

Using New Conformal Custom Features with Encounter Test to Generate

Structurally Accurate Test Views for DFT

Colin D. Renfrew
Freescale Semiconductor

7700 W. Parmer Ln
Austin, TX 78729

colin.renfrew@freescale.com

Luis Basto
Cadence Design Systems, Inc

4516 Seton Center Parkway
Austin, TX 78759

lbasto@cadence.com

Sung-Fan (Nick) Peng
Cadence Design Systems, Inc

4516 Seton Center Parkway
Austin, TX 78759

sfpeng@cadence.com

Abstract: Structurally accurate test views (STAC) of
standard cell libraries for Design-for-Test (DFT) are
currently being adopted to increase the ability to detect
manufacturing defects and enhance overall test quality.
With STAC views, the Automatic Test Pattern Generation
(ATPG) tools can more accurately target potential defects
and increase device testability. This paper will focus on
the generation and validation of STAC views using the
enhanced features of Conformal Custom and the
application of these test views to ATPG through Encounter
Test. Included in this discussion are the importance of
STAC view for Freescale, especially with the push for
Zero Defect and moving towards 45nm technology, and
how the Conformal Custom tool was enhanced to support
this capability, making use of special Encounter Test fault
models and increasing the compatibility between these
tools. Also discussed is how the methodology to generate
and validate STAC cells using the Cadence tools was
developed in Freescale and applied to a full SoC design.
Lastly, this paper also discusses plans for future
enhancements to the Conformal and Encounter Test tools
to further support the use of STAC models.

1. Introduction

The goal of achieving zero defective parts-per-million
(PPM), also known as Zero Defect, has been adopted by
many as the metric for delivering quality devices to
customers. This is particularly relevant to safety-critical or
industrial markets such as automotive. Zero Defect
directly translates to exceptional device quality, which in
turn demands exceptional device test. The major part of
silicon testing is achieved through ATPG, for initial
silicon debug, production testing, performance testing and
device failure analysis. The quality of these ATPG test
patterns are therefore extremely important in order to
thoroughly test a device, in particular for Zero Defect parts
but also for devices with less stringent test targets.
Commercial scan ATPG tools require a Boolean gate-level
netlist of a design in order to generate the tests, which is

several levels of abstraction above the layout on silicon.
One of the risks introduced here is that this model may be
too abstract from the physical and structural characteristics
of the device to generate tests accurately and effectively.
To avoid the need for a Boolean gate-level netlist, design
teams can consider performing ATPG at the transistor
level. Some research has been done in this area but there
exist no practical (i.e., commercial) tools that allow ATPG
at transistor level with reasonable pattern generation and
simulation time. Furthermore, the transistor level netlists
do not support the stuck-at fault model well – the mainstay
fault model of the chip industry.

For these reasons, ATPG continues to be performed using
a Boolean gate-level netlist of a design. This netlist
consists of technology library cells that are in a specific
format for ATPG, which is typically different from the
formats used for other parts of the design flow. The gate-
level equivalent for a design module created for test
purposes is called a Testview. The design module can be a
standard cell library, an embedded memory, an analog
module or a custom designed circuit. For standard cells,
which make up the majority of the design, the test views
are traditionally accurate to the function of the cell only
and do not represent the true structure of the cell as it
exists on silicon. This is mainly because there has been no
commercially available tool to do this - structurally
accurate test views are more complex to create and
validate, and can become a very time-consuming manual
process. Continuing to use traditional test views presents
the problem that the potential faults on the device may not
be modeled accurately enough for ATPG tools to test
them, risking the quality of the test patterns, and of the
device itself.

The solution to this was to build on the capabilities that
already exist in the Conformal Custom tool for Verilog
gate-level design abstraction. These enhancements provide
the capability to generate and validate Testviews for a
standard cell library that can be used by ATPG tools, such
as Encounter Test.

The purpose of this paper is to:
1. Present some background on the topic and the

meaning of “structurally accurate” (STAC).
2. Explain how STAC models are generated and

validated in Conformal Custom.
3. Show how STAC models are used in Encounter Test

for ATPG.
4. Describe the flow developed in Freescale to generate

and use STAC models.
5. Present and discuss the results from experimental

designs.

2. Previous Work

Various techniques have been used in the past as well as
currently to develop circuit views for test pattern
generation and simulation. The major idea is to present a
gate level model to the automatic test pattern generation
tool to generate patterns to detect physical defects as close
to the gate model as possible.

There exist some non-commercial tools that are capable of
generating gate-level representations of library cells from
the transistor level equivalent, including GateMaker [2],
which can generate gate-level models specifically for the
purposes of ATPG. GateMaker is a tool developed by IBM
and Intel which automatically generates gate level models
from transistor schematics. It has algorithms that collapse
parallel transistors, map resistors to plain nets and
capacitors to opens. Then it uses path tracing to map
groups of transistors to a CCC (a Channel Connected
Component, which is explained later). Finally, it uses path
pruning and simplification to reduce the circuit into its
final equivalent form. It appears to be a fairly capable tool
but of course it’s proprietary so generally unavailable to
the design community. The successful use of tools such as
GateMaker and the adoption of this methodology have
been proven previously in [3] and [4].

Other users perhaps use a combination of commercial
tools, custom scripts, and manual editing to generate gate
level models from transistor libraries. Clearly, there is a
need for automation to generate structurally accurate test
views with minimal to no manual intervention.

3. What is “Structurally Accurate”?

A standard cell library provides the essential building
blocks for a chip design and is made up of simple cells
such as AND/OR/NAND/NOR/NOT gates; complex gates
such as AOI (And-Or-Invert), XOR (Exclusive-Or); and

specialized cells such as Adder, Comparator, Parity and
one-hot checker [1]. A typical standard cell library in
90nm technology can have around 700 unique cells,
covering various drive strengths and physical
characteristics for all of the different cell types.

Figure 1 shows the transistor level circuit of an example
cell. This cell is, functionally, a 3-input AND gate with a
single inverted input. Figure 2 shows a possible
representation of this cell as a testview. At first glance, the
testview appears to be reasonable representation of the
actual circuit – it is functionally equivalent and it requires
a minimal number of Boolean gates, to speed up ATPG
simulation and pattern generation. However, the testview
shown in Figure 3 represents the structure and placement
of the transistors more accurately.

Figure 1: Transistor-Level 3-input AND gate with
single inverted input

Figure 2: Possible testview for 3-input NAND gate with

single inverted input

Figure 3: Structurally accurate testview of a 3-input

AND gate with single inverted input

So, what is the impact of using the testview in Figure 2,
which is functionally equivalent but not structurally
equivalent, versus using the testview in Figure 3, which is
both functionally and structurally equivalent to the actual
circuit?

There are three aspects to consider

1. The number of stuck-at faults

2. The number of test patterns generated and their
coverage against the faults

3. The accuracy of the diagnostic resolution

With the circuit shown in Figure 2, faulting internal to the
cell would be incorrect, since the internal net does not
exist in the transistor level circuit, misrepresenting what is
on silicon and possibly causing misleading diagnostic
results. With this type of cell representation, it is therefore
necessary to fault at the boundary of the cell only. The
circuit in Figure 3, being structurally accurate, allows the
designer to include the faults internal to the cell and not
only at the boundary, increasing the fault universe and
enabling the ATPG tool to generate specific test patterns to
target those faults.

3.2 Challenges

3.2.1 Physical Cell Structure

In order to generate a structurally accurate testview model,
the actual physical structure of the cell has to first be
determined before selecting a gate-level cell (or cells) to
represent the function. Remembering, however, that the
testview is modeled at gate-level, how can the physical
structure be accurately abstracted to a higher level model
without compromising the ability of the ATPG tools to
effectively and efficiently generate test patterns?

The following key criteria were recognized as features that
must be maintained during this abstraction process from
transistor to gate-level:

1. Maintain intended functionality
2. Preserve channel connected logic in the same

logic stage.
3. Preserve the number of logic stages between the

cell input and output.
4. Use Boolean gates, as represented by the cells (no

transistors) and use exclusive gates only.
5. Use built-in ATPG tool primitives for latches and

flip-flops, 3-state cells and pass-gate muxes.

3.2.2 Entire Structurally Accurate Libraries

As mentioned previously, a standard cell library for a
90nm process can contain hundreds of unique cells, some
of which are simple combinatorial cells, others of which
are more complex. Given the different possible ways to

represent different cell types, one of the main challenges is
how to automate this process such that an entire library
can be generated and classed as structurally accurate.
Secondly, how can the verification of such cells be
automated, to ensure that they are still functionally
accurate to the original cells and also understandable by
the ATPG tools?

4. Testview Generation with Conformal

Custom

The Conformal Custom tool already has a very powerful
abstraction engine to generate gate-level equivalent
Verilog netlists from the original transistor level (switch
level) circuit, for many different purposes. The existing
capabilities of the tool were leveraged and enhanced to
support the new feature for the generation of STAC views,
in gate-level Verilog, referred to in the Conformal tool as
“TestView”.

4.1 Tool Enhancement - TestView Feature

TestView makes use of the current abstraction engine of
Conformal Custom. The flow is shown as Figure 4.

switch-level netlist

TestView
Conformal Custom
abstraction engine

gate-level netlist

Figure 4: TestView for Conformal Custom

There are two major steps of the implementation of
TestView. The first step is to use the formal methodology
to abstract the function of a circuit based on Channel
Connected Components (CCC), which is the same as the
current abstraction technique of Conformal Custom. A
CCC is defined by the maximal set of transistors and nets
such that every net can be reached by traversing the source
and drain of the transistors in the component [2]. The
second step is to deposit the gates abstracted from each
CCC into a new module. Taking the circuit shown in
Figure 5 as an example, the figure shows that there are
four CCCs in the circuit, with each CCC covered with
different color of boxes. The gate-level TestView of the
circuit is shown in Figure 6.

Figure 5: A circuit of 4 CCCs

Figure 6: TestView of circuit in Figure 5

4.2 Abstraction Algorithm Overview

4.2.1 Forming Gates

As indicated in the last section, the first step of the
TestView abstraction is to form AOI(OAI) gates based on
CCC. Figure 7 shows a typical static complementary logic
expressed in CCC [2]. There are three CCCs in this
network. The gate-level expression of each CCC can be
abstracted by analyzing the BDD function of pMOS and
nMOS network in the CCC.

Figure 7. Circuit shown in CCC

In the general case, each CCC may contain any
combination of p-type transistors and n-type transistors.
As an example, for a single CCC each transistor can be
viewed as a switch by controlling the gate voltage of the

transistor (see Figure 8). A pMOS transistor will be turned
on when its gate voltage is low and turned off when its
gate voltage is high. On the other hand, an nMOS
transistor has an opposite situation, which means an
nMOS transistor is turned on with its gate voltage high and
turned off with its gate voltage low.

Figure 8: Transistors as switches

Figure 9: BDD expression of nMOS networks

These relations can be easily represented by BDD
operations and thus the function of the CCC can be
derived. Figure 9 shows two nMOS networks represented
by BDD expressions.

4.2.2 Creating a New Module for Each CCC

After the function of the CCC is derived, the logic gates
representing the function will be deposited into a new
module. Figure 10 shows the TestView of the network in
Figure 7. If the new modules only contain a single gate,
the modules will be resolved to reduce the level of
hierarchy.

bdd_g1

bdd_g2

bdd_s1 bdd_s2

bdd_g

bdd_s

bdd_d = ~((bdd_g1 ^ bdd_s1) v (bdd_g2 ^ bdd_s2))

bdd_d = ~(bdd_g ^ bdd_s)

PMOS

NMOS

PMOS

NMOS

PMOS

NMOS

VDD

VSS

Figure 10: TestView of Figure 7

4.2.3 Abstraction of Sequential Logic

For sequential logic, the abstraction needs to go further.
Since the abstraction is module-based, the first step is to
pop up the modules created for each CCC. The next step is
to traverse the circuit to see if a loop could be found. If a
loop exists, the Conformal Custom abstraction engine can
verify if it could be formed a latch or not. The gates from
the modules not involved in the abstraction will be pushed
down to the module in which they are originally located.
After latches are abstracted, the next step in the abstraction
algorithm will be to see if flip-flops could be formed or
not.

5. Encounter Test and Fault Modeling

Encounter Test is a suite of tools that support a complete
design for test methodology flow from test insertion to test
pattern generation, test vector export and defect diagnosis
[7]. Since this paper is mainly concerned with generating
the correct test view, the focus of this discussion will be on
fault models.

ATPG tools usually work on gate level netlists and gate
level library models since working with transistor models
is too complex. To model a potential fault area of the logic
where a defect may occur and be detected on silicon, a
variety of fault models exist that a design engineer can use
for pattern generation, such as the industry accepted stuck-
at fault model. For designs at 90nm or smaller, it is
generally accepted also to require tests using transition and
path delay fault models.

In addition to these, Encounter Test supports a patented
pattern fault model. This is useful for modeling defects not
easily covered by the other models, such as bridging and
crosstalk defects. Figure 11 shows a diagram of a CMOS
multiplex or built using pass gates.

Figure 11: A CMOS MUX built using pass gates

pass gates
Modle 2 Module 1 Module 3

Defects on the select signal can cause high-Z contention
which is not detected by the stuck-at or transition fault
models. Using the build-in primitive from Encounter Test
shown in Figure 3 and enabling pattern faults will result in
better quality test patterns.

module __MUX2(DOUT, DATA0, DATA1, SEL);
input DATA0, DATA1, SEL;
output DOUT;
endmodule

Figure 3: ET TestView of a two-input MUX

Similarly, using built-in ET primitives for latches and flip-
flops and activating pattern faults will let the test generator
take advantage of the pattern fault model to generate better
and higher quality test patterns.

5.1 Cell Boundary Modeling

Encounter Test has extensive fault modeling capabilities to
suit many design styles and needs. One important
consideration is modeling the cell boundary for technology
libraries. ET supports modeling which is compatible to
other industry ATPG tools.

The most accurate modeling is where all internal nets in a
library cell are modeled, shown in Fig 12. This is
recommended only if there is a one-to-one relationship
between the physical structure and the logical model,
otherwise, the default ET model or the “industry
compatible” model must be used. Here is where the
premise of STAC models comes in. If the nets shown in
the model in Fig 12 exist in the actual design, then they
can be tested and defects on them can be diagnosed.
Otherwise, the ATPG tool will target faults that do not
exist on silicon, and the resulting data, test coverage and
failures on silicon may be misleading.

Figure 12: Allowing internal faulting

6. Freescale Flow for STAC view

Generation and Validation

This section details how the previous sections on the
theory of STAC modeling, the enhancements through the
Conformal tool, and the features of Encounter Test were
brought together to create a methodology in Freescale for
automatic STAC view generation and validation for entire
standard cell libraries.

The Conformal Custom tool is used to extract STAC gate-
level Verilog models of the library cells using the
generation flow shown in Fig 13. The input to the process
is the “.cdl” file, which is the transistor level circuit for the
library cell that comes from the library designers
themselves. The new Testview feature of Conformal is
used to generate the STAC cell and the built-in LEC
feature is then used to verify that it is equivalent to the
functional model of the cell.

Suitable scripts can easily be written to run Conformal to
process an entire library in this manner. If the resulting
STAC Testview is not structurally accurate, or the model
does the extraction process must be reviewed for that
particular cell type. Otherwise, the STAC cell is
considered correct and can be further verified through
Encounter Test.

Figure 13: STAC Generation Flow

Before using these STAC cells on a full design, the next
step is to run the cells through Encounter Test for further
verification. LEC has already verified that they are
logically equivalent to the functional views of the cell, but
this additional step verifies that they are recognized by the
ATPG tool, that they can be faulted correctly for pattern
generation, and that the patterns pass in simulation against
the functional models without any mismatches. This flow
is shown in Figure 14.

In this flow, a “skinny” design netlist is created that
instantiates one instance of each cell in the STAC library.
This is run through Encounter Test with the library itself
and ATPG patterns generated. The reports and fault lists
can be analyzed (manually or with scripts) to validate that
the cells are being interpreted correctly. The ATPG
patterns are then simulated and through the log files and
waveforms produced any mismatches can be debugged
and fed back to either Encounter Test or Conformal for
correction. Once all of the cells pass and there are no
mismatches in simulation, the STAC library can be used
on any SoC design.

AND

OR

AND

ao cell
 Library

Cell to ET
cell.cdl

Conformal

errors

bad

TestView

STAC
Model

cell_stac.v

Conformal
LEC

good

Generation Flow

Figure 14: STAC Verification Flow

7. Application Results

7.1 Single Full Adder Cell

To demonstrate the effectiveness and difference between a
STAC and a traditional test-view model, many different
cell types were evaluated through this flow. One of the
cells where the most dramatic difference was observed
was in a full adder cell. Figure 15 shows the original
transistor level schematic of the Full Adder cell.

Figure 15: Transistor Level Full Adder Circuit

Figure 16 shows the test view from the original library,
and Figure 17 the STAC library extracted by the
Conformal Custom tools. As can be observed, the original
library model is very different, structurally, to the original
circuit and could not be used for faulting internal to the
circuit; the nets, gates and logic levels do not map at all to
what exists on silicon.

Figure 16: Original Full Adder Circuit Test View

Figure 17: Structurally Accurate Full Adder Circuit

The results for these two testviews are summarized in
Table 1. The original testview has 10 faults (faulting at the
cell boundary) and the ATPG tool generates 2 test patterns
for 100% test coverage. However, the structurally accurate
testview allows the ATPG tool to fault internal to the cell
and has 46 faults, for which the tool generates 8 test
patterns to achieve 100% test coverage. Therefore, if one
had settled for the original testview - the ATPG tool would
be limited to generating only 2 test patterns. Fault
simulating these 2 test patterns on the structurally accurate
testview shows (see Table 2) that 30% of the faults would
have gone untested!

It is only when the structurally accurate testview is
presented to an ATPG tool is it able to generate the
necessary additional test patterns (in this case 6 additional
test patterns) to get 100% test coverage.

ET

ATPG Reports
Fault Lists

Design
Netlist

Functiona
l

cell beha

Verilog
simulation

logfiles

Debug

PASS

STAC Library

errors

waveforms

Check for fail

Validation Flow

Faults
Tested # Patterns %TC

ATPG
Test

Pattern

Total
Static

Original
Cell 10 10 2 100%

Fault
Simulated 46 32 2 66.67%

Internal
Faulting 46 46 8 100%

Table 1: Full Adder erage Comparison

Results

e two examples, the following conclusions

curate for a high

nsistor level representation of the library

valence of the
structurally accurate testviews.

.1 Entire Standard Cell Library

e impact of using a STAC library on a full SoC
esign?

s peripherals. Figure 18 shows the layout
of this device.

 Test Cov

From the abov
can be drawn:

• Purely functionally equivalent testviews are
logical for simulation and appear adequate for
ATPG. However they are not adequate for high-
quality ATPG and are not ac
level of diagnostic resolution.

• There needs to be a method for automatically
generating structurally accurate testviews from
the tra
cells.

• Furthermore, there needs to be a method for
verifying the functional equi

7

So far, results have only been discussed for single cells, so
what is th
d

To find out, a relatively small SoC design that was already
using traditional test views from a mature, proven
technology was chosen as the test case. This particular
device is a low power, high performance, HCS08 8-bit
microcontroller based SoC. The device was implemented
in 0.25um low voltage, low power process technology and
includes a 24 channel ADC along with several
communication

Figure 18: Microcontroller DUT Layout

The flow described in Section 6 was followed using the
source files for this library to generate and validate
structurally accurate testviews. Two ATPG pattern
generation runs were then performed on the design; the
first using the original testviews and a second using this
new library, faulting internal to the cells, and the results
compared.

Table 2 shows the results where ATPG patterns were
generated for the design using both the traditional and
structurally accurate libraries. The top line details the
design using the original test views, faulting at the
boundary of the cell, as normal.

Pattern Set

and
Library

Internal
faulting

Static
Faults

Dynamic
TC

Static
TC

Patterns

ATPG on
Original

Lib
No 261447 87.95% 94.59% 6804

Fault Sim
against

STAC lib
Yes 477904 85.76% 93.08% 6356

ATPG on
STAC lib Yes 477904 88.02% 94.76% 7619

Table 2: Full Design Static Test Coverage Comparison

Results

As was done for the Full Adder cell in section 2, the
patterns generated here were then run on the structurally
accurate library to find out the true coverage of the device
gained by these original patterns, this time faulting internal
to the cells.

Two observations can be made here – 1) faulting internal
to the cells almost doubles the fault universe and 2) in
reinforcing the theory at the end of section 2 of this paper,
around 2% of this new, more accurate, fault universe is not
covered by the existing patterns, reflecting the actual, true
test coverage of the device.

This method allows us to then instruct the tool to generate
additional patterns to cover the gap in fault coverage. In
the third line of this table the patterns were generated
using the structurally accurate library. It can be observed
that with a small increase in pattern count the remaining
faults were covered, enhancing the test quality of the
device.

In section 2, it was shown that on a single cell the
difference in test coverage was 30% and the increase in
pattern count to cover the additional fault with a
structurally accurate test view was 4 times the original
pattern count. So, why on a full design is the difference
not on the same scale?

This is because, on a full SoC device, the propagation of
the stimulus introduced into the design by a test pattern
generated to target one fault on any given cell, combined
with the design architecture itself, allows some of the
faults (internal or boundary) on other cells to be tested at
the same time. Therefore, as a general rule of thumb, as
the gate count for a SoC device increases, the proportional
increase in pattern count becomes smaller and less
significant.

7.1 Metrics

When evaluating the structural accuracy of an entire
library, different levels of accuracy were defined based on
what cell types were made to be accurate and which were
still based on a basic functional model. In order to quantify
this into a measurable form, a Maturity Matrix was
generated using the five main cell types to indicate the
overall level of structural accuracy of any standard cell
library. This is shown in Table 3.

With this metric and the breakdown of the different cell
types, it is not necessarily essential to convert every single
cell in the library to be structurally accurate; the quality of
a library can be enhanced even if only the combinatorial
cells are made to be more accurate. In fact, given that

combinatorial cells make up the majority of the cells used
on a typical SoC device, even a Maturity Level of 2 can
have a significant impact on the overall test quality of the
final ATPG pattern set.

Maturity

Level
Simple
Cells

Comb.
Cells

Complex
cells (AOI)
and Muxes

Sequential
Cells

Special
Cells

Level 1 Yes No No No No

Level 2 Yes Yes No No No

Level 3 Yes Yes Yes No No

Level 4 Yes Yes Yes Yes No

Level 5 Yes Yes Yes Yes Yes

Table 3: Maturity Matrix for Structurally Accurate

Test Views

Level 1 equates to a test view library where only very
simple, single cells are structurally accurate, such as
inverters. Level 5 covers the entire library, including
sequential cells and any special cells (e.g. Full Adder,
Level Shifters etc).

It is worth noting that the structurally accurate library
generated for this design was at Level 2 on the Maturity
Matrix described in section 4. As shown by the results in
Table 2, even only at level 2 the use of structurally
accurate cells in a library can make a significant difference
to the overall accuracy in a full design. By enhancing all of
the AOI, Muxes and special cells for this library, the
maturity level can be taken to Level 5 and the overall test
quality enhanced even further.

8. Conclusion and Future Enhancements

By enabling ATPG tools to generate a more complete and
accurate fault universe it can then produce test patterns
that target the true potential fault areas of a device and
enhance the overall test quality of the test. Structurally
accurate test view models (STAC) have been recognized
as an essential part of this flow. The enhancements made
to the Conformal Custom tools, and the links made to the
existing features of Encounter Test, have enabled a
complete STAC generation and validation flow that can be
applied to any standard cell library. Results in simulation
have shown that this method has a significant impact on
the overall testability and test quality of the resulting
ATPG patterns.

Future challenges for this methodology include enhancing
the Conformal Custom tools to take the structural accuracy
of a standard cell library to level 5 on the Maturity Matrix.

Beyond that, the modeling of memories and custom
designed circuits to be structurally accurate could also be
explored. Structurally accurate standard cell testviews
could also be used for gate exhaustive testing [7]. Proof of
the true effectiveness of using this technique would be
observed by running two pattern flows, one using normal
and the other with STAC libraries, and monitoring the test
escapes on high volume lots. Comparison of the accuracy
of diagnostic callouts will be further proof. Freescale plans
to run such experiments on a production device in the near
future.

Acknowledgements

The work presented here has been made possible through
the close collaboration and teamwork between Cadence

and Freescale, and also across several teams within both
companies. The authors would like to thank and
acknowledge the valuable contributions and support made
by (Cadence) Mitch Hines, Gil Vandling, David Scott,
Bassilios Petrakis, Manish Pandey and (Freescale) John
Scott, Tommy Colunga, Vlado Vorisek, Darrell Carder
and Raj Raina.

References

[1] N. Weste and K. Eshraghian, “Principles of CMOS
VLSI design”, Addison Wesley Publishing Company,
ISBN 0-201-3376-6

[2] S. Kundu, “GateMaker: A Transistor to Gate Level
Model Extractor for Simulation, Automatic Test Pattern
Generation and Verification”, Proc. Of Int’l Test Conf,
p372, 1998

[3] L. Day et al, “Test Methodology For A Microprocessor
With Partial Scan” Proc. Of Int’l Test Conf, p137, 1998

[4] M.P. Kusko et al, “Microprocessor Test and Test Tool
Methododogy for the 500MHz IBM S/390 G5 Chip”,
Proc. Of Int’l Test Conf, p717, 1998

[5] C. Pyron et al, “DFT Advances in Motorola’s
MPC7400, a PowerPC Microprocessor” Proc. Of Int’l
Test Conf, p137, 1999

[6] Encounter Test Documentation, Version 6.2, Feb.

2007.

[7] E. J. McCluskey et al, “Gate Exhaustive Testing.”
Proc. Of Int’l Test Conf, Paper 31.3, 2005

	1. Introduction

