

Designing Out DFM Issues at 65nm

Sarah Lamont 27th June 2006

© Copyright Silicon & Software Systems Ltd. (S3) 2005 - All rights reserved

- Overview of S3
- What is DFM ?
- Why DFM is an issue now ?
- How can we improve our designs for DFM?

Conclusions

Slide 3

Consumer Electronics Design Company

- Home Entertainment
- Mobile Multimedia
- Healthcare

Integrated Circuits and Embedded Software Solutions

- Worldwide Client Base

• Unique Combination of Software and IP

– Single-chip, Power-efficient Systems

Getting Clients to Market Faster

- Expertise, Innovation, Products, Process

sin sen sei

S3 - Nanometer Leadership

Global Leader in Nanometer IC Design

- On schedule right first time silicon
- Mixed Analog / Digital SoC Focus
- Over 25 Designs in 90nm
- Developing in 65nm since 2004

Serving Top Tier Clients

 Including Atmel, Philips, Micronas Texas Instruments, Toshiba

Teaming with Leading Technology Partners

- Including Cadence, IBM, Synopsys, TSMC

- Yield quantifies successful silicon die throughput
- DfM / DfY tackles known yield issues by best design practice
- Yield implication for unit \$cost:

Ultimately impacts the ROI for the IC vendor

Design for Manufacture

Trend getting worse for 65 / 45nm

- 90nm feature size created by 193nm lithography
 - "Like painting a thin line with a thick brush"
- Best design practice captured by working at leading edge technologies

Types of Yield Loss?

Why is DFM an issue now at 65nm?

How Can We Improve Our Designs For DFM?

DFM Aware Power Grid

Non DFM aware

DFM aware

S3 Approach

Even VDD / VSS grid

Conditional spacing

Wide track minimisation

Via Doubling

Risk

- High resistivity on single vias

Identify single vias on critical nets

- e.g. With respect to timing or matching
- Doubling vias reduces faults
 - 50% probability reduction
- Post-route doubling
 - Don't compromise area

S3 Approach

3#		single-cut	: multi-cut	Total
4 #- 5 #	Metal 1	734920 (99.9%	s) 432 (0.1%)	735352
6 #	Metal 2	778059 (99.9%	s) 551 (0.1%)	778610
7 #	Metal 3	440994 (99.9%	\$) 370 (0.1%)	441364
8 #	Metal 4	240562 (99.9%	s) 227 (0.1%)	240789
9 #	Metal 5	88830 (100.0%	s) 11 (0.0%)	88841
0 #-				
1 #		2283365 (99.9%	s) 1591 (U.1%)	2284956
12 #				
2#				
3				
.3 4 Pc	ost multi-cu	t via insertion:		
.3 .4 Pc .5 .5 #	ost multi-cu	t via insertion:	multi-cut	Total
.3 4 Po .5 .6 # 7 #-	ost multi-cu	t via insertion: single-cut	. multi-cut	Total
3 Po 4 Po 5 # 7 #- 8 #	ost multi-cu Metal 1	t via insertion: single-cut 274948 (37.4%	multi-cut	Total 735352
3 P 4 P 5 # 7 #- 8 #	ost multi-cu Metal 1 Metal 2	t via insertion: single-cut 274948 (37.4% 176205 (22.6%	: multi-cut () 460404 (62.6%) () 602405 (77.4%)	Total 735352 778610
3 4 Po 5 6 # 7 #- 8 # 9 #	ost multi-cu Metal 1 Metal 2 Metal 3	t via insertion: single-cut 274948 (37.4% 176205 (22.6% 96677 (21.9%	: multi-cut () 460404 (62.6%) () 602405 (77.4%) () 344687 (78.1%)	Total 735352 778610 441364
3 4 Po 5 6 # 7 #- 8 # 9 # 1 #	Metal 1 Metal 2 Metal 3 Metal 4	t via insertion: single-cut 274948 (37.4% 176205 (22.6% 96677 (21.9% 43947 (18.3%	 multi-cut 460404 (62. 6%) 602405 (77.4%) 344687 (78. 1%) 196844 (81. 7%) 	Total 735355 778610 441364 240793
3 Po 4 Po 5 # 5 # 9 # 2 #	Metal 1 Metal 2 Metal 3 Metal 4 Metal 5	t via insertion: single-cut 274948 (37.4% 176205 (22.6% 96677 (21.9% 43947 (18.3% 17151 (19.3%	multi-cut 460404 (62.6%) 602405 (77.4%) 344687 (78.1%) 196844 (81.7%) 71690 (80.7%)	Total 735352 778610 441364 240792 88842
3 Po 3 Po 5 # # 9 # 2 #	Metal 1 Metal 2 Metal 3 Metal 4 Metal 5	t via insertion: single-cut 274948 (37.4% 176205 (22.6% 96677 (21.9% 43947 (18.3% 17151 (19.3%	multi-cut 460404 (62.6%) 602405 (77.4%) 344687 (78.1%) 196844 (81.7%) 71690 (80.7%)	Total 735352 778610 441364 240791 88841
3 P 3 P 6 # 8 9 # 2 4 3 4	Metal 1 Metal 2 Metal 3 Metal 4 Metal 5	t via insertion: single-cut 274948 (37.4% 176205 (22.6% 96677 (21.9% 43947 (18.3% 17151 (19.3% 608928 (26.6%	 multi-cut 460404 (62.6%) 602405 (77.4%) 344687 (78.1%) 196844 (81.7%) 71690 (80.7%) 1676030 (73.4%) 	Total 73535 778610 441364 24079 8884 228495

Wire Spreading

Metal particle causing a short

• Wire Spreading:

- Avoids congestion
- Benefits both DFM and SI

S3 Strategy

- Use SOCEncounter SI awareness switches
- Route clock nets, top level nets and sensitive signals on double spacing

- Early in the Design Phase
- Foundry/Designer Collaboration
- Better Solutions for DFM from EDA Vendors
- DFM is a Business Opportunity
 - 5% increase in yield is worth \$50M over the life of a cell phone

 Visit S3 at Stand #05 or www.s3group.com for more information on our leading edge SoC Design capabilities and silicon proven 90nm Mixed Signal IP

