Using the Plan-to-Closure approach increases predictability, productivity, and quality while reducing

overall project risk.

Developing an Executable Verification Plan

As its name suggests, the Plan-to-Closure verification approach starts with the planning process. This

may be thought of as “beginning with the end in mind.” The first phase of this process is for the whole

team—system architects, system engineers, verification engineers, hardware design engineers, and

software development engineers—to brainstorm together to establish top-level verification goals. The

second phase involves feature capture and attribute elaboration. This is where individual items to be

tested are detailed, the way in which each item will be verified is defined, and the required coverage

metrics for each item are specified. The third phase involves designing and implementing the verification

environment (pulling resources together such as formal engines, software simulators, hardware accelerators,

and emulators) and designing and implementing an executable verification plan (see Figure 2).

The resulting verification plan defines precisely what behaviors must be observed in order to ensure that

the specification has been met. These plans also include verification milestones that define the times by

which each portion of the verification process needs to be completed.

In order to facilitate the creation and reuse of verification IP, executable verification plans are hierarchical in

nature; that is, one verification plan can instantiate one or more other verification plans, which can in turn

call other verification plans, and so forth. This makes it possible to create individual verification plans for

Automated
Plan-to-Closure

Plan

Execute

Measure

React

- Executable plan
- Coverage metrics
- Resource estimates
- Task assignments

Specification

System

Chip

Block

Reuse
- vPlans
- Environments
- Components

- Auto test gen
- Formal analysis
- Simulation
- Acceleration
- Emulation

- Analyze failures
- Analyze coverage
- Measure status vs plan

- Fix problems
- Adjust resources
- Adjust plans

ClosureFigure 1:
Graphical Representation of the

Plan-to-Closure Process

http://www.cadence.com

www.cadence.com �Reducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

different portions of the design, and then have a larger system-level verification plan that gathers all of

the sub-plans together. The end result is that the sub-plans form a new type of verification IP that can

be reused on future projects.

To speed the process of creating the verification plan for a complex system, a Plan-to-Closure verification

environment may include access to a library of pre-defined verification IP components that are associated

with industry-standard busses and protocols such as AMBA™ (AHB and AXI), Ethernet, OCP, PCI Express

and USB. Each of these verification IP components will come equipped with its own predefined verifica-

tion plan that can be quickly and easily incorporated into a master plan.

Using the Executable Plan to Manage
the Verification Project

For the Plan-to-Closure verification environment to take full advantage of the executable verification

plans presented in the previous topic, these plans must be complemented by a verification management

application that automates the verification process from plan to closure (see Figure 3). This application

will take the executable verification plan and automatically deploy the appropriate tools required to

perform the various facets of the verification. These tools may include formal verification engines,

Plan with metrics

Executable vPlan

Verification plan

Figure 2:
Verification Plan Automation

http://www.cadence.com

� www.cadence.comReducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

software simulators, hardware accelerators, and emulators. Such a verification management

application will plug into workstation-farm load-balancing software to control and optimize the use

of available resources.

When large numbers of engineers are creating different regression runs for different portions of a

high-capacity, high-complexity design, the invariable result is a large amount of overlap. In the case of a

modern design, for example, it is not unusual for 60% or more of the verification runs to be partially

(or wholly) redundant. This equates to a vast waste of resources. In order to address this issue, the

verification management application must locate and identify such redundant runs so that they can be

eliminated from future regression tests.

Two key attributes associated with a verification management application are to bring visibility and

predictability into the verification process. The management application used in a Plan-to-Closure flow

must have the ability to automatically access the log files from the various verification engines, parse

them, and analyze the results. It should compare the required metrics (assertion coverage, code cover-

age, functional coverage, etc.) with the actual results and react accordingly by re-deploying resources to

address any problem areas.

The verification manager application must also separate design failures from simulation failures, sorting

and grouping these failures for easy selection and action. In a Plan-to-Closure flow, it must be possible

for multiple session results to be viewed together, enabling common failures to be grouped such that

unique failures are emphasized and redundant work on common failures is eliminated. It must also be

possible for failures to be correlated between simulation runs to determine if there is a particular bug

that has a broader impact beyond the local context in which the error is first flagged. The verification

manager application must also be capable of identifying the least-costly simulation to exhibit the failure

and the optimal case for repeated debugging.

Automated
Plan-to-Closure

Measure

React

System

Chip

Block

DONE!

Increased Visibility

Coverage Analysis Failure Analysis

?

Metric-Based
Verification Plan

Plan

Execute

Verification
Closure

No

Yes

Optimized Resource
Utilization

Figure 3:
Verification Plan Management

http://www.cadence.com

www.cadence.com �Reducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

Users (managers and engineers) must be able to employ the verification management application

to generate frequent, accurate, and concise reports in real-time. At the push of a button, a

manager should be able to immediately see which portions of the design have been verified and

which have not. Furthermore, as noted in the previous topic, the executable verification plan will

specifically define certain verification metrics (such as coverage goals) that must be achieved by

certain dates/milestones. The verification manager application must use these milestones to pace

the team and to ensure that commitments to other groups and external customers are met. If

any milestones appear to be in danger of slipping or have actually started to slip, the verification

manager application must automatically alert the appropriate engineers, team leaders, and project

managers, thereby enabling the team to quickly redeploy effort to focus on problem areas.

Performing Architectural Exploration with TLMs

At the beginning of the design process, there may be few (if any) functional blocks represented at

the register transfer level (RTL). Even in the case where RTL representations are available, the team

may elect to move to a higher level of abstraction in order to achieve the simulation performance

required for architectural evaluation and exploration.

Raising the level of design abstraction can be achieved by means of transaction-level models

(TLMs). Such models communicate with each other at the transaction level; for example, a TLM of

a functional block may issue a transaction to a block of memory saying “I want to perform a read

of the location at address xxxxx.” This is much more efficient from both the performance and

debugging points of view in terms of simulation time as compared to performing all of the low-

level bit-twiddling operations on individual signals in RTL.

TLMs are much faster to build and verify as compared to their RTL equivalents because they

contain less low-level detail than do RTL realizations of the design. In addition to facilitating

architectural exploration and evaluation, working with TLMs allows system engineers to perform

hardware/software integration, validation, and co-verification much earlier in the design process.

In order to facilitate this process, the methodology portion of the Plan-to-Closure verification

approach explains how to create these models and how to incorporate them in the system-level

verification flow.

Once the architecture has been locked down, TLMs can also serve as reference models for the RTL

representations that will be generated by the hardware design engineers. Thus, the methodology

portion of the Plan-to-Closure verification approach also describes how to use TLMs in the role of

reference models.

Leveraging Assertion-Based Verification Throughout
the Flow

Assertions are a way of specifying functional attributes or properties associated with a design or

portions thereof. A simple assertion might be along the lines of “Signals A and B should never be

in their active (logic 0) states at the same time.” Assertions can also extend to temporal sequences

at the signal level, and even to transaction-level constructs, such as “When a memory read

command is issued, an acknowledge response must be received within 6 to 18 clock cycles.”

http://www.cadence.com

� www.cadence.comReducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

In the case of the Plan-to-Closure verification approach, assertions can be associated with the design at

any level, from individual blocks, to the interfaces linking blocks, to the entire system. The use of asser-

tions in a modern verification environment has many different facets. The process begins when top-level

specifications are captured in the verification plan. These specifications are expressed as assertions.

Assertions are used to communicate requirements throughout the design and verification phases. They

are also used to capture and verify interface requirements among the major functional blocks forming

the design. Furthermore, they serve to document designers’ assumptions and intent when implement-

ing the various functional blocks, and they contribute to the coverage metrics in the verification plan.

The term assertion-based verification (ABV) encompasses the use of assertions throughout the design

and verification process. A common starting point for hardware design engineers is formal verification,

in which a formal engine is used to exhaustively verify individual blocks and remove the micro-architecture

bugs. This allows a designer to start verifying the blocks weeks to months earlier before a testbench is

available. As the process moves into the cluster-level (groups of blocks being verified together), both

design and verification engineers can use formal verification and software simulation to verify proper

integration. In addition to re-using the original block-level assertions, this typically involves writing new

assertions for interface verification and coverage. Similarly, all block- and cluster-level assertions can be

re-used for full-chip or system-level verification with software simulation, hardware acceleration, and

emulation where they serve as excellent debug aids when bugs are encountered.

A key facet of the Plan-to-Closure approach is that each member of the project team must be able to

employ assertions in the manner most appropriate to their portion of the design process (see Figure 4).

For example, design engineers may prefer to leverage a narrow subset of SystemVerilog Assertions

(SVA) or the Property Specification Language (PSL). Additionally, design engineers may decide to define

assertions using a library approach, such as the Open Verification Library (OVL) or the Incisive® Assertion

Library (IAL), which is a library of SVA/PSL modules that implement checks for common design structures

A
A

A
A

A

A
A

A
A

A

A
A

A
A

A

A A A

AA

A A

A
A

A
A

A

A
A

A
A

A

A A A

AA

A A

A
A

A
A

A

A
A

A
A

A

AAA

A A

AA

A

A

A A

A A

A A

A

A

Block/Module
- Formal analysis

Cluster/Block
- Simulation
- Formal analysis

Chip/System
- Simulation
- Acceleration
- Emulation

vPlan

Figure 4:
Assertion-Based

Verification Flow

http://www.cadence.com

www.cadence.com �Reducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

including datapath, control, and interface elements., By comparison, verification specialists may prefer

to use more advanced SVA constructs or to take full advantage of the expressive capabilities of PSL or

leverage the robust temporal capabilities of the e language.

Thus, the methodology portion of the Plan-to-Closure approach documents which aspects of the various

languages and libraries are best suited for different tasks. Moreover, the methodology provides guidelines

that describe how to develop reusable assertion-based verification IP components for such things as

in-house protocols so as to improve verification efficiency.

In order to reduce risk and shorten time-to-market (and time-to-revenue) the Plan-to-Closure verification

approach may employ pre-verified assertion-based verification IP products that completely implement

commercial protocol specifications such as the AMBA bus from ARM. In this case, the assertions define a

set of rules—or properties—that completely represent the behavior of the protocol and that can also be

applied as constraints for formal verification to limit the “state space” being verified. These assertions

are capable of being applied to multiple engines of verification, such as formal verification, dynamic

simulation, or hardware-based acceleration and emulation. The advantage of such pre-defined and

verified assertion-based verification IP is that users do not have to invest resources or cycles in developing

these assertions, thereby shortening their verification cycle, increasing their product quality, and reducing

their overall verification risk.

Creating and Reusing Automated Testbench Environments

In conventional verification environments, testbenches created to verify individual functional blocks

have to be discarded when the verification process moves to the cluster level. Similarly, testbenches

created for use at the cluster level are discarded at the chip level, and so forth. This results in a

tremendous waste of time and resources.

In order to address this issue, the Plan-to-Closure verification approach includes a methodology that

defines how to construct verification environments in the most efficient manner. Using this methodology,

it is possible to create block-level interface verification components in such a way that they can be used

independently or controlled from a higher level. This modular, layered approach makes it possible to

add to existing environments rather than being forced to create new environments from the ground up.

When a cluster of blocks are being tested together, for example, a higher-level verification component

can be created to direct and control a group of individual block-level testbenches. Similarly, cluster-level

verification environments can be created in such a way as to facilitate their being controlled from the

chip level, and so on. This layered approach to verification is a key aspect to creating complex system-

level scenarios in the most efficient manner (see Figure 5).

Such a modular, layered approach to creating verification components also forms the basis for reuse.

In addition to allowing the creation of plug-and-play verification components that can be reused—

from block to cluster to chip to system—these components can also be reused across multiple projects

and platforms.

It is important to remember that the various members of the design and verification teams involved in

the development of a large digital integrated circuit will typically have different backgrounds and different

ways of looking at things. For example, hardware design engineers working at the RTL level will tend to

create directed, non-object-oriented testbenches using a language with which they are most familiar, such

as SystemVerilog. By comparison, verification specialists may create advanced verification components

and environments that significantly leverage object-oriented programming techniques (for example,

class libraries) and use constrained, random, coverage-driven techniques. These components and

http://www.cadence.com

10 www.cadence.comReducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

environments may be developed in SystemVerilog, or in a high-level verification language such as e,

or in SystemC, or as a combination of these languages. Thus, the Plan-to-Closure verification approach

supports all of these languages and techniques.

In order to speed the process of creating the verification plan for a complex system, a Plan-to-Closure

verification environment should include access to a library of pre-defined verification IP components

that are associated with industry-standard busses and protocols such as AMBA (AHB and AXI), Ethernet,

OCP, PCI Express, and USB. Each of these verification IP (VIP) components should come equipped with

its own predefined verification plan that can be quickly and easily incorporated into a master plan.

To speed the process of creating testbenches, the Plan-to-Closure verification approach includes a

special verification component for verifying registers and memory; this would be especially useful at the

chip and system levels. The verification environment should include access to a library of pre-defined VIP

components that are associated with industry-standard busses and protocols such as AMBA (AHB and

AXI), Ethernet, OCP, PCI Express and USB. In addition to supporting multiple languages, each of these

components should come equipped with a compliance management system to achieve protocol

compliance and with the ability to generate sequences of control and data stimulus. Furthermore, it

should be possible to specify whether this stimulus is to be generated at the transaction level for use

with TLMs or at the signal level for use with RTL representations. Also, it should be possible for these

components to be used to create testbenches at the block, cluster, chip and system levels.

Performing Full-System Verification

In order to achieve first silicon and first software success, it is necessary to perform full-system

hardware/software co-verification. In addition to a plan- and metric-driven approach—coupled with the

use of high-quality verification IP—it is necessary to raise the level of design abstraction and to increase

system performance using hardware acceleration and/or emulation.

As discussed earlier in this paper, one technique for raising the level of design abstraction is to use

transaction-level models (TLMs), which are much more efficient from both the performance and

debugging points of view in terms of simulation time as compared to performing all of the low-level

bit-twiddling operations on individual signals in RTL.

System UVC

Monitor

Scoreboard

Data Model

Coverage

Multi-Channel Sequences

Module UVC

Monitor

Scoreboard

Data Model

Coverage

Multi-channel
Module UVC

Monitor

Scoreboard

Data Model

Coverage

Multi-channel
Module UVC

Monitor

Scoreboard

Data Model

Coverage

Multi-Channel Sequences

Reconfigure and reuse module
UVCs and register address maps

Interface UVC

Monitor

Checker

Coverage

Event

Active or Passive

BFM

Interface UVC

Monitor

Checker

Coverage

Event

Active or Passive

BFM

Interface UVC

Monitor

Checker

Coverage

Event

Active or Passive

BFM

Interface UVC

Monitor

Checker

Coverage

Event

Active or Passive

BFM

Interface UVC

Monitor

Checker

Coverage

Event

Active or Passive

BFM

Reconfigure and reuse interface UVCs
(can be set to be active or passive)

Register and Memory
UVC

Software UVC

Monitor

Checker

Coverage

Event

System- level checking,
coverage, and sequences

Software sequences,
checking, and coverage

Software Hardware

Hardware/Software DUT

seq

seq

seq

seq

seq

seq seq

seq

seq

seq

seq

seq

seq

seq

seq

seq

seq

seq

seq

seq

seq

seq

seq

seq

Figure 5:
Testbench Automation and

Reuse at the Block, Chip, and
System Levels

http://www.cadence.com

www.cadence.com 11Reducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

And, as discussed in the previous topic, the advanced testbenches associated with a Plan-to-Closure

verification approach will have the ability to generate sequences of control and data stimulus. It should

be possible to implement this stimulus at the transaction level for use with TLMs or at the signal level

for use with RTL representations. Furthermore, a Plan-to-Closure environment must support the

mix-and-match (or plug-and-play) of RTL and TLM blocks.

At some stage the main logic being tested will be represented at the RTL level while the surrounding

functions may be represented as TLMs. When working with RTL, software simulation cannot provide

the speeds necessary to perform tasks such as hardware/software co-verification. At this point it

becomes necessary to move up the performance curve to hardware acceleration and/or emulation.

In the case of hardware acceleration, any performance advantages gained from moving the RTL into the

accelerator will be severely degraded if the stimulus from—and responses to—the testbench running on

the host workstation’s software simulator is handled at the bit-twiddling signal level. Thus, the Plan-to-

Closure approach supports transaction-based acceleration (TBA). In this case, communications between

the testbench running on the host workstation and the RTL running inside the accelerator are handled

using transactions, which dramatically increases the performance of the system as a whole (see Figure 6).

The highest level of performance is achieved by in-circuit emulation (see Figure 7). In this case, the

entire chip design is loaded into an emulator, which communicates with the surrounding system at

hardware speeds. However, even emulators cannot achieve the extreme real-time speeds required by

today’s high-end designs. Thus, in order to reduce time-to-emulation for design applications in wireless,

multimedia, and networking markets, a Plan-to-Closure verification environment may include special

SpeedBridge® rate adapters. These rate adapters—for example, Advanced Graphics Port (AGP), Multi-

Ethernet, PCI/X, PCI Express, Audio/Video, and RGB adapters—must be capable of interfacing an in-

circuit emulation system to a real-world environment that is running at tens to hundreds of MHz.

Workstation
Hardware Accelerator

(or Emulator)

Testbench Design

Transaction-based communications channelFigure 6:
Transaction-Based Acceleration

http://www.cadence.com

12 www.cadence.comReducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

Summary

Verification has become a critical problem with regard to developing today’s high-end digital integrated

circuits (ASICs, ASSPs, and SoCs), which may contain large numbers of logic gates, be costly to develop,

and take large numbers of engineers several years to design and verify.

Today’s designs require a verification approach that encompasses block-, chip-, and system-level

verification, from plan to closure. The Plan-to-Closure approach to verification from Cadence provides

much more than simply verification point-tools in isolation. Instead, it involves the combination of a

verification methodology based on best-known principles, practices, and procedures backed by

verification infrastructure and technology.

The Plan-to-Closure flow starts with the creation of an executable plan. This plan is subsequently

executed in a reusable way across all engines from formal verification to emulation. The Plan-to-Closure

process includes automatically measuring and analyzing verification results and reacting appropriately.

This plan-execute-measure-react cycle is repeated until verification closure is achieved. The core

concepts associated with the Plan-to-Closure verification approach are as follows:

•	 Verification planning and management: This involves the ability to capture a detailed executable

verification plan that is both human-and machine-readable. Since the verification plan is executable,

all of the coverage metrics can be linked to this plan, including assertion coverage, functional

coverage, RTL code coverage, and software code coverage.

	 The Plan-to-Closure approach also includes a verification management application that deploys and

controls the various verification engines, including formal, simulation, and hardware acceleration/

emulation; it extracts failure and coverage data from these engines; it provides analysis capabilities

from all of these sources; and it also provides visibility to the project manager so that appropriate

decisions can be made to predictably drive all the verifications processes to reach closure.

High- speed
RTL Compiler

Verilog/VHDL
Design

High-speed
ICE Interface

Target System

Integrated Control and
Debug Environment

Optional Testers

Optional Software
Debugger

Figure 7:
In-Circuit Emulation

http://www.cadence.com

www.cadence.com 13Reducing Block, Chip, and System Design R isk
with a “Plan-to-Closure” Verif ication Approach

•	 Assertion-based verification (ABV): Using the Plan-to-Closure approach, it is possible to associate

assertions with the design at any level, from individual blocks, to the interfaces linking blocks, to the

entire chip or system. ABV may be employed at every one of these levels, thereby enabling design

engineers to achieve more efficient block bring-up and helping verification engineers to ensure

proper functional behavior as captured in the verification plan. The Plan-to-Closure approach also

supports ABV using a combination of technologies, including formal verification, simulation,

hardware acceleration, and emulation.

•	 Testbench automation and reuse: The Plan-to-Closure verification approach features a method-

ology that defines how to construct verification environments in the most efficient manner. Plug-

and-play testbenches—ranging from simple directed tests to constrained, random, coverage-driven

testbenches—can be created in a mixture of languages, including SystemVerilog, e, and SystemC.

Furthermore, testbenches created to verify individual functional blocks and clusters of blocks can be

reused at the chip and system level and across multiple designs and platforms.

•	 Full-system verification: The Plan-to-Closure verification approach supports multiple levels of

abstraction, including transaction-level models (TLMs) and RTL. It also supports multiple verification

engines, including formal verification, software simulation (TLM and RTL), hardware acceleration, and

emulation. These representations and engines enable system verification and validation engineers to

verify the entire system, including hardware, embedded software, and external interfaces.

It is important to remember that the various members of the design and verification teams involved in

the development of a large digital integrated circuit will typically have different backgrounds and

different ways of looking at things. For example, hardware design engineers working at the RTL level

will tend to create directed, non-object-oriented testbenches using a language with which they are

most familiar, such as SystemVerilog. By comparison, verification specialists may create advanced

verification components and environments that significantly leverage object-oriented programming

techniques (for example, class libraries) and use constrained, random, coverage-driven techniques. These

components and environments may be developed in SystemVerilog, or in a high-level verification language

such as e, or in SystemC, or as a combination of these languages. Thus, the Plan-to-Closure verification

approach supports all of these languages and techniques.

The Plan-to-Closure verification approach spans the entire verification domain, including design

teams (small groups of logic design engineers working with RTL) and enterprise (multi-specialist)

teams comprising system architects, system engineers, design engineers, verification engineers, and

software engineers.

The Plan-to-Closure approach to verification from Cadence delivers a number of benefits. It increases

predictability (you know where you are, what you’ve done, and what you still have to do). It improves

productivity by optimizing engineering and verification resources. It increases the quality of the final

product. And it reduces overall project risk.

http://www.cadence.com

Cadence Design Systems, Inc.

Corporate Headquarters
2655 Seely Avenue San Jose, CA 95134
800.746.6223 / 408.943.1234
www.cadence.com

© 2006 Cadence Design Systems, Inc. All rights reserved. Cadence, Incisive, and SpeedBridge are registered trademarks and
the Cadence logo is a trademark of Cadence Design Systems, Inc. ARM is a registered trademark and AMBA is a trademark
of ARM, Ltd. SystemC is a registered trademark of Open SystemC Initiative, Inc. in the U.S. and other countries and is used
with permission. All others are properties of their respective holders.

7204 10/06 KM/FL/JMR/PDF

This whitepaper provides only an overview of the Plan-to-Closure approach. Cadence has developed a

complete Incisive Plan-to-Closure Methodology that includes documented best practices, golden

example, and libraries and utilities. For more information, go to:

www.cadence.com/products/functional_ver/incisive_plan_to_closure_methodology.aspx

http://www.cadence.com
http://www.cadence.com
www.cadence.com/products/functional_ver/incisive_plan_to_closure_methodology.aspx

