
Working with Interfaces
EZ-Start Guide

October 2006

© 1995-2006 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 800.862.4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Working with Interfaces
EZ-Start Guide

The procedures described in this document are deliberately broad and generic.

About EZ-Start Guides

EZ-Start guides are provided by Cadence Design Systems as entry point tutorials for
various technologies. EZ-Start guides are meant to quickly review high-level concepts of a
specific technology, and allow the user to independently experience and explore it. For a
deeper understanding of how to architect a quality verification environment, consult a
Cadence methodology specialist or refer to the Plan-to-Closure Methodology User Guide.

Introduction

Managing the connectivity between blocks can be difficult, because it entails keeping all of
the ports current, synchronizing instantiations with the ports, passing data through the
hierarchy, and so on. The connectivity between major blocks becomes increasingly difficult
to manage when you want to start verifying protocols.

One of most powerful constructs in SystemVerilog is the interface construct, because it can
encapsulate the communication between blocks in one single area. Placing all of this
information in one place also facilitates reuse.

The Interface EZ-start Guide focuses on helping new SystemVerilog users become familiar
with the interface construct. Although interfaces can be used anywhere in your design or
verification environment, this guide limits the discussion to using interfaces within a
verification environment.

Types of Interfaces
Using interfaces is one the methods recommended by the Cadence Univeral Reuse
Methodology (uRM) for modeling the communication between verification components.
Using interfaces, blocks can communicate through tasks (task-level interfaces) or through
signals (signal-level interfaces). The communication within a verification environment is
done primarily through task-level interfaces, and the communication to the DUT is done
primarily through signal-level interfaces.

October 2006 1

Working with Interfaces
EZ-Start Guide

Signal-Level Interfaces

Signal-level interfaces are simply just a collection of nets.

Tip If you need to verify a protocol across the interface, you can also add assertions.

The following is an example of a module header for an arbiter design. In this example, all of
the design’s connectivity is described within the module header.

module arbiter (ReqA, GntA, ReqB, GntB, Busy, Done, ResetN, clk);
 input ReqA, ReqB, Done;
 input ResetN, clk;
 output GntA, GntB, Busy;
endmodule

The following example takes the same design, but captures all of the signals within an
interface. Then, the interface is simply included in the port list:

interface arb_if ();
 logic ReqA, ReqB, Done;
 logic ResetN, clk;
 wire GntA, GntB, Busy;
endinterface

module arbiter (arb_if ai);
endmodule

module top ();
 arb_if ai();
 arbiter dut(.ai(ai));
endmodule

Using a signal-level interface has the following advantages:

 Provides a simple, clean way to connect blocks without having to worry about the
individual signals.

 Eliminates redundant declarations of the same signals in multiple modules, which
can significantly reduce the size of a description.

 Grouping signals together in one place also improves design maintainability. For
example, if a change to the port specification is required, the change can be made in
one place instead of in multiple modules. Another advantage is that assertions can
be added to the interface for protocol checking.

Task-Level Interfaces

Task-level interfaces encapsulate functionality in addition to connectivity. An interface can
contain data type declarations, tasks and functions, initial and always blocks,
continuous assignments, and so on. This allows the definition of communication protocols,
protocol checking routines, and other verification routines in one place. This provides an

October 2006 2

Working with Interfaces
EZ-Start Guide

abstract communication channel to items such as bus functional models (BFMs). The
following is an example of a standard task-level interface (as recommended in the uRM):

interface bfm_if();
 arbpkt_s bfm_pkt;
 event item_ready, item_done;

 task automatic put(input arbpkt_s test_pkt);
 bfm_pkt = test_pkt;
 ->item_ready;
 endtask

 task automatic get(output arbpkt_s test_pkt);
 test_pkt = bfm_pkt;
 endfunction
endinterface

In task-level interfaces, communication is done through calls to tasks in the interface. For
example, the block that is communicating with the interface calls the put task with a packet
structure. The packet is then stored in the interface, and any blocks waiting on the
item_ready event are notified. After notification, the block can then call the get task to
retrieve the packet from the interface. Since all of the communication is done through the
interface, neither side has to know who the end consumer or producer is—they just have to
know to put or get the data from a standard interface.

Instantiating and Using the Interface
An interface is instantiated in the same way that modules and primitives are instantiated.
Interfaces must be instantiated at the highest point in the hierarchy where they can be
used.
module top ();
 bfm_if bi(); // instantiate task-level interface
 arb_if ai(); // instantiate signal-level interface
 arb_bfm bfm(.*); // .* ports with same name as local signal
 arbiter arb_dut (.*);
 test test(.*);
endmodule : top

Interface ports on modules are declared as module ports that are a specific type of
interface. Use the following syntax:

module module_name (interface_name port_name, other_module_ports);

For example:
module arbiter (arb_if ai);

Once the interface is instantiated in the top level and declared on the port list, the objects in
the interface are referenced from by using an interface reference
(port_name.interface_object_name). An example of a signal-level interface:

October 2006 3

Working with Interfaces
EZ-Start Guide

always @(state or ai.ReqA or ai.ReqB or ai.Busy or ai.Done)

If you cannot append the interface reference to all necessary signals, you can use an
assign to make the connection:

assign Done = ai.Done;
assign ai.GntA = GntA;

You can reference a task-level interface in a similar fashion:
module test(bfm_if bi);
 initial begin
 bi.put(arb_pkt);
 @(bi.item_done);
 end
endmodule

module arb_bfm(bfm_if bi, arb_if ai);
 always @(bi.item_ready) begin
 arb_pkt = bi.get();
 drive_sigs();
 ->bi.item_done;
 end
endmodule

Conclusion

The SystemVerilog interface construct is key to achieving reuse and simplifying code. By
using interfaces to facilitate communication between components, you also raise the
verification environment’s level of abstraction. You can pass data from the testbench,
through the BFM, and to the DUT without having to know anything about the consumer.

Although creating interfaces is an extra step at the beginning of the verification cycle, the
interfaces quickly return the time invested by making test writing and connectivity simpler
and more efficient.

Interfaces Lab

In this lab, you will create a verification environment that has a testbench, BFM, and DUT,
and that is connected using interfaces. The testbench, BFM, and DUT are provided, but
you will need to create the interfaces and the top-level netlist that connect everything
together.

Lab instructions:

1. Untar and unzip the EZStartInterfaces.tgz file included with this document:

October 2006 4

Working with Interfaces
EZ-Start Guide

gtar –xzvf EZStartInterfaces.tar.gz

This contains an /rtl directory, which contains the arbiter design, and an /ius
directory, which is for running the simulation.

2. Create the signal-level interface for the arbiter design. It must include the following
variables:

logic ResetN;
logic ReqA, ReqB;
logic Done;
wire GntA, GntB;
wire Busy;

3. Create the task-level interface for the BFM. It must contain the following events and
tasks:

event item_ready, item_done;
task automatic put(...);
task automatic get(...);

The /ius/tb/def_pkg.sv package file contains the arb_pkt_s structure definition,
which you must use for the data type of the structure being passed in the BFM.

4. Modify the /ius/tb/test.sv file such that it uses the BFM interface, instead of the
individual ports.

The functionality in the original test.sv file will be split between the test and the BFM.
The tasks, latency randomization, and signal assignments will take place in the BFM.
The randomization of task selection will take place in the test file.

Note: The solution for this step is in the test.sv and arb_bfm.sv files of the
/.solutions directory, which was provided with this document.

5. Modify the /tb/top.sv file to instantiate the arbiter interface, BFM interface, and BFM
module. Also, change the test and arbiter instance port lists so that they use the
interfaces.

Note: So that you do not have to modify the arbiter design to use the interface, an
arb_wrapper.sv file is included in the /rtl directory. Instantiate the arb_wrapper,
which instantiates the arbiter, in the top level, instead of directly instantiating the
arbiter design.

6. Simulate the design from the ius directory.

./run_sim

or

October 2006 5

Working with Interfaces
EZ-Start Guide

./run_sim +gui

At the end of the simulation, you should see the following message:

Running XX transfers
Simulation complete via $finish(1)

You should not receive any error messages.

The solution to this exercise is available in the /.solutions directory, which was provided
with this document.

October 2006 6

