cādence"

Low Power Design of the DLX Processor Using the Encounter Platform Session #: 4.13

Madhuparna Datta, Cadence Design Systems Shalini Sharma, Freescale Semiconductor Inc Harjot Singh, Cadence Design Systems

• Low Power Design of DLX Processor Core

- Overview of DLX Processor Core
- RTL Level Power Estimation Methodology
- Application of standard Low Power Design Techniques
- Redesign of Critical Portions of Design to reduce Power
- Front End and Back End flow
- Conclusions

Overview of DLX processor core

- DLX is a generic 32 bit RISC microprocessor
- Used for academic Purposes
- 32 thirty two bit registers
- 5 stage Pipeline
- Why was DLX chosen?
 - Based on observations about most frequently used primitives in programs
 - Good architectural model for study
 - Popularity
 - Easy to understand

Overview of DLX Processor Core

INSTRUCTION SET

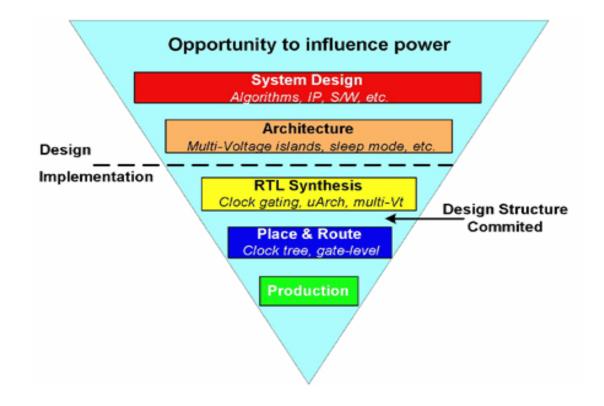
- Fixed 32 bit instruction set for improved code efficiency.
- Register, Immediate and Jump type instructions
- Access to objects other than byte must be aligned.
- Load / Store architecture
- Conditional Execution
- Instruction Execution, maximum 1 instruction per cycle

Overview of DLX Processor Core

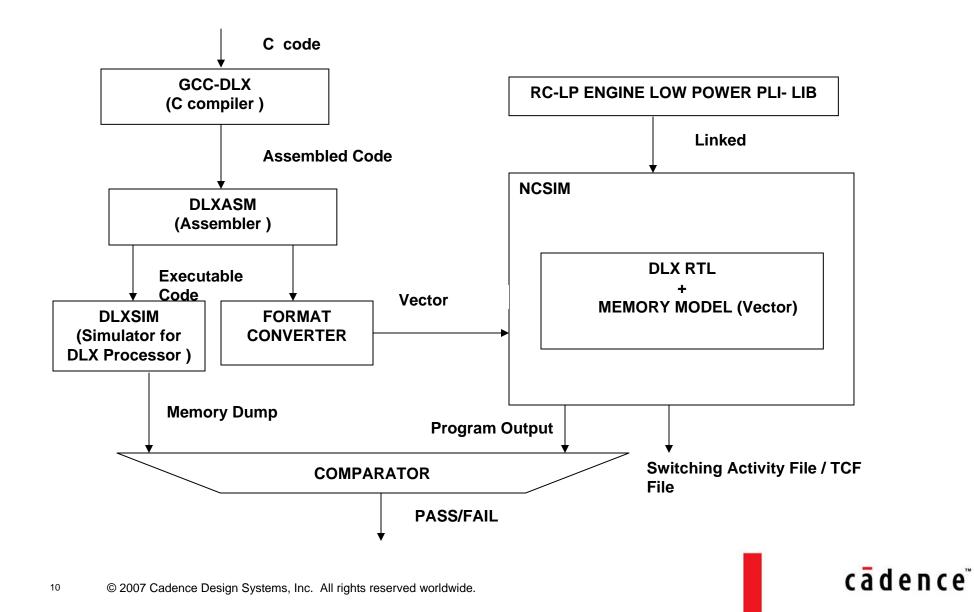
• MEMORY INTERFACE

- 32 bit data interface to Instruction cache for accessing fixed 32 bit instructions
- 32 bit address bus to Instruction cache
- 32 bit data interface to Data cache
- Signals to indicate nature of access byte/word/double word
- Signals to indicate type of access read/write to Data cache

• INTERRUPTS


- External interrupt to halt program execution.
- Interrupt to stall the pipeline.
- Signal to clear the Interrupt.
- STATUS SIGNALS
 - Signal to indicate status of pipeline empty or not empty

5 Stage Pipeline of DLX


Power Savings are maximum at RTL level

RTL Level Power Estimation

- Accuracy of RTL level Power Estimation
 - Functional Vectors used For Power Estimation
 - Libraries/PVT conditions used for Power Estimation
 - Interconnect Model / Wire-load Model used for Power Estimation.
 - Level Of Hierarchy where Power is analyzed
 - Power Calculation
- Power Estimation Results of DLX Processor Core

Vector Generation Flow for DLX Processor Core

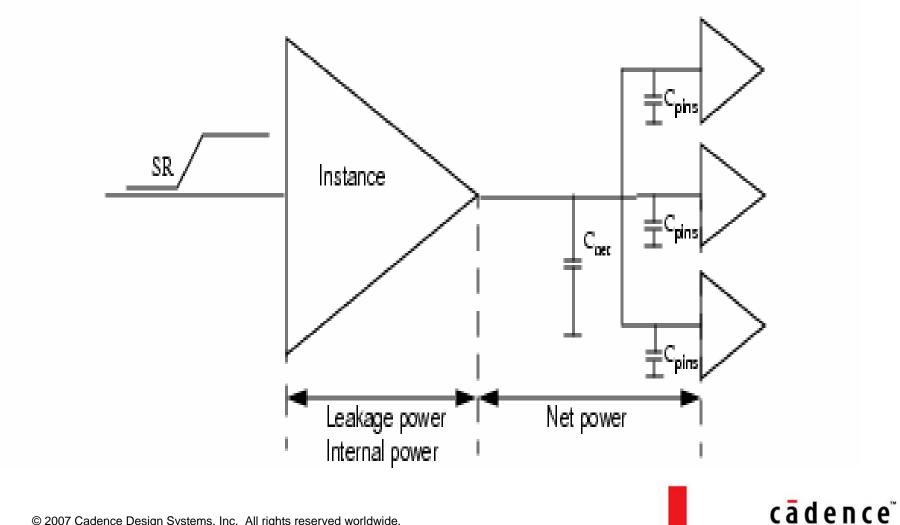
Libraries/PVT/Interconnect Model used for Power estimation

Libraries/PVT	Best Case/P _{best} V _{max} T _{min}
Interconnect Model	1 st set with Enclosed wireload 2 nd set with PLE
Level Of Hierarchy	Each Stage of pipeline of 5 Stage pipeline of DLX

Power Calculation in RC-LP Engine

$$P_{total} = \sum P_{instance} + \sum P_{net}$$

$$P_{ins \tan ce} = \sum P_{int ernal} + \sum P_{leakage}$$
$$P_{net} = \frac{1}{2}C \times V^2 \times f \times TR$$

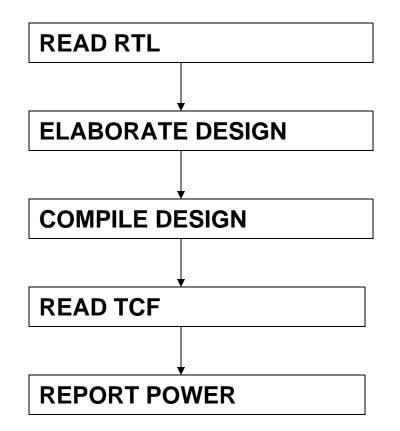

2

$$P_{\text{internal}} = \sum_{perarc} TR_{arc_{ij}} \times \phi(SR_i, C_j) + \sum_{perpin} TR_i \times \phi(SR_i)$$

$$P_{leakage} = \sum_{state=1}^{k} P_{state_leakage} \times probability_{state}$$
© 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

© 2007 Cadence Design Systems, Inc. All rights reserved worldwide. 12

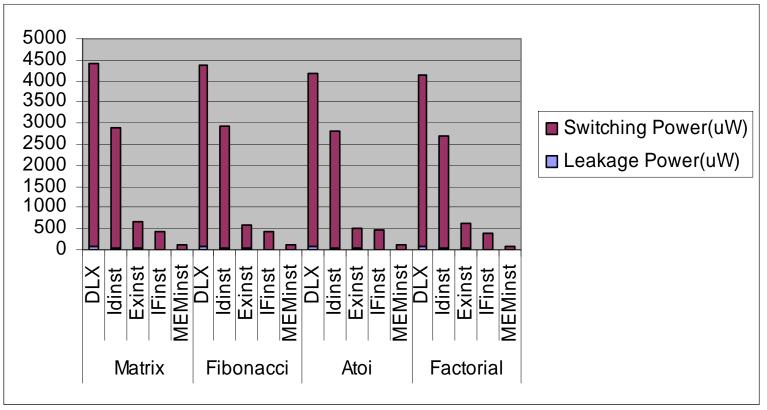
Power Dissipation Model



© 2007 Cadence Design Systems, Inc. All rights reserved worldwide. 13

Power Estimation of DLX Processor Core

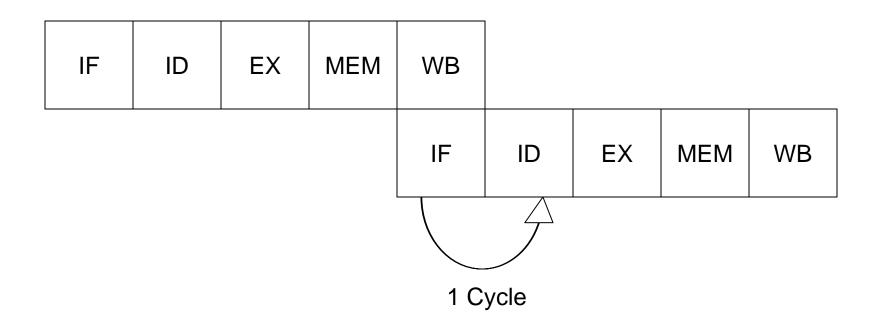
- DLX Process was Benchmarked for power using set of 4 test cases written in C
 - MATRIX MULTIPLICATION
 - FACTORIAL
 - FIBONACCI
 - ATOI
- Frequency of operation chosen is 100 Mhz



Power Estimation Results of DLX Processor Core

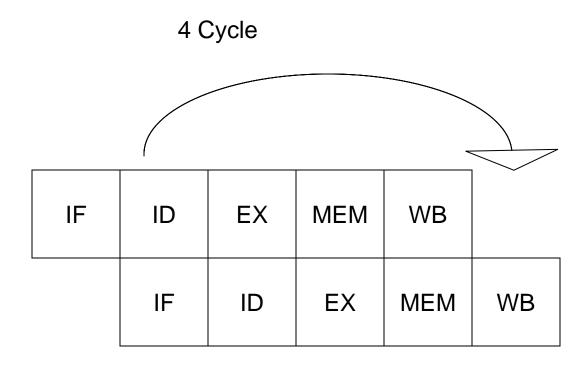
Wireload model

Max Power: 4.42mW (matrix)


60% power consumed in IDinst. Only 2% of total is leakage!!

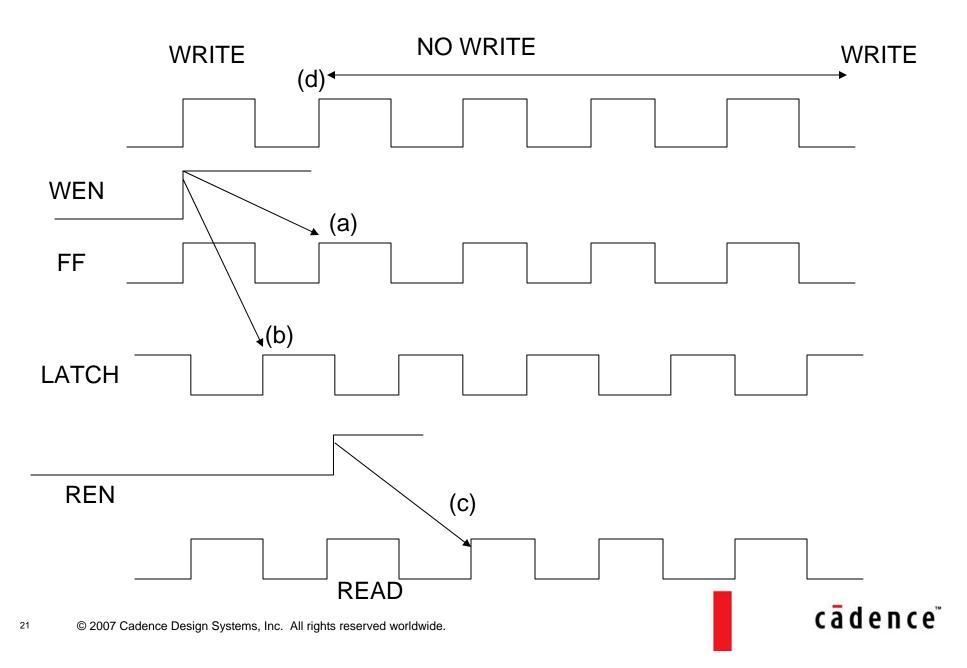
Power Estimation Conclusion of DLX Processor Core

Wireload model


- Power Cosumption of DLX processor core is 4.4 mW using worst functional vector with switching power =4.3 mW and leakage power =86.29 uW.
- About 61 % of Total dynamic power is consumed in ID unit of DLX Processor Core
- To achieve any Reduction in power, ID unit should be targeted

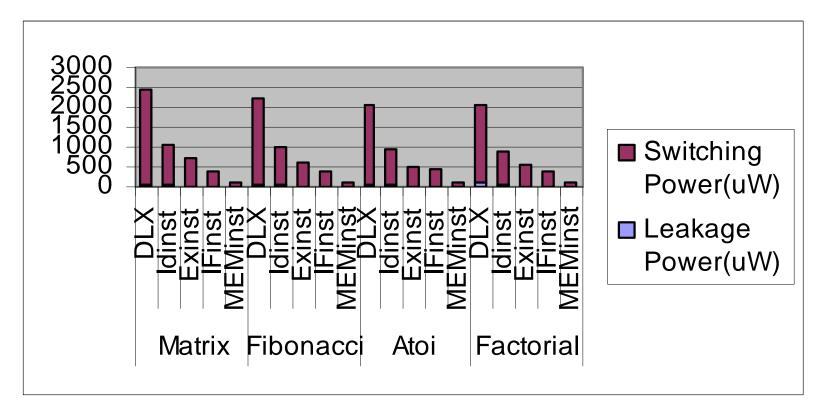
Scheduling For Read After Write to a Register in Pipeline

Revisiting DLX PIPELINE


Scheduling For Write After Read to a Register in Pipeline

¹⁹ © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

Design Optimization for Power

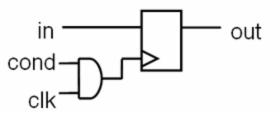

- Register File read occurs in ID stage and Write in WB stage
- 4 cycle delay exists for Write after Read operation to the same register in the register File
- 1 cycle delay exists for Read After Write from a register in the register File
- DLX Register File used pos edge Flip Flops
- Timing Relationship for read after write and write after read to a particular register allows us to replace all registers with negative level sensitive latches with no change in functionality.

Timing Diagram

Power Estimation of DLX Processor Core

Wireload model

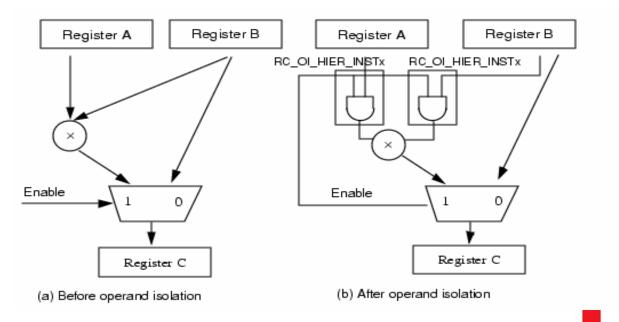
Baseline of NewregFile reduces power by 45%


Max Power is 2.41 mW (matrix)

Low Power Implementation of DLX Processor Core

- Synthesis Methodology
 - Clock Gating
 - Operand Isolation
 - Leakage Power Optimization
 - MSMV Methodology
 - Power Constraints

• Clock gating is stopping the clock during the idle period when the register is shut off by the gating function.



- Power is saved in the gated-clock circuitry.
- For inserting CG in RC
 - set_attribute lp_insert_clock_gating true
- To merge clock-gating instances, we used the following command
 - clock_gating declone [-hierarchical]

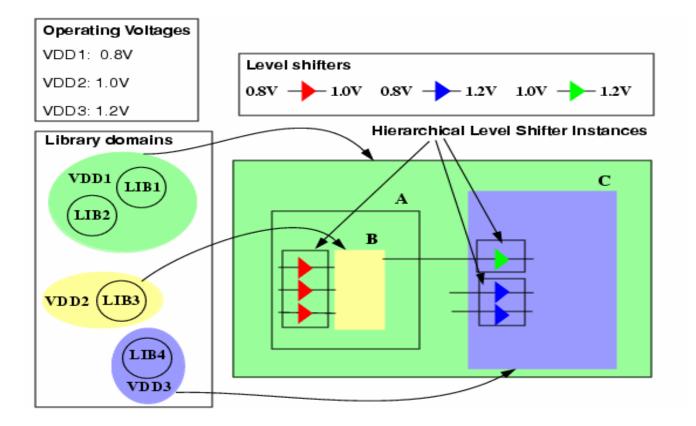
Operand Isolation

- Operand Isolation is a dynamic power optimization technique that can reduce power dissipation in datapath blocks controlled by an enable signal
- It can be done in RC using
 - set_attribute lp_insert_operand_isolation true

Leakage Power Optimization

- Leakage Power can be reduced by using High V_T Cells which have lower leakage
- This can be done in RC using

– set_attribute lp_multi_vt_optimization_effort low /


Multiple supply voltages in a design is one of the most effective approaches to reduce the dynamic power dissipation of a design

- In RC
 - We use library domains to Indicate that some blocks in your design operate on different voltages
 - Associate dedicated libraries with some blocks in the design without using multiple supply voltages
- There are two types of MSV designs
 - Multiple Supply Single Voltage (MSSV): Core logic runs at a single voltage, but some portions of the logic are isolated on their own power supply. In this case isolation cells are required
 - Multiple Supply Multiple Voltage (MSMV): Supplies of different voltages are used for core logic. We have used MSMV in our design. In This case both isolation cells and level shifters may be required

- A library domain is a collection of libraries that should have been characterized for the same nominal operating conditions
 - create_library_domain {DOMAIN₁ DOMAIN₂ ... DOMAIN_n}
 - create_library_domain {DLXD IDD} (OUR CASE)
- Associating Libraries with voltage domain
 - set_attribute library {library1,library2} domain1
 - set_attribute library {library3} domain2
- Different blocks of your design may operate on different voltages
- To set the target library domain for the top design
 - set_attribute library_domain DOMAIN1 INSTANCE1
 - set_attribute library_domain DOMAIN2 INSTANCE2

Partition of design into multiple voltage domains and communication between those domains

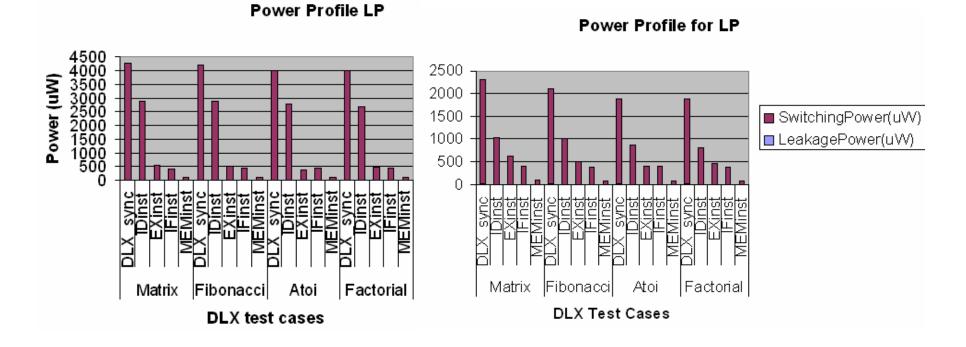
Power Constraints

- Dynamic Power constraints can be specified in RC
 - set_attribute max_dynamic_power 2460 DLX_sync
 - 2460 is obtained from initial estimate of power that we did using RTL estimation
- Leakage Power constraints
 - set_attribute max_leakage_power 61 DLX_sync

Low Power Synthesis Flow for DLX Processor Core

- read libraries
- set lp_auto_create_level_shifter 1
- create_library_domain {IDD DLXD}
- set_attribute library \$1v0_lib_list IDD
- set_attribute library \$0v8_lib_list DLXD
- set_attribute lp_insert_operand_isolation true
- read_rtl {}
- define_clock -name CLK -period 10000 [find / -port clk]
- set_attribute library_domain DLXD DLX_sync
- set_attribute library_domain IDD ID
- set_attribute max_leakage_power 61 DLX_sync
- set_attribute lp_multi_vt_optimization_effort low
- read_tcf design.tcf
- set_attribute max_dynamic_power 2460 DLX_sync
- set_attribute lp_auto_insert_level_shifter 1
- synthesize -to_generic
- synthesize -to_mapped
- clock_gating declone -hierarchical

Wireload model


Original Testcase

RTL Optimized Testcase

Max Power: 4.28mW (matrix)

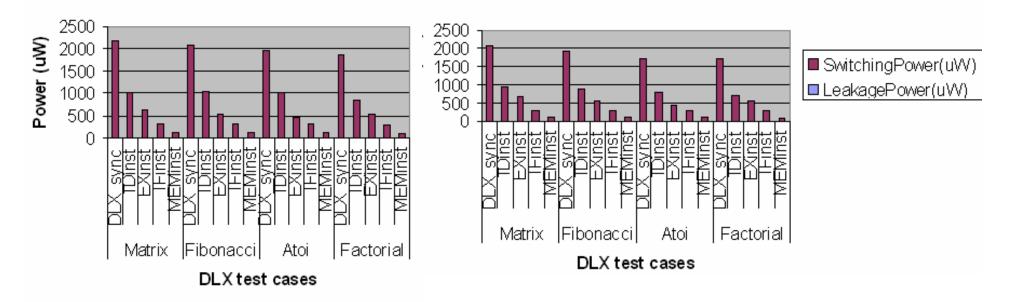
Max Power: 2.32mW (matrix)

cādence

Difference about ~46% to 53%!

Wireload model

Original Testcase


RTL Optimized Testcase

Max Power: 2.16mW (matrix)

Power Profile LP+CG

Max Power: 2.09mW (matrix)

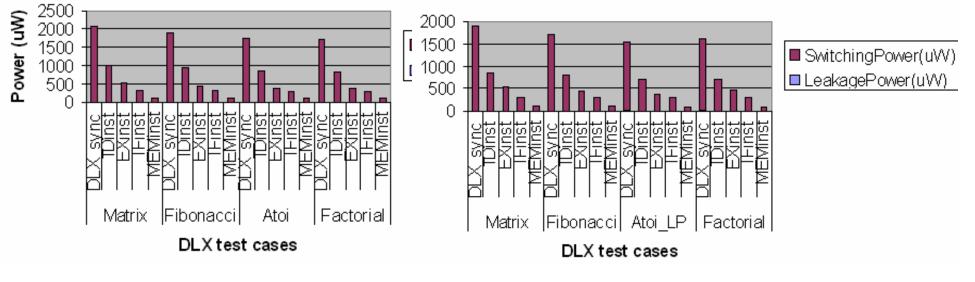
Power Profile LP+CG

Difference just ~3% to 8%!

Wireload model

Original Testcase

Max Power: 2.08mW (matrix)


RTL Optimized Testcase

Max Power: 1.89mW (matrix)

Power Profile LP+CG+OI

Power Profile LP+CG+OI

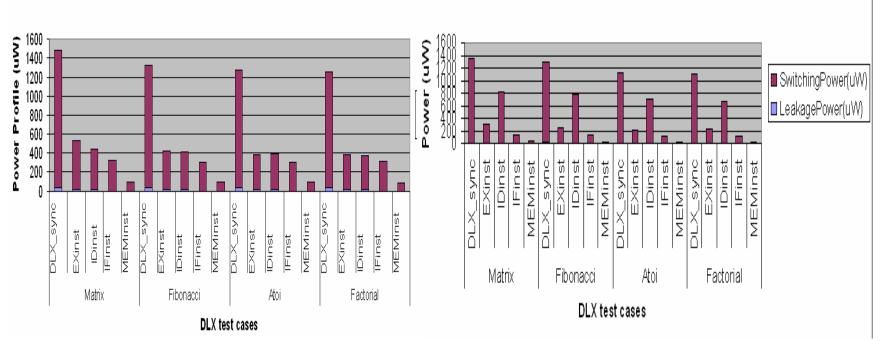
cādence

Difference just ~5% to 9%!

Wireload model

cādence

Original


Max Power: 1.48mW (matrix)

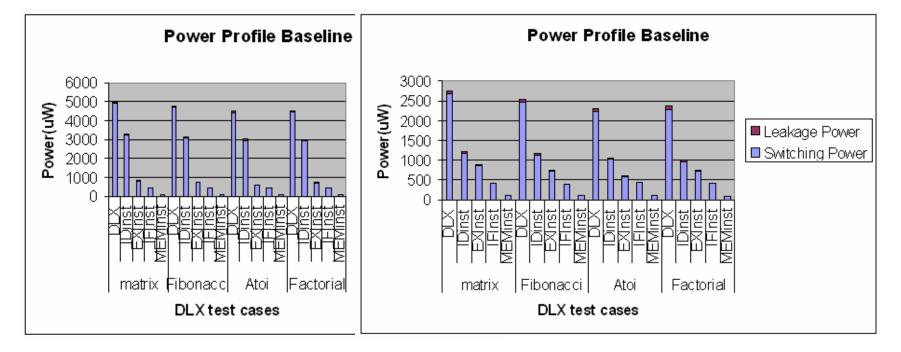
RTL Optimized

Power Profile LP+CG+OI+MSV

Max Power: 1.35mW (matrix)

Difference of ~3% to 12%! Max Switching = 1.35mW and leakage= 18.6uW Reduction from Original baseline ~70%!!

PLE model


Original Testcase

RTL Optimized Testcase

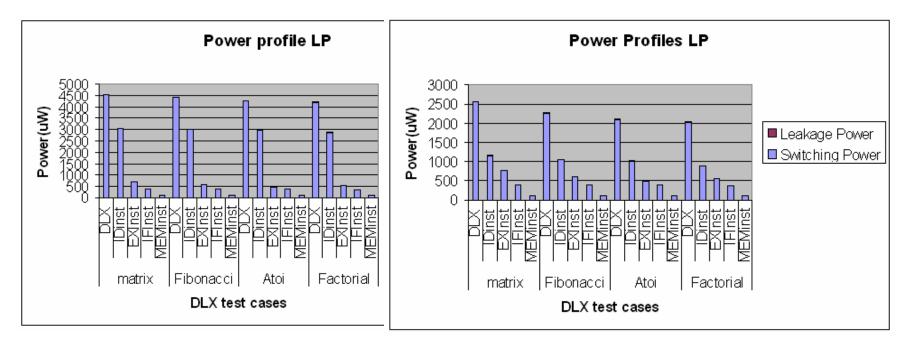
Max Power: 4.99mW (matrix)

Max Power: 2.76mW (matrix)

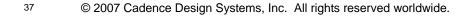
cādence

Difference about ~48%!

Low Power Synthesis Results


PLE model

Original Testcase

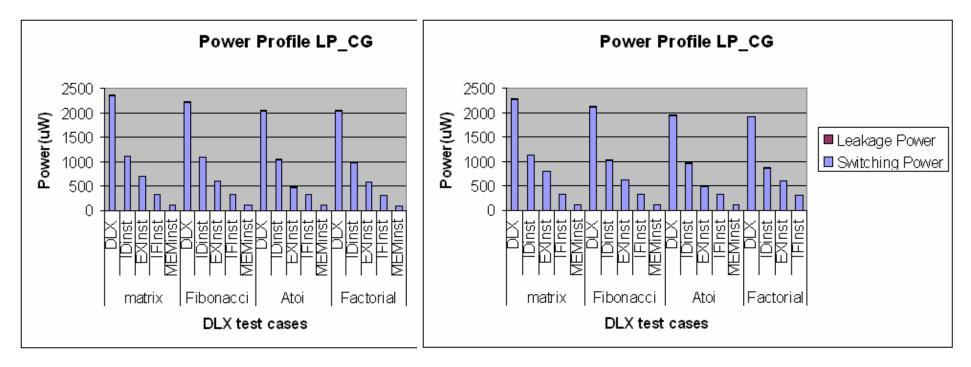

RTL Optimized Testcase

Max Power: 4.55mW (matrix)

Max Power: 2.57mW (matrix)

Difference about ~44% to 52%!

PLE model


Original Testcase

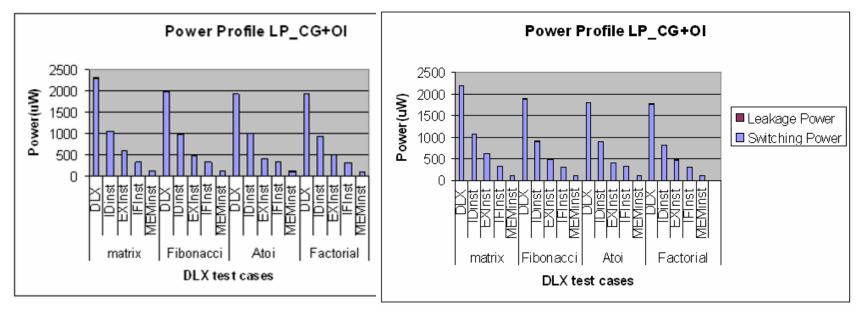
RTL Optimized Testcase

Max Power: 2.37mW (matrix)

Max Power: 2.23mW (matrix)

cādence

Difference just ~3% to 7%!



PLE model

Original Testcase Max Power: 2.31mW (matrix)

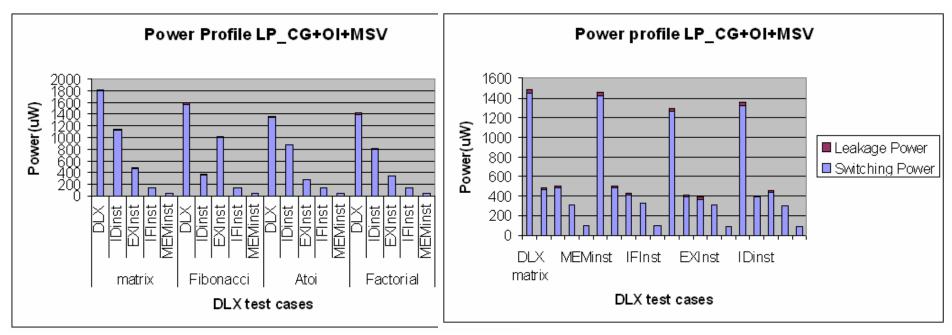
RTL Optimized Testcase Max Power: 2.2mW (matrix)

cādence

Difference just ~5% to 8%!

Low Power Synthesis Results

PLE model


cādence

Original

Max Power: 1.83(matrix)

RTL Optimized

Max Power: 1.48mW (matrix)

Difference of ~5% to 19%! From original baseline around 70% power reduction!

Backend Flow

- Floorplanning Elements
 - Core Aspect: 1.0
 - Core utilization : 0.6
 - Power nets: VDD_DLXD (0.7V) and VDD_IDD(1.08V)
 - Ground net: VSS
 - Core ring: VDD_DLXD, VDD_IDD & VSS
 - IDD PD ring : VDD_DLXD, VDD_IDD & VSS
 - Power strips connect Core ring to IDD ring
 - Top & Bottom: M7, H ; Left & Right: M8, V
 - LVLLH and LVLHL Shifter cells

Power Planning

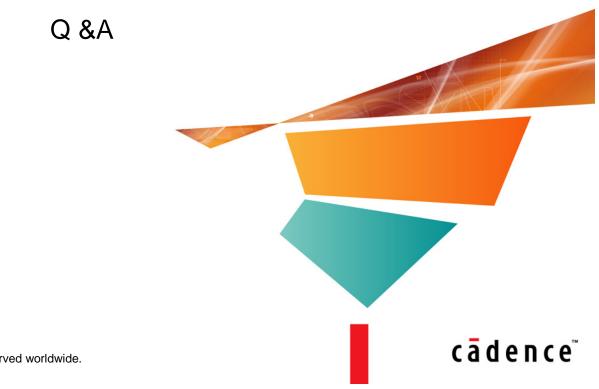
Design Browser			
<u>F</u> ile <u>V</u> iew <u>E</u> dit <u>T</u> ool		 	
Find Instance -			
< > 💀 🗞 🔊 🐨 🐨 🐼 🖉 🎾 🌌 📚			
🛛 Hier Cell – DLX_sync, 14890 LeafCells			
₽Terms (170)			
-CLI (output) - CLI			
🖶 DM_addr (output bus)			
-DM_read (output) - DM_read			
-DM_write (output) - DM_write			IDD(TI =60.5%)
DM_write_data (output bus)			
Hore (output bus)			
-PIPEEMPTY (output) - PIPEEMPTY			
-byte (output) - byte			
-word (output) - word @-DM_read_data (input bus)			
-FREEZE (input) - FREEZE			
-INT (input) - INT			
⊕-IR (input bus)			
-clk (input) - clk			
reset (input) - reset			
⊕-Nets (515)			
⊕-Modules (5)			
⊕EXinst (EX), 8966 LeafCells			
🕀 IDinst (ID), 5437 LeafCells			
🕀 IFinst (IF), 455 LeafCells			
🖻-MEMinst (MEM), 175 LeafCells			
➡RC_LS_HIER_INST_1341 (RC_LS_MOD), 53 LeafCells			
ḋ-PowerDomains			
∲-IDD			
⊕-DLXD			
IDinst	L	 	
Hilite Colors: 📕 💶 🔜 📕 📕 📕			
	i		

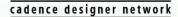
Backend Flow

- Placement
 - Timing driven, Congestion Effort : High
 - In Place Optimization
- SRoute
 - DLXD
 - Std Cells VDD_DLXD,VSS
 - Level Shifter Pins VDD_IDD
 - IDD
 - Std Cells VDD_IDD,VSS
 - Level Shifter Pins VDD_DLXD
- PreCTS, PostCTS, PostRoute optimization

- PreCTS Optimization
 - Density: 65.9%
 - Hold: 0.013ns (WNS)
 - Setup: 1.1ns (WNS)
- PostCTS Optimization
 - Density: 66.8%
 - Hold: 0.962ns (WNS)
 - Setup: 1.108ns (WNS)
- PostRoute Optimization
 - Density: 71.1%
 - Hold: 1.016ns (WNS)
 - Setup: 0.697ns (WNS)

Power Outcome


- Total Power after PnR (Comb: 60%, Seq=40%)
 - Total Internal Power: 1.38mW
 - Total Switching Power: 0.77mW
 - Total Leakage Power: 65.084 uW
 - Total Total Power: 2.22 mW
 - DLXD: 36.5%, IDD: 63.5%
- Clock Power distribution (19.39% of total power)
 - Internal: 173.22uW
 - Switching: 255.887uW
 - Leakage: 2.05uW
- Fibo baseline: 4.78mW; Fibo Layout: 2.22mW
 - Reduction: 53.5%


- DLX Processor Core's pipelined structure
- RTL Level Power Estimation Methodology
- ID's register file consumed max power so redesigned it
- RTL redesign helps reduced power by 70%!!
- Testcases face varied effects of LP,CG,OI,MSV
 - For seq dominated, CG helps a lot!
- Max. power reduction effect in Synthesis
- Completed Front End and Back End flow
- RTL estimated 36% less power mainly due to optDesign

THANK YOU!

47 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

CONNECT: IDEAS

cādence™

CDNLive! 2007 Silicon Valley