
Coverage Driven Verification for
Mixed Signal Systems

Cadence Design Systems

Walter Hartong, Nils Luetke-Steinhorst,
Hannes Froehlich

Presented at

Coverage Driven Verification for Mixed Signal Systems

Walter Hartong, Nils Luetke-Steinhorst, Hannes Froehlich

Cadence Design Systems,

Munich, Germany

{hartong, nls, hannes}@cadence.com

Abstract

Even though analog parts of today’s mixed-signal

chips are relatively small in terms of area and

complexity, the design and verification effort for those

parts is increasing. Moreover, chips operate in

complex and mostly analog environments that must be

taken into account in many cases. At the same time,

reliability demand is zero-defect, e.g. for automotive

components. Advanced verification methods like

coverage driven verification are currently used to

address the growing verification problem in the digital

domain. However, these techniques are not yet

addressing the problem of integrated analog parts in

the digital context. This paper describes the use of

coverage driven verification for analog/mixed-signal

systems. The first part contains a general discussion of

the digital verification method as of today and the

possible mapping to an analog/mixed-signal design

scenario. The second part describes a demo example

that shows the coverage driven verification approach

for a true mixed-signal/mixed domain system. The

system contains electrical as well as mechanical and

software parts and is therefore a good representation

of today’s complex system designs.

1 Introduction

Significant efforts have been made over the past

couple of years to improve the quality and the

productivity of functional digital verification. Only

few years ago engineers wrote directed testcases

which were composed of simple sequence of ‘0’ and

‘1’ as input stimulus for the design. In addition

checking was done manually. It was part of the test

and verification engineer’s task to explicitly predict

the expected response of the DUT for a specific test.

In some cases it required even visual inspection of a

waveform. Since this extra work had to be repeated for

each and very testcase in case of a design change,

engineers tended to minimize the amount of hard

coded checks within their tests.

Advanced verification techniques have been

developed and introduced into today’s digital design

flows to overcome most of those limitations and

productivity restrictions. Moreover, the prediction of

verification quality is a major improvement in the state

of the art verification methods. Main components of

these verification techniques are:

• Automated Stimulus Generation

• Automated Self-Checking (Assertions,

Reference Models, etc.)

• Automated Coverage Measurements and

Tracking

The status of analog/mixed-signal verification as of

today is very similar to the scenario described above.

Given that, the obvious question arises: Is it possible

to improve verification efficiency and quality using

the same or similar measures as used in the digital

world?

It will be shown below, that there is no simple answer

to that question. There is definitely room for

improvement in the analog/mixed-signal verification

strategy and a lot can be learned and adopted from the

advanced methods described above. However, there

are also some fundamental differences in the design

and verification problem that lead to different

requirements and implementations of the verification

solution.

This contribution is structured as follows: Section 2

elaborates the verification process and the differences

of analog and digital approaches in general. In Section

3 the use of those approaches inside Specman and

AMS Designer will be highlighted. An automotive

design example will be presented in Section 4 and

implementation details and results will be discussed.

Finally, Section 5 discusses advantages and

disadvantages of this approaches and points out other

possibilities.

2 Verification Goals and Approaches

Verification has basically two goals (Figure 1): Firstly,

to check that the system fulfills the specification. That

means that it does what it is required/specified to do

and does not exceed certain limits, e.g. the gain of an

amplifier must be above 10db. Secondly, it has to be

verified that the system does not do anything “bad”

that might have a negative influence on other

components or the environment. E.g. the amplifier

starts oscillating during power up phase. This second

category covers mostly implicit assumption that are

naturally made but not explicitly specified.

Check specification

Avoid “bad” behavior

Check corner conditions:
• Operations mode
• Bus protocol/error
• Vdd, temp, … variation

• Process variation

Run specific tests

Run failure tests

Sweep/test different
conditions, modes

Figure 1: Verification goal and methods.

Specific simulation runs and tests are required to

implement the verification of those two categories

above. Moreover, it has to be assured that the

verification goals are met in all different operating

modes and corners of the system, such as:

• System’s operation modes

• Different phases of the system operation

• Silicon process variations and device mismatch

• Varying environment parameters, like

temperature, supply voltage

To ensure this, the tests have to be repeated in those

different constellations. It is already obvious that an

exhaustive search through the whole space of different

tests, operation modes and corners might be

impossible to do. Trade-offs have to be made between

the verification effort and the level of confidence in

the correct behavior of the system.

2.1 Verification Methodology

As mentioned above, verification is based on

simulation runs. The design under test (DUT) is

stimulated with some input data and simulation is run

for a specific time, frequency range, amount of data

points etc. Finally, the simulation results are stored.

Beside the simulation setup itself that should not be

considered here, there are two important tasks:

• Generation of input stimuli

• Checking the results against expectations

All above applies for analog as well as for digital

verification and is also valid for advanced automatic

and manual methods. The third task mentioned in

Figure 2 is functional coverage to measure which

verification goals have been achieved during

simulation.

DUT
010011

111000

010101
100101

011101

001000

010111
101001

DUT
010011

111000

010101
100101

011101

001000

010111
101001

G
e
n
e
ra

ti
o
n C

h
e
c
k
in

g

Coverage?

DUTDUT

Figure 2: Generation, Checking, and Coverage.

2.1.1 Checking

The first step for verification automation is the

automation of results inspection. Only if the task is

formalized and implemented, further automation can

be applied.

As said above, main parts of analog circuit verification

still rely on manual waveform inspections. There are

several reasons for that:

• Necessary measurements and calculations on

analog waveforms are sometimes hard to

implement.

• Waveform inspection is a major part of the

analog workflow. People are used to do that.

• Analog design is not very formalized and still

relies on expert knowledge. This implies that

there are significant amount of implicit

assumptions beside the specification.

Even though a complete replacement of manual

waveform inspection in analog design is not realistic

today, a lot of results checking tasks can be relatively

easy automated. That enables automatic verification,

e.g. regression runs, on those automatic checks, while

the analog designer can focus on the non-formalized

checks.

2.1.2 Generation

The input stimuli generation can be either manual or

automatic. The straight forward way is the manual

method, where the designer or verification engineer

defines the input stimuli for a specific test.

The automatic method requires a certain amount of

freedom for the algorithm to create the input signals.

In other words, the user has to define certain

constraints for the inputs and the generator creates – in

most cases randomly – the stimuli within the given

limits. Section 2.1.4 will discuss the use of random

stimuli generation in more detail.

It should be noticed that the checking task is also

influenced by the generation method. In case of a

manually created fixed stimulus it is sufficient to

verify the output against a well defined and fixed

output behavior. However, if the input stimulus is

varying, the expected output has to be defined

according to the input.

There are two ways to address this problem. If the

check is measuring derived values, e.g. amplifier gain,

those performance numbers may be – within certain

limits – independent of the input stimulus itself, thus,

those types of checks are applicable with automatic

stimuli generation. Secondly, if the check is

implemented to compare the output against a

reference, this reference value has to be generated

according to the input stimulus. This could be

achieved by the use of a reference behavioral model

that is used as executable specification.

2.1.3 Coverage

Theoretically, functional coverage is defined as the

ratio between the visited or verified states of the

systems state space, divided by the total amount of

states. This definition can be easily understood for

finite state machines. Figure 3 shows a little example

on the top where states A and B have been verified,

while the whole state space has 4 states: A, B, C, D.

Thus, coverage is 50% in this case.

Functional Coverage Functional Coverage

Visited states

All states in the state space

Visited states

All states in the state space

Tested scenarios

Total amount of scenarios

Tested scenarios

Total amount of scenarios
Type

P
o
rt

A B C D E

1

2

3

4

Type

P
o
rt

A B C D E

1

2

3

4

Normal

Pwr dwn

High

Save

G
a

in

P
w

r

I
m

a
x

S
le

w
r.

x x
Normal

Pwr dwn

High

Save

G
a

in

P
w

r

I
m

a
x

S
le

w
r.

x x

Figure 3: Functional Coverage in Digital and Analog.

For complex digital systems, the state space can be

very big, e.g. the exploding number of states in a

memory block. For analog circuits the situation is

even worse, since the state space is a continuous

vector space. See the little vector space of a tunnel

diode on the top right corner of Figure 3. Still the

theoretical definition holds for those systems, however

the practical use is very limited.

It is common praxis not to take the whole state space

into account but to define the verification goals and

possible scenarios to be covered by the user. E.g. the

verification goal might be to check 4 ports of a system

applied with 5 different types of data, A-E (bottom left

picture). The functional coverage is defined as the

ratio of the verified scenarios divided by the total

amount of scenarios – 20 in this case. A similar

measure can easily be applied to analog systems (see

bottom right picture).

Even though this definition is of more practical use, it

is likely that the amount of desired verification

scenarios is extremely large. E.g. it might be the goal

to check all combinations of the 5 data types applied

to the 4 ports (AAAA, AAAB, AAAC, …) including

their transitions (AAAA followed by AAAB, etc.) in

the example above. The result is (5
4
)

2
 = 390625

scenarios. As a result a simple for-loop checking all

scenarios one by one is not applicable.

2.1.4 Coverage driven verification flow

Given that an exhaustive search through the whole

verification space is not practical implies that the

verification process is limited in time. However, the

coverage figure still provides an accurate number of

the verification quality with respect to the defined

goal.

Figure 4 assembles the pieces together that have been

discussed above. The simulation results are

automatically checked and problems are being

reported. An automatic stimuli generator creates tests

on a random basis within given constraints. On top,

the designer might have a certain amount of tests that

are pre-defined and need to be run (directed tests) to

reach certain corner cases.

Functional
Coverage

Coverage Analysis Coverage Analysis

DUT

010011
111000
010101
100101

010011
111000
010101
100101

Automatic

checking

Directed/
User Defined

Test

Constraints

keep Vdd>1

keep bias<3

Random

Stimulus

Generation

Constraints

keep Vdd>1

keep bias<3

Random

Stimulus

Generation

Figure 4: Coverage driven verification flow.

The verification process, as described without

coverage measure, can run independently for the given

amount of time. However, it is unclear how far/close

the overall verification goal might be. Adding the

coverage into that picture provides this information

and shows what has already been achieved in the

given timeframe. By this, the approach becomes

scalable, e.g. doing quick checks during design

phases, running daily overnight regressions and a long

final sign-off regression for the project.

3 Using Specman with AMS Designer

The described coverage driven verification approach is

well known and supported by Incisive Enterprise

Specman® and the verification language “e”.

Specman basically controls the simulator, generates

input stimuli, performs the output checks, and

summarizes the coverage measures.

Combining the Specman approach with the single

kernel, mixed-signal and mixed-language simulator

Cadence® Virtuoso® AMS Designer Simulator,

which is a component of Virtuoso Multi-Mode,

provides the capability to do mixed-signal coverage

driven verification.

Indirect Analog Verification

The simplest way to achieve that is to include analog

blocks into the digital design, where all checks and

stimuli are applied to the digital part only. In this case,

there is no need to change anything in the verification

setup. Only the simulator is switched from pure digital

NCSim to AMS Designer and the analog block is

included (see Figure 5, middle block “A”). In this

configuration, the analog behavior is stimulated and

checked through the digital part of the system. This

limits the amount of checking capabilities but is still a

useful setup.

G
e

n
e

ra
ti
o

n

A

D

A AA

Checks

C
h

e
c
k
s

Specman/e
Checks

C
h

e
c
k
s

Specman/e

Ideal AD/DA
converter

Access to real
type signals

directly
Stimulate and
check analog

behavior

Check analog
behavior through

digital context

Figure 5: Mixed-signal verification setup.

Direct Analog Verification

The scenario where Specman interacts directly with

the analog part is more complex but also more

powerful (see Figure 5 left and right “A” block). Since

the 6.1 version of Specman, the usage of real valued

data is supported in e. Additionally, real values,

voltages etc. can be directly probed inside analog

blocks. For other probes like currents and driving

analog nets, ideal AD/DA converters have to be added

into the testbench. It should be noted that the driving

and probing capabilities of Specman in the analog

domain are constantly extended, so that the necessity

of manual inserted converters will soon be obsolete.

4 Experimental Results

The methodology described above and the practical

use of this approach should be illustrated using an

automotive application. It is a window winder system

with all it’s components, including the mechanical

chain and a software part.

The schematic of the top level design is shown in

Figure 6. The following list provides a brief

description of the blocks on the bottom row (from left

to right).

• Micro controller. modeled as simple SystemC

program.

• Motor control unit. Including transistor level,

VerilogAMS and digital Verilog blocks.

• Motor modeled in VerilogAMS.

• Mechanical chain modeled in VHDLAMS.

• Rotation sensor and window model

(VHDLAMS)

Error conditions

Mechanical

System

VHDLAMS

Senso
r

W
indow

Mechanical/

Electrical

VerilogAMS

TransistorAnalog BehaviorDigital Logic

Controller/Software

Verilog/C/System
C

Specman

hook

Figure 6: Window winder system.

The two blocks in the middle of the top row model

two error conditions:

• Obstruction: Some object is blocking the

window on moving up. The window can still

move down.

• Stuck: the window is totally stuck, it can’t

move up or down.

Specman hooks into the design through the upper left

blocks.

The micro controller block gets two input signals

(up_switch and down_switch). It starts and stops the

motor accordingly and controls the window position.

To avoid motor damage the micro controller detects if

the motor current is too high for a certain amount of

time and switches off the motor. Finally, if the

window does not fully close, even though the motor is

on, the controller will switch the motor “down”,

assuming that someone might have tucked his arm out

of the window. If that is not possible either it will fully

switch off the motor.

4.1 Verification Approach

The system’s input values are:

• Up switch

• Down switch

• Obstruction error

• Stuck error

The supply voltage of the system is varied randomly

within certain limits inside the testbench.

To simplify matters, only 3 specifications values are

checked:

• If no error condition is set and the up switch is

set, the window must be closed after 100 clock

cycles.

• If no error condition is set and the down switch

is set, the window must be open after 100

clock cycles.

• The motor current shouldn’t be too high for

more than 10 clock cycles.

4.1.1 Generation

The e code for the generation part looks like follows

(only essentials are shown). The four free input

variables are all of type bit. The “keep” constraint

avoid the illegal setting of up and down at the same

time.

struct window_ctrl_s like

 any_sequence_item {

 up : bit;

 down : bit;

 obstruction : bit;

 stuck : bit;

 keep up == 1 => down == 0;

 keep down == 1 => up == 0;

 event item_driven;

};

For the checking itself various scenarios are defined.

The first test in the code below is a directed test, since

all the free parameters are fixed. Thus, as first test the

window will move up with no error condition

switched on. After 100 clock cycles the second test

will be started.

The second test requires the two error conditions to be

off, however, the decision on moving the window up

or down is left open. It will be chosen by Specman on

a random basis.

After those two directed or partly directed tests, the

next 100 runs are completely unconstraint. The error

condition and the up/down decisions are taken

randomly.

extend MAIN window_ctrl_sequence {

 !item : window_ctrl_s;

 body() @driver.clock is only {

do item keeping {

 .up == 1;

 .obstruction == 0;

 .stuck == 0;

};

wait[100];

do item keeping {

 .obstruction == 0;

 .stuck == 0;

};

wait[100];

for i from 1 to 100 {

do item;

 wait[100];

};

};

};

4.1.2 Checking

The three specification values are checked in the e

code below. The implementation is based on events.

E.g. the event hc_too_long is triggered when the

current was too high longer than 10 clock cycles. This

event will then issue an error accordingly.

event hc_t is

 true(p_agent.smp.hc$==1)@clk;

event hc_too_long is

 {[10]* @hc_t;}@clk;

on hc_too_long {

dut_error("hc is high too long");

};

In the same way the correct behavior of the window

open and close function is described. It should be

noticed that the window_position signal is a real value

that is directly probed inside the top level schematic.

event button_up is true(

 p_agent.smp.up_switch$.as_a(bool))

 @clk;

event win_should_be_up is

 {[100]*{(@button_up and

 not @stuck_on and

 not @obstruction_on)}

 }@clk;

on win_should_be_up {

 check that window_position >= 1.0

else

 dut_error(

 "windows should be up by now!!!");

};

4.1.3 Coverage

The four most obvious coverage items are the four

input signals up, down, obstruction, and stuck. It must

be ensured that each of these signals have be switched

on and off once.

extend window_ctrl_s {

cover item_driven is {

item up;

item down;

item obstruction;

item stuck;

As said above, the vdd voltage varies during

simulation time between about 11.9 and 12.4 V.

Covering those variations as well ensures the correct

behavior of the system within all different supply

voltage levels. Since vdd is a real signal we have to

define lower and upper boundary as well as the

precision we want to use for the coverage.

item_rld vdd p_agent.smp.vdd$

 -from 11.9

 -to 12.4

 -precision 0.1;

So far all coverage items are independent, meaning

that the occurrence of up=1 and up=0 provides a 100%

coverage for this item regardless of the values of the

other items. Crossing of different coverage items

provides the needed correlation between the items.

The example below covers all scenarios with the up

button pressed. This adds up to: 2 possibilities each for

stuck and obstruction and 5 regions inside the vdd

range, thus, 20 test scenarios.

cross up, stuck, obstruction,

 vdd_rl using ignore=(up==0);

4.2 Verification Results

Figure 7 shows the simulation results after a few

minutes of verification time. The first four lines are

the input signals, followed by the high current signal

and the rotation signal generated by the sensor. The

motor voltages are displayed as analog waveforms

below. Finally, the window position and the vdd

voltage is displayed.

Figure 7: SimVision showing waveform results.

It is clearly visible that the two error conditions are off

for the first two cycles and the window moves up in

the first cycle, as defined in the generator code. The

rest of the switching activity is chosen randomly by

the generator.

Figure 8: Coverage values after short simulation.

After the given simulation time, the coverage results

look as in Figure 8. The first 5 coverage items are

complete, meaning the coverage is 100%. However,

the crossing discussed in the previous section has only

reach coverage of 30%. The green bars indicate a

coverage item that has been hit and the numbers of

hits, while a red circle highlights items that have not

been reached in current simulations.

Figure 9: Design error found.

Figure 9 shows the output message of a problem found

by the verification code. In this case the two error

scenarios are switched off and the up-button is

pressed. Still the window did not reach the uppermost

position after 100 clock cycles (Figure 10)

Figure 10: Simulation results showing the problem.

A detailed analysis shows that the window position

went into the negative region before the up-button is

pressed again. That is the reason for the failure. Even

though possible, the designer of that demo system had

not thought of this possibility and had never tested this

scenario manually. This shows clearly the advantage

of the random base generation approach on a relatively

simple example.

5 Conclusions

As shown in the previous sections, coverage driven

verification for mixed-signal designs is relatively easy

to setup and run using Specman and AMS Designer.

The advantages of the approach are obvious and have

already been discussed before:

• Advanced verification method

• Well defined verification strategy

• Random generation

• Automatic checking

• Coverage matrix

• Natural integration into digital verification

flow based on Specman/e

• Only little modification needed in the design

However, there are also some disadvantages that need

to be taken into account:

• The integration into the analog centric flow

that is mainly based on Analog Design

Environment (ADE) is very limited today.

• Implementation effort for automatic checks of

analog values ranges from simple to extremely

complicated. Thus, a complete automatic

checking requires high effort.

• The verification language e is unknown in the

analog flow.

5.1 Simulation Performance

Simulation performance has to be considered as well

in this context. It is well known that the simulation

performance of a digital circuit is far better than a

transistor level analog block. Thus, even the

integration of a single analog block into a digital

simulation environment can slow down simulation

significantly.

There are several measures to improve the analog

simulation performance, e.g. behavioral modeling,

FastSpice solvers, etc. This matter is of high

importance but should not be discussed in this context.

However, there are several concurrent desires in

verification that needs to be traded off:

• The system that is verified should be as

complete as possible to catch problems that

result from the interaction of different block

(integration problems).

• Each individual component should be modeled

on the highest level of accuracy.

• Simulation performance should be as high as

possible to be able to verify many scenarios in

short timeframe.

Obviously, individual tradeoffs have to be made for

those trends, depending on the application and the

current design phase.

5.2 Application scenarios

Given the pros and cons discussed above, leads to an

application scenario that looks like follows:

Coverage driven verification on mixed-signal circuits

does not – and does not intended to – solve the

simulation performance problem. Thus, only system

configuration that simulate in a reasonable timeframe

enable advanced verification methods.

This approach is well suited to verify mixed-signal

integration problems where the digital verification

approach is already based on Specman/e. In those

scenarios, a detailed check of the pure analog behavior

is done in the classical Analog Design Environment

(ADE) which is will known by the analog designer.

Some selected checks are integrated into the

Specman/e verification environment to ensure the

correct behavior of the analog parts after integration in

the digital environment.

Another application area is an analog centric design

flow with straight forward analog performance checks

and many digital control and input ports. In this

configuration it is relatively easy to provide realistic

digital stimuli through the verification environment

and run random based verification. This provides a

significant advantage over the manual verification

approach done in the analog environment.

5.3 Alternative Approaches

As mentioned before, ADE is the standard

environment for analog design. The new ADE XL

environment as part of the Virtuoso Custom Design

Platform IC 6.1, provides an analog centric

verification suite, enabling automatic checking,

multiple runs, corner and Monte Carlo simulation.

Key features are:

• Support for transient, DC, AC and RF analysis

• Specification-driven design

• Supports multiple tests/analysis &

measurement inside a single ADE XL state

• Parasitic aware design flow

• Constraint-driven design

• Automatic characterization and model

generation

• Integrated sizing and optimization capabilities

• Report generation

• History archive

The ability to automate the verification process

combining a complete set of testbenches/tests/analyses

into a single simulation run is a huge productivity

benefit for the analog designer. Combining this with a

complete set of measurement checking the

specification values results in a simple pass/fail

summary for each specification value. A rich set of

predefined checking functions and a straight-forward

scripting language (SKILL) allow users to implement

circuit specific checks in a very efficient way.

Moreover, the scripting language SKILL/OCEAN

provides an easy and flexible way of automating the

ADE XL based verification in batch mode.

6 Summary

A coverage driven verification approach for mixed-

signal systems has been presented. In the first section

the general verification task has been analyzed in

detail and the similarities and differences between

analog and digital verification are considered.

The practical implementation is based on Specman/e

as verification environment and AMS Designer as

mixed-signal simulator. An automotive example was

used to present the experimental results. As

mentioned, the implementation of analog checks and

coverage is straight forward in e. Design modification

are not necessary, except of the instantiation of the

Specman blocks inside the top-level schematic.

The approach enables advanced verification methods

for mixed-signal design and closes a gap in the

increasing demand of system integration and

reliability goals. However, this approach is clearly not

a replacement but a complementary measure for pure

analog verification efforts. Those analog focused tasks

are easier performed in environments like ADE. The

target applications are mixed-signal integration tasks

and analog design scenarios with a significant amount

of digital controls that are hardly handled in analog

environments as of today.

Over the last 10-15 year the analog and digital

working environments have been more and more

separated form each other focusing on the core design

challenges in the particular area. However, in the last

couple of years, the opposite trend is clearly visible.

More and more mixed-signal problems require a

closer interaction between the two environments. This

contribution clearly targets in that direction, but it

seems to be only one of may starting points of a longer

phase of more integrated analog and digital

functionality.

