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Abstract: Structurally accurate test views (STAC) of 
standard cell libraries for Design-for-Test (DFT) are 
currently being adopted to increase the ability to detect 
manufacturing defects and enhance overall test quality. 
With STAC views, the Automatic Test Pattern Generation 
(ATPG) tools can more accurately target potential defects 
and increase device testability. This paper will focus on 
the generation and validation of STAC views using the 
enhanced features of Conformal Custom and the 
application of these test views to ATPG through Encounter 
Test. Included in this discussion are the importance of 
STAC view for Freescale, especially with the push for 
Zero Defect and moving towards 45nm technology, and 
how the Conformal Custom tool was enhanced to support 
this capability, making use of special Encounter Test fault 
models and increasing the compatibility between these 
tools. Also discussed is how the methodology to generate 
and validate STAC cells using the Cadence tools was 
developed in Freescale and applied to a full SoC design. 
Lastly, this paper also discusses plans for future 
enhancements to the Conformal and Encounter Test tools 
to further support the use of STAC models. 
 
 

1. Introduction 
 
The goal of achieving zero defective parts-per-million 
(PPM), also known as Zero Defect, has been adopted by 
many as the metric for delivering quality devices to 
customers. This is particularly relevant to safety-critical or 
industrial markets such as automotive. Zero Defect 
directly translates to exceptional device quality, which in 
turn demands exceptional device test. The major part of  
silicon testing is achieved through ATPG, for initial 
silicon debug, production testing, performance testing and 
device failure analysis. The quality of these ATPG test 
patterns are therefore extremely important in order to 
thoroughly test a device, in particular for Zero Defect parts 
but also for devices with less stringent test targets. 
Commercial scan ATPG tools require a Boolean gate-level 
netlist of a design in order to generate the tests, which is 

several levels of abstraction above the layout on silicon. 
One of the risks introduced here is that this model may be 
too abstract from the physical and structural characteristics 
of the device to generate tests accurately and effectively. 
To avoid the need for a Boolean gate-level netlist, design 
teams can consider performing ATPG at the transistor 
level. Some research has been done in this area but there 
exist no practical (i.e., commercial) tools that allow ATPG 
at transistor level with reasonable pattern generation and 
simulation time. Furthermore, the transistor level netlists 
do not support the stuck-at fault model well – the mainstay 
fault model of the chip industry.  
 
For these reasons, ATPG continues to be performed using 
a Boolean gate-level netlist of a design. This netlist 
consists of technology library cells that are in a specific 
format for ATPG, which is typically different from the 
formats used for other parts of the design flow.  The gate-
level equivalent for a design module created for test 
purposes is called a Testview. The design module can be a 
standard cell library, an embedded memory, an analog 
module or a custom designed circuit. For standard cells, 
which make up the majority of the design, the test views 
are traditionally accurate to the function of the cell only 
and do not represent the true structure of the cell as it 
exists on silicon. This is mainly because there has been no 
commercially available tool to do this - structurally 
accurate test views are more complex to create and 
validate, and can become a very time-consuming manual 
process. Continuing to use traditional test views presents 
the problem that the potential faults on the device may not 
be modeled accurately enough for ATPG tools to test 
them, risking the quality of the test patterns, and of the 
device itself. 
 
The solution to this was to build on the capabilities that 
already exist in the Conformal Custom tool for Verilog 
gate-level design abstraction. These enhancements provide 
the capability to generate and validate Testviews for a 
standard cell library that can be used by ATPG tools, such 
as Encounter Test.   
 

  



 

The purpose of this paper is to: 
1. Present some background on the topic and the 

meaning of “structurally accurate” (STAC). 
2. Explain how STAC models are generated and 

validated in Conformal Custom. 
3. Show how STAC models are used in Encounter Test 

for ATPG. 
4. Describe the flow developed in Freescale to generate 

and use STAC models. 
5. Present and discuss the results from experimental 

designs. 
 

2.  Previous Work 
  
Various techniques have been used in the past as well as 
currently to develop circuit views for test pattern 
generation and simulation. The major idea is to present a 
gate level model to the automatic test pattern generation 
tool to generate patterns to detect physical defects as close 
to the gate model as possible. 

 
There exist some non-commercial tools that are capable of 
generating gate-level representations of library cells from 
the transistor level equivalent, including GateMaker [2], 
which can generate gate-level models specifically for the 
purposes of ATPG. GateMaker is a tool developed by IBM 
and Intel which automatically generates gate level models 
from transistor schematics. It has algorithms that collapse 
parallel transistors, map resistors to plain nets and 
capacitors to opens. Then it uses path tracing to map 
groups of transistors to a CCC (a Channel Connected 
Component, which is explained later). Finally, it uses path 
pruning and simplification to reduce the circuit into its 
final equivalent form. It appears to be a fairly capable tool 
but of course it’s proprietary so generally unavailable to 
the design community. The successful use of tools such as 
GateMaker and the adoption of this methodology have 
been proven previously in [3] and [4]. 
 
Other users perhaps use a combination of commercial 
tools, custom scripts, and manual editing to generate gate 
level models from transistor libraries. Clearly, there is a 
need for automation to generate structurally accurate test 
views with minimal to no manual intervention. 
 
 
 
3. What is “Structurally Accurate”? 
 
A standard cell library provides the essential building 
blocks for a chip design and is made up of simple cells 
such as AND/OR/NAND/NOR/NOT gates; complex gates 
such as AOI (And-Or-Invert), XOR (Exclusive-Or); and 

specialized cells such as Adder, Comparator, Parity and 
one-hot checker [1]. A typical standard cell library in 
90nm technology can have around 700 unique cells, 
covering various drive strengths and physical 
characteristics for all of the different cell types.  
 
Figure 1 shows the transistor level circuit of an example 
cell. This cell is, functionally, a 3-input AND gate with a 
single inverted input. Figure 2 shows a possible 
representation of this cell as a testview.  At first glance, the 
testview appears to be reasonable representation of the 
actual circuit – it is functionally equivalent and it requires 
a minimal number of Boolean gates, to speed up ATPG 
simulation and pattern generation. However, the testview 
shown in Figure 3 represents the structure and placement 
of the transistors more accurately.   

 

Figure 1: Transistor-Level 3-input AND gate with 
single inverted input 

 
Figure 2: Possible testview for 3-input NAND gate with 

single inverted input 

 
Figure 3:  Structurally accurate testview of a 3-input 

AND gate with single inverted input 

 
So, what is the impact of using the testview in Figure 2, 
which is functionally equivalent but not structurally 
equivalent, versus using the testview in Figure 3, which is 
both functionally and structurally equivalent to the actual 
circuit? 
 

 



 

There are three aspects to consider 

1. The number of stuck-at faults 

2. The number of test patterns generated and their 
coverage against the faults 

3. The accuracy of the diagnostic resolution 

 
With the circuit shown in Figure 2, faulting internal to the 
cell would be incorrect, since the internal net does not 
exist in the transistor level circuit, misrepresenting what is 
on silicon and possibly causing misleading diagnostic 
results. With this type of cell representation, it is therefore 
necessary to fault at the boundary of the cell only. The 
circuit in Figure 3, being structurally accurate, allows the 
designer to include the faults internal to the cell and not 
only at the boundary, increasing the fault universe and 
enabling the ATPG tool to generate specific test patterns to 
target those faults. 
 
3.2 Challenges  
 
3.2.1 Physical Cell Structure 
 
In order to generate a structurally accurate testview model, 
the actual physical structure of the cell has to first be 
determined before selecting a gate-level cell (or cells) to 
represent the function. Remembering, however, that the 
testview is modeled at gate-level, how can the physical 
structure be accurately abstracted to a higher level model 
without compromising the ability of the ATPG tools to 
effectively and efficiently generate test patterns?  
 
The following key criteria were recognized as features that 
must be maintained during this abstraction process from 
transistor to gate-level: 
 

1. Maintain intended functionality 
2. Preserve channel connected logic in the same 

logic stage. 
3. Preserve the number of logic stages between the 

cell input and output. 
4. Use Boolean gates, as represented by the cells (no 

transistors) and use exclusive gates only. 
5. Use built-in ATPG tool primitives for latches and 

flip-flops, 3-state cells and pass-gate muxes. 
 
 
3.2.2 Entire Structurally Accurate Libraries  
 
As mentioned previously, a standard cell library for a 
90nm process can contain hundreds of unique cells, some 
of which are simple combinatorial cells, others of which 
are more complex. Given the different possible ways to 

represent different cell types, one of the main challenges is 
how to automate this process such that an entire library 
can be generated and classed as structurally accurate. 
Secondly, how can the verification of such cells be 
automated, to ensure that they are still functionally 
accurate to the original cells and also understandable by 
the ATPG tools? 
 
 
4.  Testview Generation with Conformal 

Custom 
 
The Conformal Custom tool already has a very powerful 
abstraction engine to generate gate-level equivalent 
Verilog netlists from the original transistor level (switch 
level) circuit, for many different purposes. The existing 
capabilities of the tool were leveraged and enhanced to 
support the new feature for the generation of STAC views, 
in gate-level Verilog, referred to in the Conformal tool as 
“TestView”. 
 
4.1 Tool Enhancement - TestView Feature 
 
TestView makes use of the current abstraction engine of 
Conformal Custom. The flow is shown as Figure 4. 

switch-level netlist 

TestView 
Conformal Custom 
abstraction engine 

gate-level netlist 

 
Figure 4: TestView for Conformal Custom 

 
There are two major steps of the implementation of 
TestView. The first step is to use the formal methodology 
to abstract the function of a circuit based on Channel 
Connected Components (CCC), which is the same as the 
current abstraction technique of Conformal Custom. A 
CCC is defined by the maximal set of transistors and nets 
such that every net can be reached by traversing the source 
and drain of the transistors in the component [2]. The 
second step is to deposit the gates abstracted from each 
CCC into a new module. Taking the circuit shown in 
Figure 5 as an example, the figure shows that there are 
four CCCs in the circuit, with each CCC covered with 
different color of boxes. The gate-level TestView of the 
circuit is shown in Figure 6.  
 

 



 

 
 

Figure 5: A circuit of 4 CCCs 
 

 
 

Figure 6: TestView of circuit in Figure 5 
 
 
4.2 Abstraction Algorithm Overview 
 
4.2.1 Forming Gates 

 
As indicated in the last section, the first step of the 
TestView abstraction is to form AOI(OAI) gates based on 
CCC. Figure 7 shows a typical static complementary logic 
expressed in CCC [2]. There are three CCCs in this 
network. The gate-level expression of each CCC can be 
abstracted by analyzing the BDD function of pMOS and 
nMOS network in the CCC. 

 

 
Figure 7. Circuit shown in CCC 

 
 
In the general case, each CCC may contain any 
combination of p-type transistors and n-type transistors. 
As an example, for a single CCC each transistor can be 
viewed as a switch by controlling the gate voltage of the 

transistor (see Figure 8). A pMOS transistor will be turned 
on when its gate voltage is low and turned off when its 
gate voltage is high. On the other hand, an nMOS 
transistor has an opposite situation, which means an 
nMOS transistor is turned on with its gate voltage high and 
turned off with its gate voltage low.  
 

 
Figure 8: Transistors as switches 

 

 

 
Figure 9: BDD expression of nMOS networks 

These relations can be easily represented by BDD 
operations and thus the function of the CCC can be 
derived. Figure 9 shows two nMOS networks represented 
by BDD expressions. 
 
4.2.2 Creating a New Module for Each CCC 
 
After the function of the CCC is derived, the logic gates 
representing the function will be deposited into a new 
module. Figure 10 shows the TestView of the network in 
Figure 7. If the new modules only contain a single gate, 
the modules will be resolved to reduce the level of 
hierarchy. 
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Figure 10: TestView of Figure 7 

 
4.2.3 Abstraction of Sequential Logic 
 
For sequential logic, the abstraction needs to go further. 
Since the abstraction is module-based, the first step is to 
pop up the modules created for each CCC. The next step is 
to traverse the circuit to see if a loop could be found. If a 
loop exists, the Conformal Custom abstraction engine can 
verify if it could be formed a latch or not. The gates from 
the modules not involved in the abstraction will be pushed 
down to the module in which they are originally located. 
After latches are abstracted, the next step in the abstraction 
algorithm will be to see if flip-flops could be formed or 
not. 
 
 
5.  Encounter Test and Fault Modeling 

 
Encounter Test is a suite of tools that support a complete 
design for test methodology flow from test insertion to test 
pattern generation, test vector export and defect diagnosis 
[7]. Since this paper is mainly concerned with generating 
the correct test view, the focus of this discussion will be on 
fault models. 
 
ATPG tools usually work on gate level netlists and gate 
level library models since working with transistor models 
is too complex. To model a potential fault area of the logic 
where a defect may occur and be detected on silicon, a 
variety of fault models exist that a design engineer can use 
for pattern generation, such as the industry accepted stuck-
at fault model. For designs at 90nm or smaller, it is 
generally accepted also to require tests using transition and 
path delay fault models. 
 
In addition to these, Encounter Test supports a patented 
pattern fault model. This is useful for modeling defects not 
easily covered by the other models, such as bridging and 
crosstalk defects. Figure 11 shows a diagram of a CMOS 
multiplex or built using pass gates. 
 

 
Figure 11: A CMOS MUX built using pass gates 

pass gates
Modle 2 Module 1 Module 3 

 
Defects on the select signal can cause high-Z contention 
which is not detected by the stuck-at or transition fault 
models. Using the build-in primitive from Encounter Test 
shown in Figure 3 and enabling pattern faults will result in 
better quality test patterns. 

 
 
module __MUX2(DOUT, DATA0, DATA1, SEL); 
input DATA0, DATA1, SEL; 
output DOUT; 
endmodule 

 
Figure 3: ET TestView of a two-input MUX 

 
Similarly, using built-in ET primitives for latches and flip-
flops and activating pattern faults will let the test generator 
take advantage of the pattern fault model to generate better 
and higher quality test patterns.  
 
5.1 Cell Boundary Modeling 

 
Encounter Test has extensive fault modeling capabilities to 
suit many design styles and needs. One important 
consideration is modeling the cell boundary for technology 
libraries. ET supports modeling which is compatible to 
other industry ATPG tools.  

 
The most accurate modeling is where all internal nets in a 
library cell are modeled, shown in Fig 12. This is 
recommended only if there is a one-to-one relationship 
between the physical structure and the logical model, 
otherwise, the default ET model or the “industry 
compatible” model must be used. Here is where the 
premise of STAC models comes in. If the nets shown in 
the model in Fig 12 exist in the actual design, then they 
can be tested and defects on them can be diagnosed. 
Otherwise, the ATPG tool will target faults that do not 
exist on silicon, and the resulting data, test coverage and 
failures on silicon may be misleading. 
 

 



 

 
Figure 12: Allowing internal faulting 

 
 
6. Freescale Flow for STAC view 

Generation and Validation 
 
This section details how the previous sections on the 
theory of STAC modeling, the enhancements through the 
Conformal tool, and the features of Encounter Test were 
brought together to create a methodology in Freescale for 
automatic STAC view generation and validation for entire 
standard cell libraries.  
 
The Conformal Custom tool is used to extract STAC gate-
level Verilog models of the library cells using the 
generation flow shown in Fig 13. The input to the process 
is the “.cdl” file, which is the transistor level circuit for the 
library cell that comes from the library designers 
themselves. The new Testview feature of Conformal is 
used to generate the STAC cell and the built-in LEC 
feature is then used to verify that it is equivalent to the 
functional model of the cell. 
 
Suitable scripts can easily be written to run Conformal to 
process an entire library in this manner. If the resulting 
STAC Testview is not structurally accurate, or the model 
does the extraction process must be reviewed for that 
particular cell type. Otherwise, the STAC cell is 
considered correct and can be further verified through 
Encounter Test. 

 
Figure 13: STAC Generation Flow 

 
 
Before using these STAC cells on a full design, the next 
step is to run the cells through Encounter Test for further 
verification. LEC has already verified that they are 
logically equivalent to the functional views of the cell, but 
this additional step verifies that they are recognized by the 
ATPG tool, that they can be faulted correctly for pattern 
generation, and that the patterns pass in simulation against 
the functional models without any mismatches. This flow 
is shown in Figure 14. 
 
In this flow, a “skinny” design netlist is created that 
instantiates one instance of each cell in the STAC library. 
This is run through Encounter Test with the library itself 
and ATPG patterns generated. The reports and fault lists 
can be analyzed (manually or with scripts) to validate that 
the cells are being interpreted correctly. The ATPG 
patterns are then simulated and through the log files and 
waveforms produced any mismatches can be debugged 
and fed back to either Encounter Test or Conformal for 
correction. Once all of the cells pass and there are no 
mismatches in simulation, the STAC library can be used 
on any SoC design. 
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Figure 14: STAC Verification Flow 

 
 
7.  Application Results 
 
7.1 Single Full Adder Cell 
 
To demonstrate the effectiveness and difference between a 
STAC and a traditional test-view model, many different 
cell types were evaluated through this flow. One of the 
cells where the most dramatic difference was observed 
was in a full adder cell. Figure 15 shows the original 
transistor level schematic of the Full Adder cell.  
 

 

Figure 15: Transistor Level Full Adder Circuit 

 

Figure 16 shows the test view from the original library, 
and Figure 17 the STAC library extracted by the 
Conformal Custom tools. As can be observed, the original 
library model is very different, structurally, to the original 
circuit and could not be used for faulting internal to the 
circuit; the nets, gates and logic levels do not map at all to 
what exists on silicon. 

 
Figure 16: Original Full Adder Circuit Test View 

 

 
Figure 17: Structurally Accurate Full Adder Circuit 

 

The results for these two testviews are summarized in 
Table 1. The original testview has 10 faults (faulting at the 
cell boundary) and the ATPG tool generates 2 test patterns 
for 100% test coverage. However, the structurally accurate 
testview allows the ATPG tool to fault internal to the cell 
and has 46 faults, for which the tool generates 8 test 
patterns to achieve 100% test coverage.  Therefore, if one 
had settled for the original testview - the ATPG tool would 
be limited to generating only 2 test patterns. Fault 
simulating these 2 test patterns on the structurally accurate 
testview shows (see Table 2) that 30% of the faults would 
have gone untested!  
 
It is only when the structurally accurate testview is 
presented to an ATPG tool is it able to generate the 
necessary additional test patterns (in this case 6 additional 
test patterns) to get 100% test coverage.  
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Faults 
# Tested # Patterns %TC 

ATPG 
Test 

Pattern 

Total 
Static 

Original 
Cell 10 10 2 100% 

Fault 
Simulated 46 32 2 66.67% 

Internal 
Faulting 46 46 8 100% 

 
Table 1: Full Adder erage Comparison 
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.1 Entire Standard Cell Library 

e impact of using a STAC library on a full SoC 
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s peripherals. Figure 18 shows the layout 
of this device. 
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From the abov
can be drawn: 

• Purely functionally equivalent testviews are 
logical for simulation and appear adequate for 
ATPG. However they are not adequate for high-
quality ATPG and are not ac
level of diagnostic resolution.  

• There needs to be a method for automatically 
generating structurally accurate testviews from 
the tra
cells.  

• Furthermore, there needs to be a method for 
verifying the functional equi
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So far, results have only been discussed for single cells, so 
what is th
d
 
To find out, a relatively small SoC design that was already 
using traditional test views from a mature, proven 
technology was chosen as the test case. This particular 
device is a low power, high performance, HCS08 8-bit 
microcontroller based SoC. The device was implemented 
in 0.25um low voltage, low power process technology and 
includes a 24 channel ADC along with several 
communication

 
 

Figure 18: Microcontroller DUT Layout 
 
The flow described in Section 6 was followed using the 
source files for this library to generate and validate 
structurally accurate testviews. Two ATPG pattern 
generation runs were then performed on the design; the 
first using the original testviews and a second using this 
new library, faulting internal to the cells, and the results 
compared. 
 
Table 2 shows the results where ATPG patterns were 
generated for the design using both the traditional and 
structurally accurate libraries. The top line details the 
design using the original test views, faulting at the 
boundary of the cell, as normal.  
 
 
Pattern Set 

and 
Library 

Internal 
faulting 

# Static 
Faults 

Dynamic 
TC 

Static 
TC 

# 
Patterns 

ATPG on 
Original 

Lib 
No 261447 87.95% 94.59% 6804 

Fault Sim 
against 

STAC lib 
Yes 477904 85.76% 93.08% 6356 

ATPG on 
STAC lib Yes 477904 88.02% 94.76% 7619 

 
Table 2: Full Design Static Test Coverage Comparison 

Results 
 
 

 



 

As was done for the Full Adder cell in section 2, the 
patterns generated here were then run on the structurally 
accurate library to find out the true coverage of the device 
gained by these original patterns, this time faulting internal 
to the cells. 
 
Two observations can be made here – 1) faulting internal 
to the cells almost doubles the fault universe and 2) in 
reinforcing the theory at the end of section 2 of this paper, 
around 2% of this new, more accurate, fault universe is not 
covered by the existing patterns, reflecting the actual, true 
test coverage of the device.  
 
This method allows us to then instruct the tool to generate 
additional patterns to cover the gap in fault coverage. In 
the third line of this table the patterns were generated 
using the structurally accurate library. It can be observed 
that with a small increase in pattern count the remaining 
faults were covered, enhancing the test quality of the 
device.  
 
In section 2, it was shown that on a single cell the 
difference in test coverage was 30% and the increase in 
pattern count to cover the additional fault with a 
structurally accurate test view was 4 times the original 
pattern count. So, why on a full design is the difference 
not on the same scale?  
 
This is because, on a full SoC device, the propagation of 
the stimulus introduced into the design by a test pattern 
generated to target one fault on any given cell, combined 
with the design architecture itself, allows some of the 
faults (internal or boundary) on other cells to be tested at 
the same time. Therefore, as a general rule of thumb, as 
the gate count for a SoC device increases, the proportional 
increase in pattern count becomes smaller and less 
significant. 
 
 
7.1 Metrics 
 
When evaluating the structural accuracy of an entire 
library, different levels of accuracy were defined based on 
what cell types were made to be accurate and which were 
still based on a basic functional model. In order to quantify 
this into a measurable form, a Maturity Matrix was 
generated using the five main cell types to indicate the 
overall level of structural accuracy of any standard cell 
library. This is shown in Table 3. 
 
With this metric and the breakdown of the different cell 
types, it is not necessarily essential to convert every single 
cell in the library to be structurally accurate; the quality of 
a library can be enhanced even if only the combinatorial 
cells are made to be more accurate. In fact, given that 

combinatorial cells make up the majority of the cells used 
on a typical SoC device, even a Maturity Level of 2 can 
have a significant impact on the overall test quality of the 
final ATPG pattern set. 
 
 
Maturity 

Level 
Simple 
Cells 

Comb. 
Cells 

Complex 
cells (AOI) 
and Muxes 

Sequential 
Cells 

Special 
Cells 

Level 1 Yes No No No No 

Level 2 Yes Yes No No No 

Level 3 Yes Yes Yes No No 

Level 4 Yes Yes Yes Yes No 

Level 5 Yes Yes Yes Yes Yes 

 
Table 3: Maturity Matrix for Structurally Accurate 

Test Views 
 
Level 1 equates to a test view library where only very 
simple, single cells are structurally accurate, such as 
inverters. Level 5 covers the entire library, including 
sequential cells and any special cells (e.g. Full Adder, 
Level Shifters etc). 
 
It is worth noting that the structurally accurate library 
generated for this design was at Level 2 on the Maturity 
Matrix described in section 4. As shown by the results in 
Table 2, even only at level 2 the use of structurally 
accurate cells in a library can make a significant difference 
to the overall accuracy in a full design. By enhancing all of 
the AOI, Muxes and special cells for this library, the 
maturity level can be taken to Level 5 and the overall test 
quality enhanced even further. 
 
 
8.  Conclusion and Future Enhancements 
 
By enabling ATPG tools to generate a more complete and 
accurate fault universe it can then produce test patterns 
that target the true potential fault areas of a device and 
enhance the overall test quality of the test. Structurally 
accurate test view models (STAC) have been recognized 
as an essential part of this flow. The enhancements made 
to the Conformal Custom tools, and the links made to the 
existing features of Encounter Test, have enabled a 
complete STAC generation and validation flow that can be 
applied to any standard cell library. Results in simulation 
have shown that this method has a significant impact on 
the overall testability and test quality of the resulting 
ATPG patterns. 
 
Future challenges for this methodology include enhancing 
the Conformal Custom tools to take the structural accuracy 
of a standard cell library to level 5 on the Maturity Matrix. 

 



 

Beyond that, the modeling of memories and custom 
designed circuits to be structurally accurate could also be 
explored. Structurally accurate standard cell testviews 
could also be used for gate exhaustive testing [7]. Proof of 
the true effectiveness of using this technique would be 
observed by running two pattern flows, one using normal 
and the other with STAC libraries, and monitoring the test 
escapes on high volume lots. Comparison of the accuracy 
of diagnostic callouts will be further proof. Freescale plans 
to run such experiments on a production device in the near 
future. 
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