
Validation and Debugging of Statistical Analysis
Key to Robustness of Cadence SSTA solution

Cadence Design Systems
Sachin Shrivastava

Canvas Conversations

Presented at

Validation and Debugging of Statistical Analysis
Key to Robustness of Cadence SSTA solution

1. Abstract

Statistical Timing Analysis is a methodology to create a robust and tractable framework
to analyze timing of a design in the presence of process variations. A key challenge that
lies before customers is the creation of a methodology for validation of results. We need
to create testcases that specifically target the effects of various types of process
variations, and additionally to create independent validation scenarios that allow us to
gauge the accuracy of the analysis. We look at the challenges involved in this, and
describe how to create solutions to address the challenges. One standard technique that is
used is Monte-Carlo spice. We discuss the infrastructure we created for extracting paths
from design for Monte-Carlo simulations. Since there are multiple new points of analysis
involved in SSTA, debugging SSTA accuracy issues are extremely difficult, in this paper
we look at the techniques developed for debugging accuracy issues. We also look at
techniques to isolate the effect of different effects - this helps in debugging any
differences in results of SSTA and Spice.

2. Introduction
With shrinking process node sizes, the inherent effect of process variations is playing a
larger factor in defining the behavior of a circuit. Conventional Static Timing Analysis
(STA) using best case/worst case analysis is overly pessimistic, and could be optimistic
also in some cases. This has resulted in the promotion of Statistical Static Timing
Analysis (SSTA) as a method for estimating yield of a circuit in terms of timing
activities.

There is significant literature available which talks about methods of performing
statistical analysis [1]. All these methods approximate statistical yield calculation using a
simplified method which can be computed in real time. Since the methods used in SSTA
are very different from the golden Monte-Carlo, it becomes very difficult to debug any
accuracy issues between two different types of methos.

In following sections, we talk about methods for validation and debugging accuracy of
statistical analysis.

In section 3, we explain methods of generating spice netlists which can be used for
running monte-carlo simulation, in order to generate golden results.

Output of SSTA tool is probability density function which is represented using mean and
standard deviation. Hence for correctness of the results, we need to ensure that both mean
and standard deviation of SSTA correlates with Monte-Carlo results.

In section 4, we explain method for debugging mean value mismatches. In section 5 we
explain debugging techniques for standard deviation accuracy issues.

3. Creating Monte-Carlo Spice setup
Creating Spice netlist
For a small circuits, DSPF can be directly used, and if DSPF is not available, SPEF can
also be converted to spice format using quick scripts.
For big designs, where simulating full netlist in spice is not possible, a path specific spice
deck can be extracted. We use Celtic-NDC for extracting spice deck of a path [2].
Executing following commands in Celtic-NDC dumps, path specific spice deck including
excitations.

Adding Monte-Carlo analysis statements
Desired variations can be applied in Spectre using following statements [3],

Then monte-carlo analysis can be performed using following statements,

statistics {
 process { // process: generate random number once per MC
run
 vary pg1 dist=gauss std=12 percent=yes
 vary pg2 dist=gauss std=pg2_std // pg2_std is a
parameter
 ...
 }
 mismatch { // mismatch: generate a random number per
instance
 vary pr1 dist=gauss std=2
 vary pr2 dist=gauss std=0.5
 }
}

set_pathsim_mode -spiceout -results_dir directory
report_timing -from_<rise/fall> from -
through_<rise/fall> through1 –<rise/fall> -to endPoint

4. Debugging Mean Accuracy Issues
In following section, we explain step by step procedure which is used for debugging any
issue in accuracy of the mean value.
Basic Checks
• Is slew in SDC in accordance with library
 (e.g. using 30-70% slews in SDC, with 20-80% slew library)
• Is library characterized with pre-driver
• Check voltage, temperature, spice models in spice run same as char condition
Next Level Checks
• Do report timing in STA mode, with following options

report_timing –format {instance arc delay slew load} -net

• Perform stage by stage delay/slew comparison
• Pick the first instance which shows difference in delay

• Is this first instance, connected to input port
• Check if slews used are same
(SDC has slews specified in library threshold, while PWL in spice will have 0-
100% slew)
• If library is characterized with pre-driver, and spice is excited with linear

ramp
– First instance is expected to have some error
– Use non-linear PWL in spice also

• Is this multi input cell

• Check if condition used at other pins are same in spice and SSTA
• To check conditions used by CTE use report_cell_instance_timing
• Ensure that library has conditional delays
• Ensure, Library does not have a default arc delay (which is MAX of all

arcs)

alias measurement dcmeas {
 export real delay
 run tran(stop=40n)
 real in=cross(sig=V(in), thresh=0.6, dir='fall, n=1)
 real out=cross(sig=V(out), thresh=0.6, dir='rise,
n=1)
 delay=out-in
 }

run montecarlo (scalarfile="mc.dat",donominal='yes’,
variations='mismatch’, firstrun=1, numruns=1000)
{
run dcmeas
}

• Using NLDM

• Run the tool in debug mode, where it prints Ceff (C effective)
• Input slew to an instance is available from report_timing
• Check delay tables in library
• Extrapolation/Intrapolation issue ?

• Re-char the library with more points
• Does library look-up delay matches spice results ?

• Yes, Its delay calculation issue
• Else, It’s a library issue or C-eff issue
• Validate library by running spice (not covered here)

• If errors, report to characterization team
• Else, its could be C-eff issue
•
Measure C-eff in spice

Sample spice deck

• Using ECSM
• With, ECSM perform normal NLDM debugging, which will make sure that

results are not very off
(ECSM ensures last 5-10% accuracy)

• ECSM debugging, requires knowing proprietary SgS information which can
not be shown here

• But following can be checked

vtmp N2 N1 0
.meas tran time0 when V(N1)=0.01*vdd
.meas tran time1 when V(N1)=0.5*vdd

.meas tran charge integ I(tmp) from = 'time0' to 'time1'
.measure capacitance param = 'charge/((0.5 - 0.01)*vdd)’

vtmp N2 N1 0
.meas tran time0 when V(N1)=0.01*vdd
.meas tran time1 when V(N1)=0.5*vdd

.meas tran charge integ I(tmp) from = 'time0' to 'time1'
.measure capacitance param = 'charge/((0.5 - 0.01)*vdd)’

I1 I2

R1 R2

C1 C2 C3 C4

→
N1 N2

– ECSM waveforms are monotonic
– Run spice experiments, and check if ECSM waveforms are correct
– Remove ECSM tables from library and re-run

 If it improves the results, report it to R&D

5. Debugging Standard Deviation Accuracy Issues
Before debugging STD issues, ensure mean is correlating. Fixing mean issues, will most
likely fix most of the STD issues also.

Global Variations
Check if sensitivities are matching or not ?
If Yes,
 Either delay varies non-linearly with XL,VTH
 Or, linear combination of XL and VTH is not correct

If No,
 SSTA, sensitivity calculation is not correct

Checking non-linearity
In spice sweep process parameter from -3*sigma to +3*sigma, and observe the linearity

<Existing spice deck>
.alter
.param XL=-3*sigma
.alter
.param XL=-2.5*sigma
..
..
.alter
.param XL=0
..
..
.alter
.param XL=3*sigma

0
2
4
6
8

10
12
14

-3 -2 -1 0 1 2 3

XL

D
el

ay

If plot is found to be linear, try changing characterization points.

If plot is not symmetric around
mean, try –sigma to +sigma

0
2
4
6
8

10
12
14

-3 -2 -1 0 1 2 3

XL

D
el

ay

If plot is concave and results are
optimistic, try 0 to 3*simga
characterization

0

5

10

15

20

-3 -2 -1 0 1 2 3

XL

D
el

ay

If plot is convex and results are
optimistic, use 1*sigma (if using
3*sigma)

0

5

10

15

20

25

-3 -2 -1 0 1 2 3

XL

D
el

ay

Checking linear-combination error

Check
(D1-D0)+(D2-D0) = (D3-D0)

If this check fails, there is interdependence. Select parameters with uncorrelated delay
dependencies.

Sensitivity Calculation
Measure delay/slew sensitivity of each stage in spice

<Existing spice deck>
.alter
.param XL=3
.param VTH=0

.alter
.param XL=0
.param VTH=0.7

.alter
.param XL=3
.param VTH=0.7

Compare the SSTA sensitivities with spice sensitivities. Pick the first instance, where
sensitivities do not correlate

Now stage sensitivities can be debugged using following,

• Run SSTA by disabling following features (one by one)

– Slew Sensitivity (Effect of slew change on delay)
– Capacitance Sensitivity (Effect of Ceff change on delay)

• From above run calculate following sensitivities
– Primitive Delay Sensitivity
– Delay Sensitivities (Due to slew sensitivity)
– Delay Sensitivities (Due to capacitance sensitivity)

• Spice runs, do not have above sensitivities separated !
• Separating Slew sensitivity components in spice

<Existing spice deck>

.meas tran delay trig V(IN1) val=0.5 cross=1 targ

V(I3_A) val=0.5 cross=1
.meas tran wire0 trig V(IN1) val=0.5 rise=1 targ V(I1_A)

val=0.5 rise=1
.meas tran cell1 trig V(I1_A) val=0.5 rise=1 targ

V(I1_YB) val=0.5 fall=1
.meas tran wire1 trig V(I1_YB) val=0.5 fall=1 targ

V(I2_A) val=0.5 fall=1
.meas tran cell2 trig V(I2_A) val=0.5 fall=1 targ

V(I2_YB) val=0.5 rise=1
.meas tran wire2 trig V(I2_YB) val=0.5 rise=1 targ

V(I3_A) val=0.5 rise=1

.alter
...
...

• If delay sensitivity (due to slew sens) is not matching, check following

– Slew sensitivity of previous stage
– Delay sensitivity to input slew (for current state)

• If primitive delay sensitivity is not matching
– Follow steps similar to Mean debugging

• C-eff
• Library Look-up
• Library Validation with spice experiments

Random (WID) Variations
For random variations, most of global debug methodology can be reused, the only
difference is that, generating random sensitivities in spice requires MC runs in mismatch
mode (instead of two simple runs for global). And resultant STD of MC is actually
random sensitivity.

6. Conclusion
A complete methodology was presented for validating statistical timing analysis results,
and we also presented methods for debugging if there are any accuracy issues.

I1 I2

D

I0

I1 I2

D

I0

Variation Applied

Variation not Applied

7. Reference

[1] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker, S. Narayan,
"First-Order Incremental Block-Based Statistical Timing Analysis", DAC
2004, pp 331-336.

[2] Celtic-NDC User Guide
[3] Spectre User Guide

