
Audience

The target audience for this application note is digital verification engineers
looking to achieve significant performance improvements in their overall verifi-
cation flow. In particular, those with very long debug cycles or with verification
environments containing common start-up functionality such as link training,
long reset sequences, or large register spaces that need to be programmed
will find particular benefit. The audience need not be e or Specman® users to
understand the benefits of this methodology and technology.

Introduction and Motivation

Simulation-based functional verification involves a multitude of tests that,
together, constitute a regression suite for a given design under test (DUT).
Each single simulation test run often involves a DUT start-up phase responsible
for performing functions such as reset procedure, link training, register config-
uration, or bringing the DUT into a state from which specific operations can be
executed (e.g., traffic can be sent). In large system-level simulations involving
multiple DUTs, several DUTs may need to be brought to a particular state prior
to sending anything meaningful. Even though the initialization process is often
applicable to large subsets of the regression suite, existing verification practices
do not take advantage of this commonality between runs. The same start-up
phases are executed over and over for every test. This consumes valuable time
and resources while contributing little, if anything, towards coverage.

Moreover, when a test fails during a regression, the debug session must go
through the same start-up process yet again, with significant impact on debug
cycle efficiency. Debug is especially lengthy if a failure occurs very late in the
simulation run (e.g., hours or days in.) Since identifying and isolating a bug
correctly can take several iterations, this can lead to many wasted simulation
cycles. If the point of failure can be reached significantly faster, bypassing unin-
teresting functionality along the way, a significant productivity boost can be
achieved.

Improving Verification Productivity with the
Dynamic Load and Reseed Methodology

Verification of today’s complex ASIC/FPGA designs continues to push the limits of available
resources. This causes verification teams to look for new ways to improve productivity of
verification tasks. The purpose of this technical paper is to introduce the reader to the new
Dynamic Load and Reseed Methodology, and the supporting technologies that can be used to
dramatically improve verification productivity.

Authored by Corey Goss, Solutions Engineer, Cadence Design Systems

Contents

Audience1

Introduction and Motivation1

What is Dynamic Load and Reseed

Technology?2

Benefits of Employing the Dynamic

Load and Reseed Technology2

Adopting the Dynamic Load and

Reseed Technology5

Choosing the Simulation

Save Points6

Synchronization of Verification

Environment Components6

Dynamic Loading of Test Files7

Interoperability with Incisive

Enterprise Manager8

Benefits Summary9

Further Reading 10

Simulation engines support session persistency in the sense that the entire simulation state can be saved to disk
and later resumed from the same point in a different process, possibly multiple times. This means that you could
run a simulation up to a certain point, save its state, and later resume it in multiple processes later on.

One approach to take advantage of this is to enable the random seed to be changed after a simulation state is
restored. The new seed would cause the test scenarios to change from the restore point forward, due to different
results of random generation. This approach is called Reseeding, and can be applied to all verification environ-
ments that use random generation for creating test scenarios. Another approach would be to load additional files
after the simulation has been restored. The loaded code could contain constraints and additional functionality
that could change the behavior of the resulting test scenario from the load point onwards. This approach is called
Dynamic Loading.

When Dynamic Load and Reseed approaches are used together, new methodologies can be employed to dramati-
cally improve verification productivity. These new capabilities are only available in the e language today.

What is Dynamic Load and Reseed Technology?

Simulation engines support session persistency and this functionality has existed within the Specman Elite® tool for
many years. Dynamic Load and Reseed technology builds upon the existing save/restore functionality in that, upon
restoring the simulation, you can now run a different scenario by:

1. Continuing the same simulation with a new seed value

a. All subsequent generation actions will be affected by the new random seed

b. Random stability is preserved for save/restore simulations run with the same seed

2. Loading new e files and continuing the simulation with the same seed

a. Loaded files are called dynamically loadable files (DLFs)

b. Newly loaded files can influence generation actions and add functionality (see “Dynamic Loading of Test Files”
for details)

3. Dynamically loading new e files and continuing the simulation with a new seed value

Setup Simulation Restore Simulation

Create
Verification
Environment

Run Simulation
to a Particular
Check Point
(Interesting

Point)

Save the
State of the
Simulation

Restore State

Cont. with new
e code loaded

Cont. with new
random seed

Cont. with
same seed

Simulation Time

Save the State
of the

Simulation

1 2 3 4

5

Figure 1: The overall simulation flow

Benefits of Employing the Dynamic Load and Reseed Technology

Dynamic Load and Reseed technology brings many benefits. It allows for new use models to emerge that can sig-
nificantly enhance productivity. Below, we outline three such models:

1. Faster Test Development/Debug

2. Bug Focusing

3. Improving Regression Throughput

www.cadence.com 2

Improving Verification Productivity with the Dynamic Load and Reseed Methodology

Faster Test Development/Debug

When developing new tests, you can easily bypass un-interesting early phases of the simulation allowing you to
see the effects of your tests immediately. This allows tests to be debugged much more quickly than with previous
methods as, if a failure occurs, tests can be tweaked and re-launched closer to the point of failure.

Step 1: Create/Run Baseline Test (One Time Effort)

Simulation Time

MC
Comp

Run Simulation to
Interesting Point

(before sending traffic)

Save State of
the Simulation

Quit/Continue
the Simulation

Step 2: Develop/Debug New Tests

Restore State Continue/Debug
(reseed)

Test 1

Send
Specific
Traffic

S1

Create New
DLF Tests

Load
New DLF

Debug

Continue/Debug
(reseed)

Figure 2: An improved test develoopment flow

Bug Focusing

Bugs within a design typically hide in groups. If one bug is found in a particular feature of the DUT, there is a high
probability that other bugs are lurking around the same or related features. Since save points can be created at
any point in the simulation, one way to shake out additional bugs would be to create a save point shortly before
a known bug occurs, then restore and run several simulations that target stimulus at the problem area (through
simple reseeding or through dynamically loading additional tests). By significantly varying the stimulus so close to
a known failure point, the probability of encountering other related bugs is increased. Since the simulations start
right before the bug, such runs will get to the problem area almost immediately, saving valuable simulation debug
time and engineering resources. The usage flow is as follows:

1. User encounters a bug in a simulation run

2. User re-runs the failing sim, saving the simulation state at a point just prior to the bug occurring

3. User restores the save point with the failing seed allowing for shortened debug loop

4. User runs random seeds to identify other, related, bugs

www.cadence.com 3

Improving Verification Productivity with the Dynamic Load and Reseed Methodology

Test Development/Debug

Restore State
(optionally reseed)

Encounter Bug
at Time X

Send
Specific
Traffic

S1

S2

Load DLF

Debug

Restore State
(with failing seed)

Save State at Time
(X-delta)

Run

Restore State
(with failing seed) Run

Restore State
(random seed)

Encounter Bug
at Time X+300Run

Restore State
(random seed)

Encounter Bug
at Time X+10Run

Restore State
(random seed)

Encounter Bug
at Time X+187Run

Run

1

4

2

3

Debug

Encounter Bug
at Time X

One does not need to restore from a
saved start to start this flow. We could

have started from time 0

Once bug is identified, launching
random seeds from S2 will help

flush out related bugs

Figure 3: Bug focusing

If a bug is identified to be a register transfer language (RTL) issue, random stability in the verification environment
will ensure that the same seed will produce the same stimulus (provided the constraints in the environment are not
tied to DUT state that may have been affected by the RTL fix), allowing an engineer to quickly verify that the bug
has been fixed correctly. Reseeding again around the previously known bug after the RTL has been fixed will help
to shake out any related or newly introduced bugs.

Improving Regression Throughput

In addition to reducing the test development and debug cycle, significant productivity gains can be achieved in
regression runs. By identifying groups of tests that share common functionality, you can partition a regression run
into groups of tests that should be launched from a common restore point. For example, if every test in the regres-
sion proceeds through a common initial start-up sequence, a single set-up run can be launched and the state of the
simulation (we’ll call this S1) saved after the initial start-up sequence. All other tests in the regression can be loaded
and launched after first restoring the S1 state. Coverage can be dramatically increased through launching multiple
random seeded runs of each test from state S1.

Furthermore, if a certain group of tests requires that the DUT be set up in a particular mode of operation (e.g.,
DUT registers need to be programmed or a stream of configuration packets need to be sent), the state of the simu-
lation can again be saved (we’ll call this S2) after this secondary phase of set up and all tests related to that particu-
lar mode of operation can be launched from state S2. There is no limit to the number of states that can be saved in
any given simulation run, paving the way for a single set-up run to save various states of the simulation after cer-
tain interesting phases have succeeded (e.g., Reset, DUT Initialization, Link Training, DUT Configuration, etc.).

www.cadence.com 4

Improving Verification Productivity with the Dynamic Load and Reseed Methodology

Reseed and Run

S2

Debug

MC
Comp

Run Simulation
to “Interesting”

Point

Run Simulation
to “Interesting”

Point

Test
A

Restore S1 State

Reseed and Run

Save State of
the Simulation

Reseed and Run

Restore S1 State

Restore S1 State

Load
another

DLF

Load
new
test

Each seed produces new
stimulus combinations

(Test A11, TestA12,
TestA13, TestA14)

Sets up the veification environment and DUT
in an interesting mode of operation (e.g. Mode A).

There maybe several setup tests per regression

S1

Test
ABCD

Test
A2

Test
A1

Test
X

Figure 4: An improved regression flow

Adopting the Dynamic Load and Reseed Technology

Dynamic Load and Reseed technology can be adopted according to your specific needs, allowing for rapid imple-
mentation on any existing verification project. Through adopting Dynamic Load and Reseed technology, you can
employ new methodologies and flows to your test development and regressions that will allow for significant
productivity gains. Early customer feedback has indicated a savings of up to 60% over their current methodologies
and flows. For example:

•	 Save/Restore + Reseeding: You can select a key save point(s) in your environment for a test, then run the test
to the save point, restore, and reseed the same test multiple times. This is the simplest method of adoption and
provides overall reduced simulation time (over running each test from time 0) and faster coverage convergence
(due to more exploration of their DUT in a shorter window).

•	 Save/Restore + Reseeding + Dynamic Load: On top of the benefits that Save/Restore + Reseeding offer,
you can also benefit by adding functionality after a restore through loading of additional e files. This adoption
method enables you to load and launch many individual tests from a single (or multiple) save point(s), dramat-
ically reducing both test development and regression cycles.

•	 Save/Restore + Reseeding + Dynamic Load + UVM e Testflow: Universal Verification Methodology (UVM)
e Testflow provides an ideal simulation framework for use with Dynamic Load and Reseed technology. It breaks
the run() phase of participating units and sequences within the verification environment into 8 subphases,
each with a clear start/end point, and provides built in hooks that are very useful for saving the state of the
simulation. While UVM e Testflow is not a precondition for Dynamic Load and Reseed usage, it is well suited,
easy to integrate into an existing environment, and is recommended. More information on UVM e Testflow
features can be found in “Choosing the Simulation Save Points.”

www.cadence.com 5

Improving Verification Productivity with the Dynamic Load and Reseed Methodology

Dynamic Load and Reseed technology is built upon the IntelliGen Generation engine within the Specman Elite tool.
A key enabler of future technologies, IntelliGen offers significant benefits to customers over the previous Specman
Generation engine (Pgen) in terms of ease of use, solvability, coverage, and performance. All steps required to
migrate an existing verification environment to IntelliGen are clearly outlined in the “IntelliGen User Guide” within
the Specman Elite documentation.

Choosing the Simulation Save Points

There are several factors to consider when choosing a point to save the simulation state. To minimize redundancy
across the test base, a safe point should be chosen just after a group of repetitive actions have completed. In this
case a “safe” point means that the particular phase of the simulation that you would like to bypass has completed
fully. Any sequences or transactions that are currently “in flight” might be affected after the restore point by DLF
content (e.g., new constraints) so it is best to ensure that the state is saved once all transactions for a particular
phase of the simulation are completed. Additionally, you should consider creating save points at the beginning
of phases where stimulus sent to the DUT varies most (e.g., after the DUT is initialized and actual traffic is being
sent), as this allows for the highest amount of coverage to be achieved through dynamically loading tests and
reseeding. Because the save points to select are highly DUT dependant, some suggested points are as follows:

•	 Generally useful save points:
 – After reset has been asserted
 – After programming initial DUT register configuration
 – After clock synchronization
 – After bringing up a system simulation (many DUTs)
 – After all links have been trained
 – At the start of the simulation (to avoid recompiling/reloading files)

•	 PCI-Express/USB 3.0 protocol specific:
 – After Link Training
 – Once reaching the L0 (PCIE) or U0 (USB 3.0) state
 – After enumeration process has occurred

When saving the state of the simulation, you must save the state of both Specman Elite and the simulator. For users
of the Cadence® Incisive® Enterprise Simulator, a synchronized save is easily achieved through either the command
line or, preferably, through calling the built-in sys.simulator_save() time-consuming method (TCM) embedded
within your e code. An example of this method call is shown in the following code example:

extend USER_DEFINED_TEST_FLOW cdn_uart_virt_seq_s {
 do_link_train()@driver.clock is (
 if (save_after_init) then {
 sys.simulator_save(”after_link_train”,TRUE,TRUE);
);
);
);

Snapshot
name

Overwrite any
snapshots with
the same name

Continue the
simulation after

saving state

For users of other commercial simulators, the appropriate save command must be executed in addition to the
Specman save through either the command line or scripting.

Synchronization of Verification Environment Components

To synchronize verification environment components as the simulation progresses, many users employ some form
of structured framework, or phases, within their environment. All simulations proceed through the phases in a
sequential manner. This can be in the form of a virtual sequence, event handshaking, or some other synchroniza-
tion mechanism. An example of an open source framework to perform such a function is UVM e Testflow (available

www.cadence.com 6

Improving Verification Productivity with the Dynamic Load and Reseed Methodology

within the UVM e library, which is part of the Specman Elite release). Once implemented in a user environment, the
run() phase of participating verification environment components (e.g., monitors, sequence drivers, etc.) is broken
into 8 subphases as follows:

ENV_SETUP HARD_RESET RESET INIT_DUT INIT_LINK MAIN_TEST FINISH_TEST POST_TEST

 The phases are executed from left to right and no phase begins until all participating components contributing to
the previous phase have completed their tasks. The user is free to extend any of the phases (TCMs and sequences
exist for each phase) to add desired functionality and there are a number of built in hooks to tap in to phase execu-
tion as needed. The black circles in the diagram above indicate key points in the phase progression for creating
save points. An example of how to use UVM e Testflow built-in features to save the state of the simulation just
after the INIT_LINK phase has completed is shown below:

extend my_verification_env_u {

 tf_phase_ended(phase: tf_phase_t) is (
 if phase == INIT_LINK {
 start sys.simulator_save(”after_link_train”,TRUE,TRUE);
);
);
);

Built-in method tf_phase_ended()
is automatically called at the end
of each phase

The UVM e Testflow phases feature is simple to implement into any environment (in case a user does not have a
previously existing framework). While the implementation of UVM e Testflow in a verification environment is very
useful, it is not a precondition to make use of the Dynamic Load and Reseed functionality.

Dynamic Loading of Test Files

When the simulation state is restored and the simulation is continued, all e code executes seamlessly, as though
the set-up and restore portions are executed in one continuous simulation. Upon a restore, additional e files can be
loaded that will affect future simulation results. Since the simulation is continuing from a previous state, we must
consider that certain tasks have already taken place or are “in progress.” Examples are pre-run generation, TCM
execution, event triggering, port connections, and external model connections (such as C++/SystemC®). The e code
residing within DLFs must consider this.

One can think of a DLF as a formalized way of defining the contents of a test. As opposed to tests being used to
affect pre-run generation (through environment topology constraints) and the functionality/structure of any object
in the environment, a DLF is designed to mainly affect or support stimulus generation. This requires a methodology
to be employed by verification environment developers where there is clear separation between environment con-
figuration files and test files. Tests contain stimulus control while the environment is written in a manner to sup-
port control from the test. For users who have implemented environments based on a coverage-driven verification
(CDV) methodology, this separation will be very natural. For directed test users who implement custom checks and/
or significantly modify the verification environment (topology, etc.) within each test, a shift in methodology will be
required.

DLFs can include code that:

•	 Modifies constraints on data items so as to inject different traffic scenarios

•	 Extends objects to add new fields

•	 Defines and launches new sequences

www.cadence.com 7

Improving Verification Productivity with the Dynamic Load and Reseed Methodology

•	 Defines and launches new TCMs

•	 Extends/overrides previously defined empty TCMs

•	 Extends a previously defined empty TCM

•	 Creates new checks/expects/events in new struct types

•	 If using UVM e testflow phases, modifies future test phases

•	 Extends the post run() built-in phase methods: extract(), check(), finalize()

•	 Procedurally overwrites fields of existing units

An example of a simple DLF is outlined below on the right. The code on the left represents a subset of the base
code within the environment:

// Base code
struct cdn_uart_frame_s like any_sequence_item {
 parity_type : cdn_uart_frame_parity_t;
 %start_bit: bit;
 %payload: list of bit;
 keep plsize is soft payload.size() < 5;
 ...
};
extend cdn_uart_seq_kind_t: [INIT];
extend INIT cdn_uart_seq_s {
 !init_sequence: LEGAL cdn_uart_frame_s;
 count: uint;
 body() @driver.clock is only {
 for i from 1 to count do {
 do init_sequence;
); // body()@driver.c...
); // extend INIT cdn...

unit cdn_uart_env_u like uvm_env {
 event clock is rise (clock_p$) @sim;
 tx_agent: TX cdn_uart_agent_u is instance;
(;

//DSF file
extend cdn_uart_frame_s {
 keep parity_type !=NONE;
 keep plsize is only TRUE;
 my_field: byte;
};
extend INIT cdn_uart_seq_s {
 keep count in range [1..5];
};
extend cdn_uart_env_u {
 !new_field: uint;
 keep new_field < 50;
};

New constraints
on existing fields

Modify existing
constraints

New fileds added
to existing structs

New constraints on
existing sequences

New fields added to
existing units

Note: Must manually
generate new fields

Note that in the above example, new_field must be manually generated. This is true for all new fields added to
units as the unit structure is generated once, at the start of the simulation run.

DLFs cannot include code that:

•	 Modifies the verification environment topology or coverage model

•	 Modifies the port bindings: do_bind, .connect(), .disconnect()

•	 Adds new event, expect,or assume constructs to existing units/structs
 – These can be included in new struct type defined in DLF

•	 Adds new events tied to the @sim sampling event

•	 Refines a defined, non-empty TCM in an existing type (is first/also/only)
 – Only overriding of empty TCMs is allowed
 – Refinement is allowed in the context of a new type defined in a DLF

•	 Must be compiled

Interoperability with Incisive Enterprise Manager

The Dynamic Load and Reseed Methodology is fully supported by Incisive Enterprise Manager. Various attributes
within a verification session input file (VSIF) manage which tests are executed in a given regression, as well as
identify where the results are stored and which scripts to call. The depends_on attribute is used to ensure proper
ordering between tests. This allows you to code VSIFs such that, first, a set-up run can be launched that saves the

www.cadence.com 8

Improving Verification Productivity with the Dynamic Load and Reseed Methodology

state (or multiple states) of the simulation and, second, any tests that are dependant upon the set-up run will not
be launched until it successfully executes. If the set-up run fails for any reason, all of the dependent tests will not
be launched and, instead, be marked as failed, with a note pointing you to check the set-up run for issues.

A sample VSIF file is shown below. The top_files attribute identifies individual test names within a container. In the
example, the test1.e file is part of the dynload_test1 container. Each container has its own set of attributes and,
since the dynload_test1 container “depends_on” the save_test container, it will not be executed unless save_test
has successfully completed.

session test_reseed [
 session_name: “Test Reseed and dynamic load”;
 top_dir : $SESSIONS_DIR; //Store all output to this directory
 output_mode: terminal; //Open an xterm for viewing progress
};
group reseed {

 timeout: 100000;
 //scans all logs for errors
 scan_script: vm_scan.pl ius.flt sv_uvc.flt;

 //default run script
 run_script: “$SCRIPTS_LOCATION/run_test.csh”;

 test save_test {
 run_script: “$SCRIPTS_LOCATION/setup_run.csh”;
 };
 test dynload_test1 {
 count: 5;
 depends_on: ../save_test;
 top_files: $TESTS_LOCATION/test1.e;
 seed: positive_gen_random
 };
};

Restores saved state, loads
a new file and runs with
new random seed

Runs to a point, then
saves the state and
continutes and/or
exits, seed will be
default value of 1

Run dynload_test1
5 times

save_test must
complete prior to
dynload_test starting

Run with random
seed each time

Benefits Summary

As today’s devices continue to grow in complexity, verification teams are continually looking for new ways to
improve productivity. The Dynamic Load and Reseed Methodology and its underlying technology allow users to
dramatically improve verification productivity by building upon the previously existing session persistency fea-
tures (save/restore) of the Specman Elite tool and the simulator. Simulation states can be restored and reseeded to
increase coverage. New files can be dynamically loaded after restoring to guide future generation results.

Through bypassing initial (and often lengthy) start-up functionality, users can:

•	 Get to the more meaningful portion of their simulations faster

•	 Achieve higher degrees of functional coverage

•	 Reduce test development cycles/flows

•	 Reduce debug cycles/flows

•	 Reduce regression runs

•	 Save hundreds of simulation hours

All features are fully compatible with Incisive Enterprise Manager and are available as part of either the Specman
Advanced Option or the Incisive Advanced Option feature set available in the 10.2 and later releases. Parallel e code
compilation, the ability to debug compiled e code, and the ability to dynamically switch any/all files from compiled
to interpreted mode during a simulation run are also Specman Advanced Option features.

www.cadence.com 9

Improving Verification Productivity with the Dynamic Load and Reseed Methodology

Further Reading

More on Dynamic Load and Reseed technology (and other Specman Advanced Option features):

•	 “Specman Functional Verification” documentation available in the 10.2 Incisive Enterprise Simulator/Specman
release

•	 Specman Advanced Option workshop
 – 1-day self-paced training workshop that includes slides and several hands-on lab exercises to explore the
various features available in the Specman Advanced Option

More on UVM e Testflow features:

•	 “UVM e User Guide” documentation available in the 10.2 Incisive Enterprise Simulator/Specman release

More on Specman Elite technology or the e language:

•	 Introduction to the e Language workshop
 – 1-day self-paced training workshop including slides and labs

•	 Introduction to Specman Elite workshop
 – Self-paced training workshop on basic Specman features for loading, launching, running, and analyzing tests

•	 Generation using IntelliGen workshop
 – 1-day self-paced training workshop including slides and labs

Any of the above can also be obtained by contacting your local Cadence Sales representative.

Cadence is transforming the global electronics industry through a vision called EDA360.
With an application-driven approach to design, our software, hardware, IP, and services help
customers realize silicon, SoCs, and complete systems efficiently and profitably. www.cadence.com

© 2011 Cadence Design Systems, Inc. All rights reserved. Cadence, the Cadence logo, Incisive, Specman, and Specman Elite are registered
trademarks of Cadence Design Systems, Inc. SystemC is a registered trademark of the Open SystemC Initiative, Inc. in the US and other countries
and is used with permission. 22251 06/11 MK/DM/PDF

Improving Verification Productivity with the Dynamic Load and Reseed Methodology

