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Abstract 

Even though analog parts of today’s mixed-signal 

chips are relatively small in terms of area and 

complexity, the design and verification effort for those 

parts is increasing. Moreover, chips operate in 

complex and mostly analog environments that must be 

taken into account in many cases. At the same time, 

reliability demand is zero-defect, e.g. for automotive 

components. Advanced verification methods like 

coverage driven verification are currently used to 

address the growing verification problem in the digital 

domain. However, these techniques are not yet 

addressing the problem of integrated analog parts in 

the digital context. This paper describes the use of 

coverage driven verification for analog/mixed-signal 

systems. The first part contains a general discussion of 

the digital verification method as of today and the 

possible mapping to an analog/mixed-signal design 

scenario. The second part describes a demo example 

that shows the coverage driven verification approach 

for a true mixed-signal/mixed domain system. The 

system contains electrical as well as mechanical and 

software parts and is therefore a good representation 

of today’s complex system designs.  

1 Introduction 

Significant efforts have been made over the past 

couple of years to improve the quality and the 

productivity of functional digital verification. Only 

few years ago engineers wrote directed testcases 

which were composed of simple sequence of ‘0’ and 

‘1’ as input stimulus for the design. In addition 

checking was done manually. It was part of the test 

and verification engineer’s task to explicitly predict 

the expected response of the DUT for a specific test. 

In some cases it required even visual inspection of a 

waveform. Since this extra work had to be repeated for 

each and very testcase in case of a design change, 

engineers tended to minimize the amount of hard 

coded checks within their tests. 

Advanced verification techniques have been 

developed and introduced into today’s digital design 

flows to overcome most of those limitations and 

productivity restrictions. Moreover, the prediction of 

verification quality is a major improvement in the state 

of the art verification methods. Main components of 

these verification techniques are: 

• Automated Stimulus Generation 

• Automated Self-Checking (Assertions, 

Reference Models, etc.) 

• Automated Coverage Measurements and 

Tracking 

The status of analog/mixed-signal verification as of 

today is very similar to the scenario described above. 

Given that, the obvious question arises: Is it possible 

to improve verification efficiency and quality using 

the same or similar measures as used in the digital 

world?  

It will be shown below, that there is no simple answer 

to that question. There is definitely room for 

improvement in the analog/mixed-signal verification 

strategy and a lot can be learned and adopted from the 

advanced methods described above. However, there 

are also some fundamental differences in the design 

and verification problem that lead to different 

requirements and implementations of the verification 

solution.  

This contribution is structured as follows: Section 2 

elaborates the verification process and the differences 

of analog and digital approaches in general. In Section 

3 the use of those approaches inside Specman and 

AMS Designer will be highlighted. An automotive 

design example will be presented in Section 4 and 

implementation details and results will be discussed. 

Finally, Section 5 discusses advantages and 

disadvantages of this approaches and points out other 

possibilities.   



2 Verification Goals and Approaches 

Verification has basically two goals (Figure 1): Firstly, 

to check that the system fulfills the specification. That 

means that it does what it is required/specified to do 

and does not exceed certain limits, e.g. the gain of an 

amplifier must be above 10db. Secondly, it has to be 

verified that the system does not do anything “bad” 

that might have a negative influence on other 

components or the environment. E.g. the amplifier 

starts oscillating during power up phase. This second 

category covers mostly implicit assumption that are 

naturally made but not explicitly specified.  

Check specification

Avoid “bad” behavior

Check corner conditions:
• Operations mode
• Bus protocol/error
• Vdd, temp, … variation

• Process variation

Run specific tests

Run failure tests 

Sweep/test different
conditions, modes

 

Figure 1: Verification goal and methods. 

Specific simulation runs and tests are required to 

implement the verification of those two categories 

above. Moreover, it has to be assured that the 

verification goals are met in all different operating 

modes and corners of the system, such as: 

• System’s operation modes 

• Different phases of the system operation 

• Silicon process variations and device mismatch 

• Varying environment parameters, like 

temperature, supply voltage 

To ensure this, the tests have to be repeated in those 

different constellations. It is already obvious that an 

exhaustive search through the whole space of different 

tests, operation modes and corners might be 

impossible to do. Trade-offs have to be made between 

the verification effort and the level of confidence in 

the correct behavior of the system. 

2.1 Verification Methodology 

As mentioned above, verification is based on 

simulation runs. The design under test (DUT) is 

stimulated with some input data and simulation is run 

for a specific time, frequency range, amount of data 

points etc. Finally, the simulation results are stored. 

Beside the simulation setup itself that should not be 

considered here, there are two important tasks: 

• Generation of input stimuli 

• Checking the results against expectations 

All above applies for analog as well as for digital 

verification and is also valid for advanced automatic 

and manual methods. The third task mentioned in 

Figure 2 is functional coverage to measure which 

verification goals have been achieved during 

simulation.  
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Figure 2: Generation, Checking, and Coverage. 

2.1.1 Checking 

The first step for verification automation is the 

automation of results inspection. Only if the task is 

formalized and implemented, further automation can 

be applied. 

As said above, main parts of analog circuit verification 

still rely on manual waveform inspections. There are 

several reasons for that: 

• Necessary measurements and calculations on 

analog waveforms are sometimes hard to 

implement. 

• Waveform inspection is a major part of the 

analog workflow. People are used to do that. 

• Analog design is not very formalized and still 

relies on expert knowledge. This implies that 

there are significant amount of implicit 

assumptions beside the specification. 

Even though a complete replacement of manual 

waveform inspection in analog design is not realistic 

today, a lot of results checking tasks can be relatively 

easy automated. That enables automatic verification, 

e.g. regression runs, on those automatic checks, while 

the analog designer can focus on the non-formalized 

checks. 

2.1.2 Generation 

The input stimuli generation can be either manual or 

automatic. The straight forward way is the manual 

method, where the designer or verification engineer 

defines the input stimuli for a specific test. 

The automatic method requires a certain amount of 

freedom for the algorithm to create the input signals. 

In other words, the user has to define certain 

constraints for the inputs and the generator creates – in 

most cases randomly – the stimuli within the given 

limits. Section 2.1.4 will discuss the use of random 

stimuli generation in more detail. 



It should be noticed that the checking task is also 

influenced by the generation method. In case of a 

manually created fixed stimulus it is sufficient to 

verify the output against a well defined and fixed 

output behavior. However, if the input stimulus is 

varying, the expected output has to be defined 

according to the input.  

There are two ways to address this problem. If the 

check is measuring derived values, e.g. amplifier gain, 

those performance numbers may be – within certain 

limits – independent of the input stimulus itself, thus, 

those types of checks are applicable with automatic 

stimuli generation. Secondly, if the check is 

implemented to compare the output against a 

reference, this reference value has to be generated 

according to the input stimulus. This could be 

achieved by the use of a reference behavioral model 

that is used as executable specification. 

2.1.3 Coverage 

Theoretically, functional coverage is defined as the 

ratio between the visited or verified states of the 

systems state space, divided by the total amount of 

states. This definition can be easily understood for 

finite state machines. Figure 3 shows a little example 

on the top where states A and B have been verified, 

while the whole state space has 4 states: A, B, C, D. 

Thus, coverage is 50% in this case. 
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Figure 3: Functional Coverage in Digital and Analog. 

For complex digital systems, the state space can be 

very big, e.g. the exploding number of states in a 

memory block. For analog circuits the situation is 

even worse, since the state space is a continuous 

vector space. See the little vector space of a tunnel 

diode on the top right corner of Figure 3. Still the 

theoretical definition holds for those systems, however 

the practical use is very limited. 

It is common praxis not to take the whole state space 

into account but to define the verification goals and 

possible scenarios to be covered by the user. E.g. the 

verification goal might be to check 4 ports of a system 

applied with 5 different types of data, A-E (bottom left 

picture). The functional coverage is defined as the 

ratio of the verified scenarios divided by the total 

amount of scenarios – 20 in this case. A similar 

measure can easily be applied to analog systems (see 

bottom right picture). 

Even though this definition is of more practical use, it 

is likely that the amount of desired verification 

scenarios is extremely large. E.g. it might be the goal 

to check all combinations of the 5 data types applied 

to the 4 ports (AAAA, AAAB, AAAC, …) including 

their transitions (AAAA followed by AAAB, etc.) in 

the example above. The result is (5
4
)

2
 = 390625 

scenarios. As a result a simple for-loop checking all 

scenarios one by one is not applicable.  

2.1.4 Coverage driven verification flow 

Given that an exhaustive search through the whole 

verification space is not practical implies that the 

verification process is limited in time. However, the 

coverage figure still provides an accurate number of 

the verification quality with respect to the defined 

goal. 

Figure 4 assembles the pieces together that have been 

discussed above. The simulation results are 

automatically checked and problems are being 

reported. An automatic stimuli generator creates tests 

on a random basis within given constraints. On top, 

the designer might have a certain amount of tests that 

are pre-defined and need to be run (directed tests) to 

reach certain corner cases.  
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Figure 4: Coverage driven verification flow. 

The verification process, as described without 

coverage measure, can run independently for the given 

amount of time. However, it is unclear how far/close 

the overall verification goal might be. Adding the 

coverage into that picture provides this information 

and shows what has already been achieved in the 

given timeframe. By this, the approach becomes 



scalable, e.g. doing quick checks during design 

phases, running daily overnight regressions and a long 

final sign-off regression for the project.  

3 Using Specman with AMS Designer 

The described coverage driven verification approach is 

well known and supported by Incisive Enterprise 

Specman® and the verification language “e”. 

Specman basically controls the simulator, generates 

input stimuli, performs the output checks, and 

summarizes the coverage measures. 

Combining the Specman approach with the single 

kernel, mixed-signal and mixed-language simulator 

Cadence® Virtuoso® AMS Designer Simulator, 

which is a component of Virtuoso Multi-Mode, 

provides the capability to do mixed-signal coverage 

driven verification.  

Indirect Analog Verification 

The simplest way to achieve that is to include analog 

blocks into the digital design, where all checks and 

stimuli are applied to the digital part only. In this case, 

there is no need to change anything in the verification 

setup. Only the simulator is switched from pure digital 

NCSim to AMS Designer and the analog block is 

included (see Figure 5, middle block “A”). In this 

configuration, the analog behavior is stimulated and 

checked through the digital part of the system. This 

limits the amount of checking capabilities but is still a 

useful setup. 
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Figure 5: Mixed-signal verification setup.  

Direct Analog Verification 

The scenario where Specman interacts directly with 

the analog part is more complex but also more 

powerful (see Figure 5 left and right “A” block). Since 

the 6.1 version of Specman, the usage of real valued 

data is supported in e. Additionally, real values, 

voltages etc. can be directly probed inside analog 

blocks. For other probes like currents and driving 

analog nets, ideal AD/DA converters have to be added 

into the testbench. It should be noted that the driving 

and probing capabilities of Specman in the analog 

domain are constantly extended, so that the necessity 

of manual inserted converters will soon be obsolete. 

4 Experimental Results 

The methodology described above and the practical 

use of this approach should be illustrated using an 

automotive application. It is a window winder system 

with all it’s components, including the mechanical 

chain and a software part. 

The schematic of the top level design is shown in 

Figure 6. The following list provides a brief 

description of the blocks on the bottom row (from left 

to right). 

• Micro controller. modeled as simple SystemC 

program. 

• Motor control unit. Including transistor level, 

VerilogAMS and digital Verilog blocks. 

• Motor modeled in VerilogAMS. 

• Mechanical chain modeled in VHDLAMS. 

• Rotation sensor and window model 

(VHDLAMS)   
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Figure 6: Window winder system. 

The two blocks in the middle of the top row model 

two error conditions: 

• Obstruction: Some object is blocking the 

window on moving up. The window can still 

move down. 

• Stuck: the window is totally stuck, it can’t 

move up or down. 

Specman hooks into the design through the upper left 

blocks.  



The micro controller block gets two input signals 

(up_switch and down_switch). It starts and stops the 

motor accordingly and controls the window position. 

To avoid motor damage the micro controller detects if 

the motor current is too high for a certain amount of 

time and switches off the motor. Finally, if the 

window does not fully close, even though the motor is 

on, the controller will switch the motor “down”, 

assuming that someone might have tucked his arm out 

of the window. If that is not possible either it will fully 

switch off the motor. 

4.1 Verification Approach 

The system’s input values are: 

• Up switch 

• Down switch 

• Obstruction error 

• Stuck error 

The supply voltage of the system is varied randomly 

within certain limits inside the testbench.  

To simplify matters, only 3 specifications values are 

checked: 

• If no error condition is set and the up switch is 

set, the window must be closed after 100 clock 

cycles. 

• If no error condition is set and the down switch 

is set, the window must be open after 100 

clock cycles. 

• The motor current shouldn’t be too high for 

more than 10 clock cycles. 

4.1.1 Generation 

The e code for the generation part looks like follows 

(only essentials are shown). The four free input 

variables are all of type bit. The “keep” constraint 

avoid the illegal setting of up and down at the same 

time. 
 

struct window_ctrl_s like  

  any_sequence_item { 

   

  up : bit; 

  down : bit; 

  obstruction : bit; 

  stuck : bit; 

 

  keep up == 1 => down == 0; 

  keep down == 1 => up == 0; 

 

  event item_driven; 

}; 

For the checking itself various scenarios are defined. 

The first test in the code below is a directed test, since 

all the free parameters are fixed. Thus, as first test the 

window will move up with no error condition 

switched on. After 100 clock cycles the second test 

will be started. 

The second test requires the two error conditions to be 

off, however, the decision on moving the window up 

or down is left open. It will be chosen by Specman on 

a random basis. 

After those two directed or partly directed tests, the 

next 100 runs are completely unconstraint. The error 

condition and the up/down decisions are taken 

randomly.  
 

extend MAIN window_ctrl_sequence { 

  !item : window_ctrl_s; 

  body() @driver.clock is only { 

 

do item keeping {  

 .up == 1;  

 .obstruction == 0;  

 .stuck == 0;  

}; 

wait[100]; 

 

do item keeping {  

 .obstruction == 0;  

 .stuck == 0;  

}; 

wait[100]; 

 

for i from 1 to 100 { 

do item; 

 wait[100]; 

}; 

 

}; 

}; 

4.1.2 Checking 

The three specification values are checked in the e 

code below. The implementation is based on events. 

E.g. the event hc_too_long is triggered when the 

current was too high longer than 10 clock cycles. This 

event will then issue an error accordingly. 
 

event hc_t is  

 true(p_agent.smp.hc$==1)@clk; 

event hc_too_long is  

 {[10]* @hc_t;}@clk; 

 

on hc_too_long { 

dut_error("hc is high too long"); 

}; 



In the same way the correct behavior of the window 

open and close function is described. It should be 

noticed that the window_position signal is a real value 

that is directly probed inside the top level schematic. 
 

event button_up is true(  

 p_agent.smp.up_switch$.as_a(bool))  

 @clk; 

event win_should_be_up is  

 {[100]*{(@button_up and  

 not @stuck_on and  

 not @obstruction_on)}  

 }@clk; 

on win_should_be_up { 

 check that window_position >= 1.0 

else  

 dut_error( 

 "windows should be up by now!!!"); 

}; 

4.1.3 Coverage 

The four most obvious coverage items are the four 

input signals up, down, obstruction, and stuck. It must 

be ensured that each of these signals have be switched 

on and off once. 
 

extend window_ctrl_s { 

cover item_driven is { 

item up; 

item down;  

item obstruction;  

item stuck; 

As said above, the vdd voltage varies during 

simulation time between about 11.9 and 12.4 V. 

Covering those variations as well ensures the correct 

behavior of the system within all different supply 

voltage levels. Since vdd is a real signal we have to 

define lower and upper boundary as well as the 

precision we want to use for the coverage.  
 

item_rld vdd p_agent.smp.vdd$  

 -from 11.9  

 -to 12.4  

 -precision 0.1; 

So far all coverage items are independent, meaning 

that the occurrence of up=1 and up=0 provides a 100% 

coverage for this item regardless of the values of the 

other items. Crossing of different coverage items 

provides the needed correlation between the items. 

The example below covers all scenarios with the up 

button pressed. This adds up to: 2 possibilities each for 

stuck and obstruction and 5 regions inside the vdd 

range, thus, 20 test scenarios. 

cross up, stuck, obstruction, 

 vdd_rl using ignore=(up==0);  

4.2 Verification Results 

Figure 7 shows the simulation results after a few 

minutes of verification time. The first four lines are 

the input signals, followed by the high current signal 

and the rotation signal generated by the sensor. The 

motor voltages are displayed as analog waveforms 

below. Finally, the window position and the vdd 

voltage is displayed. 

 

Figure 7: SimVision showing waveform results. 

It is clearly visible that the two error conditions are off 

for the first two cycles and the window moves up in 

the first cycle, as defined in the generator code. The 

rest of the switching activity is chosen randomly by 

the generator. 

 

Figure 8: Coverage values after short simulation. 

After the given simulation time, the coverage results 

look as in Figure 8. The first 5 coverage items are 

complete, meaning the coverage is 100%. However, 

the crossing discussed in the previous section has only 

reach coverage of 30%. The green bars indicate a 

coverage item that has been hit and the numbers of 

hits, while a red circle highlights items that have not 

been reached in current simulations. 



 

Figure 9: Design error found. 

Figure 9 shows the output message of a problem found 

by the verification code. In this case the two error 

scenarios are switched off and the up-button is 

pressed. Still the window did not reach the uppermost 

position after 100 clock cycles (Figure 10) 

 

Figure 10: Simulation results showing the problem. 

A detailed analysis shows that the window position 

went into the negative region before the up-button is 

pressed again. That is the reason for the failure. Even 

though possible, the designer of that demo system had 

not thought of this possibility and had never tested this 

scenario manually. This shows clearly the advantage 

of the random base generation approach on a relatively 

simple example.   

5 Conclusions 

As shown in the previous sections, coverage driven 

verification for mixed-signal designs is relatively easy 

to setup and run using Specman and AMS Designer. 

The advantages of the approach are obvious and have 

already been discussed before: 

• Advanced verification method 

• Well defined verification strategy 

• Random generation  

• Automatic checking 

• Coverage matrix  

• Natural integration into digital verification 

flow based on Specman/e 

• Only little modification needed in the design 

However, there are also some disadvantages that need 

to be taken into account:  

• The integration into the analog centric flow 

that is mainly based on Analog Design 

Environment (ADE) is very limited today. 

• Implementation effort for automatic checks of 

analog values ranges from simple to extremely 

complicated. Thus, a complete automatic 

checking requires high effort. 

• The verification language e is unknown in the 

analog flow.  

5.1 Simulation Performance 

Simulation performance has to be considered as well 

in this context. It is well known that the simulation 

performance of a digital circuit is far better than a 

transistor level analog block. Thus, even the 

integration of a single analog block into a digital 

simulation environment can slow down simulation 

significantly.  

There are several measures to improve the analog 

simulation performance, e.g. behavioral modeling, 

FastSpice solvers, etc. This matter is of high 

importance but should not be discussed in this context. 

However, there are several concurrent desires in 

verification that needs to be traded off: 

• The system that is verified should be as 

complete as possible to catch problems that 

result from the interaction of different block 

(integration problems). 

• Each individual component should be modeled 

on the highest level of accuracy. 

• Simulation performance should be as high as 

possible to be able to verify many scenarios in 

short timeframe. 

Obviously, individual tradeoffs have to be made for 

those trends, depending on the application and the 

current design phase.  

5.2 Application scenarios 

Given the pros and cons discussed above, leads to an 

application scenario that looks like follows: 



Coverage driven verification on mixed-signal circuits 

does not – and does not intended to – solve the 

simulation performance problem. Thus, only system 

configuration that simulate in a reasonable timeframe 

enable advanced verification methods. 

This approach is well suited to verify mixed-signal 

integration problems where the digital verification 

approach is already based on Specman/e. In those 

scenarios, a detailed check of the pure analog behavior 

is done in the classical Analog Design Environment 

(ADE) which is will known by the analog designer. 

Some selected checks are integrated into the 

Specman/e verification environment to ensure the 

correct behavior of the analog parts after integration in 

the digital environment. 

Another application area is an analog centric design 

flow with straight forward analog performance checks 

and many digital control and input ports. In this 

configuration it is relatively easy to provide realistic 

digital stimuli through the verification environment 

and run random based verification. This provides a 

significant advantage over the manual verification 

approach done in the analog environment. 

5.3 Alternative Approaches 

As mentioned before, ADE is the standard 

environment for analog design. The new ADE XL 

environment as part of the Virtuoso Custom Design 

Platform IC 6.1, provides an analog centric 

verification suite, enabling automatic checking, 

multiple runs, corner and Monte Carlo simulation. 

Key features are: 

• Support for transient, DC, AC and RF analysis 

• Specification-driven design  

• Supports multiple tests/analysis & 

measurement inside a single ADE XL state 

• Parasitic aware design flow 

• Constraint-driven design 

• Automatic characterization and model 

generation 

• Integrated sizing and optimization capabilities 

• Report generation 

• History archive 

The ability to automate the verification process 

combining a complete set of testbenches/tests/analyses 

into a single simulation run is a huge productivity 

benefit for the analog designer. Combining this with a 

complete set of measurement checking the 

specification values results in a simple pass/fail 

summary for each specification value. A rich set of 

predefined checking functions and a straight-forward 

scripting language (SKILL) allow users to implement 

circuit specific checks in a very efficient way. 

Moreover, the scripting language SKILL/OCEAN 

provides an easy and flexible way of automating the 

ADE XL based verification in batch mode. 

6 Summary 

A coverage driven verification approach for mixed-

signal systems has been presented. In the first section 

the general verification task has been analyzed in 

detail and the similarities and differences between 

analog and digital verification are considered. 

The practical implementation is based on Specman/e 

as verification environment and AMS Designer as 

mixed-signal simulator. An automotive example was 

used to present the experimental results. As 

mentioned, the implementation of analog checks and 

coverage is straight forward in e. Design modification 

are not necessary, except of the instantiation of the 

Specman blocks inside the top-level schematic. 

The approach enables advanced verification methods 

for mixed-signal design and closes a gap in the 

increasing demand of system integration and 

reliability goals. However, this approach is clearly not 

a replacement but a complementary measure for pure 

analog verification efforts. Those analog focused tasks 

are easier performed in environments like ADE. The 

target applications are mixed-signal integration tasks 

and analog design scenarios with a significant amount 

of digital controls that are hardly handled in analog 

environments as of today. 

Over the last 10-15 year the analog and digital 

working environments have been more and more 

separated form each other focusing on the core design 

challenges in the particular area. However, in the last 

couple of years, the opposite trend is clearly visible. 

More and more mixed-signal problems require a 

closer interaction between the two environments. This 

contribution clearly targets in that direction, but it 

seems to be only one of may starting points of a longer 

phase of more integrated analog and digital 

functionality. 


