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1. Abstract 

While verification tools have made great strides in capacity over the last few years, there are still limits in 
their effectiveness with large designs. However, such limits can be compensated for with scalability. 
Some of the reasons that designs are large, such as deep FIFOs and memories, may actually have little to 
do with essential functionality or common design bugs. In fact, it is rather common to abstract such 
structures down to smaller sizes for the purposes of more focused verification.  This paper discusses the 
application of an implementation and verification strategy that calls for scalable RTL in which the size 
(depth, width, number of ports, etc.) of certain design structures are made easily adjustable. This design 
approach has several clear advantages, including fostering easier reuse and enabling late-stage design 
changes without having to re-enter the RTL. Ease of abstraction for formal analysis is another advantage 
of scalable RTL. This paper discusses the experiences of one Unisys development team on past and 
current projects using this design technique and the attendant benefits. It includes specific examples of 
design structures easily transformed from difficult to tractable for verification.  RTL scalability is a 
technique sometimes recommended in vendor formal training classes; this talk discusses the challenges 
for designers to use this approach and presents the real-world results achieved. It is appropriate for anyone 
doing verification of large or complex designs. No specific knowledge of assertions, properties, or formal 
analysis is required.  

2. Introduction 

This paper discusses the introduction of scalability into a design's implementation and verification 
strategy.  It describes how past designs were implemented and verified and the hardships incurred because 
of the lack of scalability.  The paper explains the benefits of scalability to the RTL implementation as well 
as the benefits to different aspects of verification including formal analysis, simulation, and acceleration.  
In addition, the difficulties designers had with the new implementation style and verification methods are 
examined. 



3. Prior Design Work 

3.1 General Design Description 

The past designs referred to in this paper include several chips that allow for scaling servers, i.e. adding in 
more processors, memory, and I/O.  The major components of this type of design are highlighted in 
Figure 1.  They include processor units, I/O units, memory units, remote interface units, and a 
crossbar unit connecting all of the other units together.  Assume that the units within the chip 
communicate via a common protocol and that this same protocol is used for communication with the 
remote nodes as well.  Further, assume that the external processor, I/O, and memory components all 
communicate to the chip with their own distinct protocols. 

 

Figure 1 
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Figure 2 shows one embodiment of multiple chips being connected together to enable growth of 
processing power, I/O devices, and memory capacity.   
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3.2 Implementation and Verification Strategies 

The implementation and verification strategies applied to these designs included the goal of quickly 
developing the sub-modules of each unit so they could be built into a unit-level testbench as soon as 
possible.  Using this approach instead of applying a widespread effort to focus on smaller testbenches to 
verify the sub-modules independently had several advantages.  It allowed for the focused development of 
only a few models for the major chip interfaces including a processor model, I/O model, memory model, 
and a model for an entire remote node.  As mentioned, the remote unit communicates with the remote 
node controllers with the same communication protocol as the other units do with one another over the 
crossbar.  Therefore, the model developed for the remote node was not only able to emulate another entire 
remote node, but also each component individually; that is, it could model each processor unit and 
processor, or each I/O unit and I/O bridge, etc.  Figure 3 shows the models replacing the actual 
processors, I/O bridges, memory, and remote nodes in a chip-level testbench. 

 

Figure 3 
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Figure 4 shows one embodiment of a unit-level testbench.  Note how the Common Model replaces nearly 
all of the other components in the chip allowing for a more compact and focused unit-level testbench.  
Unit design teams generally relied on 1 or 2 workhorse testbenches to accomplish unit-level verification 
of their design.   

 

Figure 4 

The quick development of unit-level testbenches enabled early detection of module-to-module 
communication problems.  These types of problems are very common when modules are implemented by 
different designers who may have had slightly different interpretations of either a specification or other 
agreed upon implementation ideas.  The early unit bring-up also had advantages physically as it allowed 
for early looks at unit sizing, congestion, and timing problems. 

The focused model development and the focused development of the unit designs allowed for the early 
development of system verification testbenches.  These system-level testbenches included multi-unit, 
chip, or multi-chip topologies.  They attacked the unit-to-unit communication problems, the system 
performance characteristics, and the overall verification of system algorithms including coherency, 
address mapping, and routing.   
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Figure 5 shows one embodiment of a system-level testbench connecting design units and models together 
in a partial multi-chip testbench. 

 

Figure 5  

For thoroughness, it should be mentioned that the workhorse testbenches mainly operated in a constrained 
random environment where self-checking properties ensured legal behavior while coverage sequences 
made sure interesting functions were being performed and provided data to drive future verification 
efforts and indicate verification progress. 

Although not the main focus of the verification effort, some sub-module verification was also done.  
Some designers found the time and necessity to create module-level testbenches where they had more 
control over how the module interfaces sequenced allowing for more focused verification.  For many 
designers, however, the reward of a more focused verification environment did not outweigh the 
significant costs associated with such a task including the difficulty in creating models to drive a 
module’s complex interfaces, the extra time needed to debug the models, and the ongoing need to update 
the models as design requirements changed.  Also, designers struggled with the fact that the work 
developing such testbenches would not be reused as the module was reused in other testbenches.  

The advent of formal technologies could have helped to mitigate some, but not all, of the difficulties and 
concerns designers had when developing the module-level testbenches.  However, the technology did not 
yet have widespread adoption because of several factors.  The designers did not have significant training 
or experience with the tools or technology.  Many of the design groups did not have people championing 
the growth of formal analysis looking for opportunities to apply the technology and to help others learn 
how to apply the technology.  The designs lacked a comprehensive implementation and verification 
strategy that included formal analysis as part of the total verification suite.  The design schedules could 
not afford the additional learning curve time associated with adopting formal analysis.  These factors, in 
addition to designer inertia, instead continued to pull the teams down the simulation only path. 

There were individuals and small groups of people who did apply formal technologies as part of their 
verification of the modules they developed.  In particular, a library of shared modules used by all design 
units was developed.  This library consisted of arbiters, FIFO controllers, timers, counters, encoders, 
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decoders, and other common chip specific functions like address mapping functions.  These well defined 
functions were perfect candidates for easily applying formal analysis and some of the individuals 
developing the modules successfully applied formal technologies to their designs. 

Another interesting aspect of the implementation and verification strategy was creating fully synthesizable 
testbenches, including all the models previously mentioned.  This approach enabled entire testbenches to 
be mapped to gates and put into a Palladium hardware accelerator box.  The Palladium accelerated the 
performance of the simulation by approximately 1000 times over the performance of the NC-Verilog 
software simulator for a typically sized unit-level testbench.   Early on in the development of the design 
units, the performance boost was used to run many short tests to go after the seemingly endless 
possible configuration settings and modes of operation available in the design units and models in the 
testbenches.  Then, as the design stabilized, the Palladium was used to troll for very deep problems.  In 
every project, the Palladium was beneficial in finding very deep or very rare problems that the NC-
Verilog simulation runs had not hit yet. 



3.3 Detailed Design Description 

To handle typical system loads, the designs mentioned are built with sufficiently large buffering structures 
to meet system-wide peak bandwidth requirements.  One example of a large amount of buffering is in the 
crossbar unit.  The crossbar unit buffers up transactions when several source units are trying to 
communicate with a single destination unit and arbitrates amongst the sources.  The crossbar has several 
communication channels and each channel has individual buffers for each source and destination pair.  
The buffering is necessary since the destination units typically have many less input ports compared to the 
possible number of units trying to communicate with it. 

Another structure common to several of the units in these designs is a transaction tracking structure.  The 
transaction tracking structures are designs that collect and hold information eventually used to respond to 
a device that made a request.  An example transaction flow is shown in Figure 6.  The I/O device makes a 
memory request via an I/O bridge to the I/O unit.  The I/O unit stores the request, shown by the black bar, 
in its transaction tracker and forwards another request on to the memory unit.  The memory unit stores the 
request in its transaction tracker and forwards another request on to the processor unit whose processor 
has a copy of the requested data.  At the same time, the memory unit makes a request to the memory.  The 
processor unit stores the request in its tracker and forwards a request off to the processor.  The processor 
responds to the processor unit and the processor unit’s tracker responds back to the memory unit and 
deallocates its tracker entry.  Once the memory unit has collected responses for all its outstanding 
requests, it responds back to the I/O unit and deallocates its tracker entry.  Based on the response 
received, the I/O unit then forwards an appropriate response back to the I/O device via the I/O bridge and 
finally clears its tracker entry.  Each unit’s specified tracker depth, i.e. the number of transactions it can 
track, is usually set based on the system’s peak bandwidth requirements. 

Key
I/O- I/O Bridge
IU- I/O Unit
MU- Memory Unit
M- Memory
PU- Processor Unit
P- Processor

 

Figure 6 
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The aforementioned structures are not the only buffering structures in the chip, there are also numerous 
input smoothing FIFOs, FIFOs to cross clock domains, and other control oriented buffers used to track 
interface protocols in each of the units. 
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Other common pieces of logic in several of the design units are counters used in fairness algorithms.  
Counters become important to fairness algorithms when the protocol uses a retry scheme to handle 
transaction conflicts.  Assume that a transaction conflict is any situation when a unit cannot handle a 
particular transaction at the time it is processed.  Then, assume that the protocol uses a retry scheme to 
respond back to the requester telling it to try again later.  Without some kind of counting mechanism to 
either give some indication of how long a requester has been retrying a transaction or to give some 
indication of how many times the transaction has been retried, that requester could theoretically get 
locked out with the design unit always handling other requests.  This is called a livelock.  Instead, the 
counting mechanisms indicate to the fairness algorithm when these potential livelock situations arise and 
appropriate actions are taken to prevent the livelock.  One action may be to retry all other requesters 
except the one that has been locked out for a while. 

3.4 Verification Hardships 

The design descriptions given do not fully describe the details of the design, but instead give an indication 
of the potentially deep state buried in the design.  Also, the descriptions highlight that sometimes critical 
actions occur when the deep state of the design is reached.  Getting the design into these deep states are 
critical to ensuring successful verification.  The design descriptions help to explain why such large 
buffering structures are needed.  It should be clear that the large buffering structures are frequently in 
place to prevent the actions that occur when the buffers become full.  Thus, the very nature of the design 
is working against the goal of verifying the critical boundary condition actions. 

Another hindrance to the verification effort occurs when design units are put together in chip-level and 
system-level testbenches.  The large structures in each unit multiplied by the numerous instantiations of 
each unit again multiplied by several instantiations of the chip all contribute to very large simulation 
snapshots.  They are so large in fact that they can grow out of 32-bit simulators, leaving only 64-bit 
machines to run on.  Even when the testbenches do not grow large enough to limit the machines they can 
be run on, their large size contributes to slower simulation speeds. As mentioned previously, many 
testbenches are put into a hardware accelerator.  The hardware accelerator resource is very expensive; 
filling the machine with large buffers that do little to contribute to the verification of the complicated 
control algorithms is a very poor use of a costly resource. 

Designers generally do a good job of putting in logic to allow for programmatically reducing the logical 
size of buffers and counters.  They accomplish this by putting in programmable thresholds to cause early 
full and timeout indications.  This programmability allows for better focus on the control algorithm 
functionality.  However, it does not do anything for the physical, simulator, and hardware accelerator size 
issues.  

3.5 Physical Design Hardships  

Large buffer structures not only create verification hardships but also impact physical design.  The 
estimations done to size buffer structures in a design are not an exact science.  The estimations are 
decided upon by iteratively considering many factors such as system-level modeling and die size.  
However, no matter how thorough the process, the specified sizes are just estimates and subject to change 
as units on the chip grow unexpectedly due to tight timing constraints, routing congestion, feature creep, 
and other unaccounted for logic additions.   The growth results in the need for units to reduce or remove 
logic and features.   In all of the designs represented in this paper, there has been a need to significantly 
reduce major buffering structures in the design. 



To better anticipate the need to shrink designs, logic implementers have become better at parameterizing 
their designs.  However, sometimes the implementation of scalability is incomplete in many ways.  
Individual designs may fully implement a parameterized design, but the modules that instantiate the 
design may only handle a specific parameter value.  Designers may implement their design to use a 
parameter in most of their logic, but because of complexity, not in all of it.  Using a parameter to make the 
logic easier to change when a different parameter is needed helps the implementer.  However, the fact that 
even a small amount of logic needs to be changed to allow for scaling makes a design less flexible when 
physical design requires experimentation with sizing options.  Additionally, the more structures in a 
design available for scaling, the more options available to consider when physical design requires the 
design to shrink. 

4. Current and Future Design Work 
 
The current and future generations of the chips discussed thus far have a slightly new architecture.  As 
shown in Figure 7, new processor and I/O interfaces required a new design to communicate with them and 
the new communication protocol made it necessary to add crossbars between several interface units 
(CIUs) and transaction handling units (ITU, PTU).  The focus of the remainder of the paper is on a new 
implementation and verification strategy applied during the design of the Common Interface Unit, the 
CIU block. 

 

Figure 7 
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4.1 Detailed Description of Focus Block 

The teal CIU block shown in Figure 7 is instantiated on both the processor side and the I/O side, once for 
each processor and I/O bridge interface.  The same communication protocol is used over both off-chip 
interfaces. 

Figure 8 shows a more detailed, but still high-level, depiction of the CIU block.  The bottom of the figure 
is the physical layer which converts high speed serial input data into wider packets of information and 
presents them to the CIU block on the receive (RX) interface as shown in the figure.  The physical layer 
also performs the opposite function of converting the packets from the CIU block on the transmit (TX) 
interface into serial output data.  The CIU design performs the link layer functions for the protocol 
including ensuring reliable data transmission and proper link initialization.  It also implements the 
buffering and flow control logic to provide consistent, deadlock, and livelock free transaction flow from 
the RX interface to the inbound (IB) interface and from the outbound (OB) interface to the TX interface. 

 

Figure 8 

The TX and RX interfaces are specified as 2 packet interfaces.  The packets on these interfaces carry 
transactions for several virtual channels.  Each virtual channel in this protocol has their own set of credits 
to allow them to flow independently of one another.  There is also a shared set of credits that all virtual 
channels can use.  The CIU design maps the narrow 2 packet virtual channels on the RX side into several, 
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multi-packet physical channels on the IB side.  Similarly, it maps the physical channels on the OB side 
back to the virtual channels on the TX side.  In each direction, the design provides a significant amount of 
buffering to meet protocol requirements and to smooth traffic during peak bandwidth times. 

To ensure reliable transmission, the protocol performs retries when CRC errors are detected.  The retry 
protocol requires the TX side of the link to maintain a history of previously sent transactions in 
anticipation of possible CRC errors being detected.  When the RX side detects a CRC error, it requests 
retransmission.  Once a request for retransmission is received, the link acknowledges the request and then 
begins transmitting from the retry buffer from where the request for retransmission indicated until it is 
empty.  

Upon reset, the link goes through a complicated initialization sequence to communicate with the other 
side of the link in order to exchange information allowing each side to appropriately prepare for normal 
operations and initialize. 

To complicate both the retry protocol and initialization protocol state machines, the messages used to 
communicate do not go into the retry buffer and thus each algorithm needs its own form of retry when the 
messages are lost due to CRC errors. 

4.2 Introduction of Scalability into the Implementation and Verification 
Strategy 

The implementation and verification strategies employed in previous designs were effective.  They 
allowed for early detection of critical module-to-module and unit-to-unit communication problems.  The 
strategies enabled early looks at sizing and timing problems.  The strategies were comfortable for 
designers, both implementers and verifiers.  However, as explained, there have also been some 
difficulties.  The verification of deep boundary condition logic has always been difficult.  Most designs 
did not utilize powerful formal technologies to find problems that simulation cannot and to gain 
confidence in a design by proving the design’s properties.  Some simulation snapshots for large 
testbenches were so large that they had grown out of 32-bit simulators.  The Palladium accelerator box 
was being filled with large buffers that were not contributing to the verification of the boundary condition 
algorithms.  Late-breaking sizing changes because of physical limitations were difficult to re-implement 
and had not been previously verified.  The lack of scalability options limited the choices when 
considering how to reduce the size of the designs. 

Moving forward, it was decided that the implementation and verification strategy would call for adding 
significantly more scalability to the design and, at the same time, still continue to realize the benefits of 
previous strategies.  It was believed that having a design that could easily shrink would allow for more 
effective verification.  Full testbenches could be scaled to target critical boundary condition logic.  In the 
software simulator, NC-Verilog, this meant that the testbench was more likely to fit into a 32-bit 
simulator and would more likely be probing critical logic areas.  In the hardware accelerator, a scaled 
testbench was more likely to fit in the box and the costly resource was more likely to be targeting critical 
logic.  Also, scalable testbenches allow formal technologies to be applied to a larger set of modules.  
Physically, a scalable design gives designers the tools to react appropriately and confidently when sizing 
changes are required. 
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4.3 Applicability of Design to New Strategy  

The CIU design offers many opportunities for scaling.  Some obvious candidates are the input and output 
transaction buffer sizes.  The specification sized these buffers to be quite large to reduce the possibility of 
them filling during normal operation which would cause back pressure leading to system-wide 
performance degradation.  However, when one considers that the sizing of the buffers is just an estimate 
and may change, that the design may grow out of its agreed upon footprint and need size reductions, and 
that verification efforts would like to focus on the control algorithms on the boundary conditions, it 
becomes obvious that these buffers needed the ability to be scaled down in size.  Similarly, the retry 
buffer mentioned previously was also sized to protect against performance degradation and is a good 
candidate to be made scalable.  Furthermore, note that the OB and IB interfaces in Figure 8 are specified 
to be anywhere in the range from 1 to 7 packets wide.  It was clear that the packet counts on the interface 
were sized based on throughput estimates for each channel.  Because of past routability problems with 
large crossbars, it was apparent that the packet counts on these interfaces were subject to change in the 
future and thus needed to be scalable. 

5. Application of Scalable Design Strategy 

5.1 Language Constructs 

Implementing a design in a way to make it scalable requires a set of skills that is new to some designers.  
The language constructs, coding techniques, and code flow used to implement a scalable design can be 
very different than what many of the designers are familiar with.  Instead of implementing the 
specification in a straight-forward manner, the designers have to generalize the specification and come up 
with algorithms that work for variable sized structures.  Some of the verilog language constructs valuable 
to a scalable design include for loops, index part-select, generate blocks, multidimensional wires and regs, 
and constant functions.  The example in Appendix A is a multiple read and multiple write port FIFO and 
illustrates how many of the language constructs are used.  Note, the module is just an illustration and is 
not actually used anywhere in the design, although similar structures are used.  

Lines 1-40 show the interface to the module.  The parameters allow for any number of read and write 
ports as well as any depth and width of the internal memory.  Verilog has a shortcoming in that it does not 
allow multidimensioned input and output ports.  So, to pass data through the interface for a parameterized 
number of ports, it is necessary to make a single data port wide enough for the data of all ports.  These 
flat, wide ports are immediately converted into multidimensioned nets to be used by the rest of the design.  
This conversion can be considered an extension of the actual interface.  The index part-select language 
construct is used to select the appropriate data field. 

Lines 41-94 show the write port logic of the module.  An important construct is the constant function used 
on line 42 to calculate the base 2 log of the depth of the FIFO.  The result is the width of the vector 
needed to address the memory.  The always block containing the write port logic, lines 55-82, loops over 
the number of write ports updating the memory with the appropriate write data and write address when 
the port indicates that a write is needed.  The loop also produces a full indication for each port.  Lines 83-
94 are the write address and memory state assignments. 

Lines 95-129 contain the rest of the functional code.  The read port logic is similar to the write port.  
There is also the definition of the constant function referenced previously.  A base 2 log constant function 
is a highly used function when creating orthogonal parameters in a scalable design. 
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Lines 130-210 contain some verification code for the FIFO module.  The verification code is not 
comprehensive but is available to provide examples for discussion.  There are properties to ensure 
correctness on the interface, end-to-end properties verifying data integrity, and coverage sequences 
detecting interesting functional conditions.  Further discussion of how these properties and sequences are 
used in formal analysis is in the next section.  Also, more details about how the properties and sequences 
reacted when formal analysis was applied to this scalable design are in section 6 describing the results. 

5.2 Applicability of Formal Analysis  

Formal analysis has shown to be effective in fully verifying well defined modules that do not lead formal 
tools into exploding state space.  As modules are put together and built into larger testbenches, it becomes 
more difficult to avoid state space explosion.  In general, the more scalable a design is, the more likely 
that it is going to be able to avoid such difficult problems.  Like simulation, a consolidated design allows 
formal engines to attack critical boundary condition logic in the design.  Once a design and testbench 
become tractable for formal analysis, then the significant benefits of formal analysis can be fully taken 
advantage of. 

Formal analysis has some significant advantages over simulation.  For instance, where a simulation 
testbench would drive a design with legal weighted random sequences, a similar formal testbench can 
drive that design with all legal sequences.  The exhaustive nature of formal analysis offers more than just 
confidence that a design property is being followed; it can prove that it is being followed.  At the same 
time that the formal engines are attempting to prove the properties in the design, they are also showing 
that interesting coverage sequences are reachable.  When a feature’s associated properties are proven and 
coverage sequences shown to be reachable, it is a good indication of verification completeness. 

In addition, a formal testbench, with IFV, can be easier to create and be more effective than a simulation 
testbench.  Some of the reasons are deficiencies in the simulators, but none the less, they are valid.  The 
IFV tool automatically creates a default square wave clock and has simple clocking commands for 
creating different clocks.  This seemingly simple thing is a nice time saver when creating many 
testbenches.  A formal tool does not need random number generators to drive nets randomly.  Instead, all 
legal values and sequences of values are considered when a net is undriven.  In the FIFO example in 
Appendix A, the rd, wr, and, wr_data ports are all undriven and thus the tool will attempt all legal values 
and sequence of values.  The rd and wr ports are constrained by the assumptions on lines 136-143.  These 
assumptions highlight the fact that a formal tool can use assumptions to constrain nets.  Usually, writing 
assumptions is much easier than creating similar verilog to perform the same function.  Many of these 
assumptions can be reused as checkers when the module is integrated into a higher level testbench.  The 
assumptions also work as documentation of the rules of the interface.   

A formal tool can find problems that a random simulation cannot.  A formal tool considers repeated 
sequences when checking liveness properties.  These repeated sequences can find livelocks in a design.  
Repeated sequences are the antithesis of random simulation and, therefore, make it very difficult or 
impossible for simulation to find such problems.  In addition, liveness properties in simulation will not 
fail until a simulation is complete.  The actual cause of the problem may have occurred many cycles 
before the end of the simulation.  On the other hand, formal tools will show the shortest sequence to the 
failing condition and also indicate the shortest looping sequence highlighting the problem.  Lines 169-172 
and lines 181-184 are examples of liveness properties. 

The possibilities of scalability in the CIU design make it an ideal candidate for formal analysis.  Also, the 
fact that there are some distinct stand-alone functions that the design performs makes those pieces of logic 
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ideal formal candidates.  If sized as specified, the powerful end-to-end properties in each of the individual 
components of the design could not be proven.  However, scaling allows for not only the end-to-end 
properties in the individual components to be proven, but also some of the end-to-end properties of the 
entire design. 

5.3 Implementation Hardships 

Changing a designer’s coding style is extremely challenging.  A common difficulty when writing code 
with scalability in mind is the readability of the code being entered.  When generalizing an algorithm, 
names are lost and replaced by numbers.  Vector sizes are not known unless the parameter values given at 
time of instantiation are known.   Another factor can be unfamiliarity with the coding style.   The code 
looks more script-like with many loops, multidimensional arrays, temporary variables, and in general 
much more procedural code.  There are less bit ranges, assign statements, and specialized code.  While 
experience with the coding style can help to overcome some of the readability and understanding 
difficulties, the fact that the code is not a straight-forward implementation of the specification will always 
make the code slightly more confusing.   

Developing generalized algorithms instead of simply implementing as specified results in longer code 
entry time which is probably the largest drawback of creating a scalable design.  The main issue is that it 
can directly affect when the unit-level testbenches can start exercising the unit’s functions and finding the 
most common bugs which are module-to-module communication issues and unit-wide algorithm 
problems.  Again, experience will contribute to a quicker entry period, but even when a similar experience 
level is reached, the entry time will still be longer.  The longer entry time must be built into the design 
schedule. 



5.4 Verification Hardships 

As discussed, a scalable design can do a lot to aid verification.  However, there are some trade-offs that 
come with scalability when debugging a generalized design.  When debugging in a generalized, reusable 
module, specific names are replaced by generalized code and numbers.  This abstraction can potentially 
cause some misunderstandings. 

A powerful debugging tool is a source browser that can annotate source code with values at a selected 
point in time.  Annotated code in a procedural loop only shows the settled values of nets.  However, 
typically when debugging it is interesting to know the values of the nets after each iteration of a loop.  
This problem can be seen in Figure 9.  Notice how all the left hand side net values are displayed shown 
transitioning to their final values.  Without stepping through the code, there is no way to see the values of 
the nets after any previous iterations of the loop. 

 

Figure 9 

Although effective at finding obscure bugs, deep formal analysis at the module level required long run 
times and extensive debug efforts.  The extra time designers spent performing formal analysis during 
module development in addition to the extra time spent creating a scalable design negatively impacted the 
other project goal of quickly developing initial unit-level designs to enable early looks at higher level 
verification and physical design problems. 
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6. Results 

When all tallied, the CIU design had 19 logical buffers that were made scalable, all the transaction buffers 
and the retry buffer.  Additionally, 7 of the 14 output transaction buffers could be entirely removed based 
on a parameter.  The packet interface count on each of the major design interfaces could be changed as 
needed.  The testbench models had similar buffer structures and interfaces and those models could be 
scaled as well.  This flexibility allowed for more focused verification efforts.  Smaller sized buffer 
structures were used when verification was targeting critical boundary condition logic and other 
potentially deep control algorithms.  The actual specified sizes were used when tests targeted throughput 
and bandwidth functioning.  Shrunken buffer structures were used when large system-level testbenches 
became slow or too large for 32-bit simulations.  Also, shrinking designs to more effectively utilize a 
hardware accelerator was another advantage. 

Physically, the flexibility of a scalable design allowed for easy integration of architectural changes that 
were made throughout the project.  Including changing data buffer sizes to help meet fluctuating sizing 
requirements, updating interface widths to help alleviate routing congestion issues, and resizing structures 
as performance considerations were revisited.  The design changes were made with confidence because 
verification had already been performed on scaled versions of the design making new implementation 
bugs unlikely. 

The physical structure of logical memories could also be changed.  A logical buffer that required several 
read and/or write ports had the choice of being implemented with any number of physical memories.  This 
flexibility was important when vendor memory cells limited the number of ports available.  The 
scalability also allowed for the easy exploration of the trade-offs of using vendor memory cells versus 
flip-flops. 

Many of the stand-alone functions in the design had formal analysis applied to them.  Without scalability 
some of the proofs achieved would not have been possible.  Also, many of the bugs found may have never 
been found by simulation alone or at the very least it would have taken a long time to hit them.  The 
advantages scalability brings to formal analysis can be shown by comparing some of the raw results from 
IFV on the FIFO module. 



As a baseline, a very small version of the FIFO was used.  The depth parameter (D) was set to 3, the 
width of the data (W) was set to 1, and the number of read and write ports (RD_P and WR_P) were set to 
1.  A powerful end-to-end property (assert_data_in_data_out) checks that data written into the module is 
eventually read out of the module.  For the baseline design, IFV was able to prove this property true in 
well under 1 second of CPU time.  However, Figure 10 shows some examples of increasing the depth of 
the FIFO, increasing the width of the data, and increasing the number of read and write ports.  All of 
them, especially the depth, significantly increased the proof times.  When combined, the exploding state 
space issue becomes clear. 

 

Figure 10 
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More typical depths for the CIU design are 32, 64, and 128.  Many of the properties and sequences in the 
design were able to proven at the larger sizes; however, powerful end-to-end properties like the one 
shown in the example above commonly needed design scalability to become tractable for formal analysis.  
Figure 11 shows how some of the other properties and sequences were easily proven even at more typical 
parameter settings. 

 

Figure 11 

Not only were stand-alone functions attacked with formal analysis, but also entire unit-level testbenches.  
Many of the properties that were assumptions in the module-level testbenches either found bugs quickly 
or were easily proven.  These properties had a very large return on investment; they were used to drive the 
module-level formal testbench and became checkers in the higher level unit testbenches.  The unit level 
end-to-end properties were not easily proven even with a scaled design but effectively found bugs. 

Scaled formal and simulation testbenches were able to hit most coverage sequences faster than when the 
testbenches used the actual design parameter sizes.  However, scaling the design also caused some 
coverage to not be hit.  These coverage failures highlighted the importance of applying a verification 
strategy that pairs coverage sequences together with properties in the verification plan.  Figure 12 shows 
the IFV tool reporting that the coverage sequence detecting that all ports are writing at the same time 
cannot be reached when the depth parameter is set smaller than the number of ports.  In this example D 
was set to 2 and WR_P was set to 3. 

 

Figure 12 

Project milestones, such as early unit-level module integration, were negatively affected by the early 
application of formal analysis to perform deep verification at the module level.  Designers faced the 
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difficulties of applying a new implementation style to make their designs scalable and also the challenge 
of becoming proficient in applying formal analysis and using a formal tool.  The general view was that 
formal technologies were very valuable to verification, but where, when, and how the technology is 
applied is critical to ensuring success. 

Tool bugs emerged as another common theme when utilizing many of the language constructs important 
to a scalable design.  Bugs were found in linters, compilers, decompilers, simulators, formal tools, 
synthesis tools, and equivalency checking tools, from several different companies.  Some of the bugs still 
exist, most have been fixed, and more will likely be found. 

7. Conclusions 

Introducing scalability into a design’s implementation and verification strategy has many potential 
advantages today and in the future.  The past, current, and future designs discussed in this paper apply a 
combined implementation and verification strategy.  Combining the strategies promotes collaboration 
between the implementers of the design and the verifiers.  When introducing scalability, a combined 
strategy is necessary to keep all parties informed about the benefits sought and the difficulties 
encountered in the process.  Like anything new, there exists a learning period where extended effort is 
required to overcome a slowdown in progress.  However, once overcome, the full benefits of a scalable 
design can be realized.  Designers will have many options to reduce the design size to better allow their 
testbenches and tools to exercise the most interesting functions of the design.  The robustness required to 
adapt to fluctuating physical and architectural design requirements will become part of the design’s 
infrastructure.  Advanced verification techniques, including formal analysis, can have more widespread 
adoption enabling more confidence to be gained in the completeness of verification. 

To compliment the advancing skill set of designers and the more complicated yet flexible designs they 
create, equally impressive advancements in tools, training, and methodologies must be developed.  
Extensive hands-on training demonstrating how to effectively use the language constructs important to 
scalability in common design structures is needed.  Better training will enable designers to get past many 
of the early hardships incurred due to lack of experience.  Tools or methods to improve the debugability 
of scalable designs are needed.  Particularly, visibility into intermediate values of procedural loops would 
be helpful. 

Design scalability is an enabler for widespread formal analysis.  When the implementation and 
verification strategy calls for quick unit-level integration of a design’s sub-modules to take advantage of 
all the significant advantages discussed, formal analysis has to be applied carefully.  It is a contradiction 
to ask designers to quickly develop their modules and at the same time ask that they implement a scalable 
design, develop checker properties, enter coverage sequences, and fully verify their designs with formal 
analysis.  However, if the formal analysis enablers (scalability, checker properties, and coverage 
sequences) are focused on initially, then the technology can be applied at any time. 

Applying formal analysis later in a development cycle has some advantages.  Not only can an initial unit 
be developed faster, but also simple, early design problems can be found in a simulator which is often 
better suited for finding such problems.  One typical early design problem is undriven nets.  Formal tools 
will drive undriven nets will all values whereas a simulator can propagate “x”s whose source can more 
easily be found.  Additionally, designers can usually get a good initial feel for the shape of their logic by 
simply looking at a waveform of the design out of reset.  Once the unit design is off the ground, i.e. the 
basic module-to-module communications problems worked out, simple typographical errors fixed, 
undriven nets resolved, etc., then more deep formal analysis can be applied.  These facts indicate another 
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need; the ability to more easily transition back and forth between simulation and formal technologies.  
The ideal armament for a designer would be a tool that could apply simulation vectors to a design when 
dealing with early start-up problems.  Then, without changes to the testbench, switch over to a formal 
engine when feeling more confident in the design, and finally, again perhaps switch back if the formal 
engines run out of steam. 

A common project goal is to deliver a full featured product with minimal defects in the least amount of 
time.  Any new strategies should attempt to help any or all of these goals.  Adding scalability to a design’s 
implementation and verification strategy has the potential to help these goals.  However, without proper 
training, upfront thought, and tool support, it could also have the opposite affect.  A design team needs to 
consider the challenges they are facing, the experience of their team, and potential advantages of 
scalability before attempting to employ the strategy into their design’s development. 
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Appendix A 
module fifo 
#( 
parameter 
WR_P=2,   // Number of write ports 
RD_P=2,   // Number of read ports 
D=3,      // Depth of FIFO 
W=1       // Width of FIFO data 
) 
( 
input                     clk,      // Clock 
input                     rst_l,    // Low-active reset 
input [WR_P-1:0]          wr,       // Write indication for each port 
input [(WR_P*W)-1:0]      wr_data,  // Write data for each port 
input [RD_P-1:0]          rd,       // Read indication for each port 
output reg [(RD_P*W)-1:0] rd_data,  // Read data for each port 
output reg [WR_P-1:0]     full,     // Full indication for each write port 
output reg [RD_P-1:0]     empty     // Empty indication for each read port 
); 
// *************************************************************************// 
// A verilog shortcoming is the lack of multidimensional I/O ports.         // 
// This code converts all flat input/output ports to/from multidimensioned  // 
// nets to be used internally by the rest of the code.                      // 
// *************************************************************************// 
reg [W-1:0] wr_data_md [WR_P-1:0]; 
reg [W-1:0] rd_data_md [RD_P-1:0]; 
integer mdi; 
always @* begin 
  for(mdi=0;mdi<WR_P;mdi=mdi+1) begin 
    // Index part-select references each data input 
    wr_data_md[mdi]=wr_data[(mdi*W)+:W]; 
  end 
     
  for(mdi=0;mdi<RD_P;mdi=mdi+1) begin 
    rd_data[(mdi*W)+:W]=rd_data_md[mdi];   
  end 
end 
// **************************// 
// End multi-dim conversion  // 
// **************************// 
 
localparam 
ADDR_W=clogb2(D);  // Constant function used to calculate base 2 log. 
reg [ADDR_W-1:0] mem_wr_addr,mem_rd_addr; 
reg [W-1:0] mem_q [D-1:0]; 
reg [W-1:0] mem [D-1:0]; 
// Extra bit needed in these addresses to help distinguish 
// full from empty. 
reg [ADDR_W:0] wr_addr_q,wr_addr,rd_addr_q,rd_addr; 
 
reg signed [ADDR_W:0] twos_diff; 
reg [ADDR_W:0] mask,diff; 
 
// Write ports 
integer wri; 
always @* begin 
  // ** Assign initial values 
  // mem and wr_addr are updated by the always block.  Their 
  // initial values are the previous state. 
  for(wri=0;wri<D;wri=wri+1) begin 
    mem[wri]= mem_q[wri]; 
  end 
  wr_addr=wr_addr_q; 
  // ** End initial assignments 
   
  // ** Main loop 
  for(wri=0;wri<WR_P;wri=wri+1) begin 
    // Full based on current wr_addr and clocked rd_addr 
    // Absolute value of difference 
    twos_diff=(wr_addr-rd_addr_q); 
    mask= twos_diff >>> ADDR_W; 
    diff=(twos_diff ^ mask) - mask; 
    full[wri] = (diff==D); 
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    // Mem addr can only be as large as the depth of the FIFO 
    mem_wr_addr=wr_addr % D; 
    mem[mem_wr_addr]= wr[wri] ? wr_data_md[wri] : mem[mem_wr_addr]; 
 
    // Wrap wr_addr when it reaches 2x the depth. 
    wr_addr=(wr_addr+wr[wri]) % (2*D); 
  end 
  // ** End of main loop 
end 
// wr_addr state assignment 
always @(posedge clk) begin 
  wr_addr_q <= ~rst_l ? 0 : wr_addr; 
end 
// mem state assignment 
integer memi; 
always @(posedge clk) begin 
  for(memi=0;memi<D;memi=memi+1) begin 
    mem_q[memi] <= mem[memi]; 
  end 
end 
 
// Read ports 
integer rdi; 
always @* begin 
  // Assign initial values 
  rd_addr=rd_addr_q; 
 
  // Main loop 
  for(rdi=0;rdi<RD_P;rdi=rdi+1) begin 
    // Empty based on current rd_addr and clocked wr_addr 
    empty[rdi] = (rd_addr==wr_addr_q); 
   
    // Mem addr can only be as large as the depth of the FIFO 
    mem_rd_addr=rd_addr % D; 
    rd_data_md[rdi]=mem_q[mem_rd_addr]; 
 
    // Wrap rd_addr when it reaches 2x the depth. 
    rd_addr=(rd_addr+rd[rdi]) % (2*D); 
  end 
end 
// rd_addr state assignment 
always @(posedge clk) begin 
  rd_addr_q <= ~rst_l ? 0 : rd_addr; 
end 
 
// Constant function to calculate base 2 log. 
function integer clogb2; 
input [31:0] depth; 
integer i; 
begin 
  clogb2=1; 
  for (i=0;2**i<depth;i=i+1) 
    clogb2=i+1; 
end 
endfunction 
 
// Verification code 
`ifdef ABV_ON 
// Interface assumptions. 
// Will be used as assertions when module is instantiated. 
// Constrains design for stand-alone verification with formal. 
 
// Make sure only good reads and writes occur. 
//psl assume_good_rd: assume never(rd & empty)@(posedge clk); 
//psl assume_good_wr: assume never(wr & full)@(posedge clk); 
 
// If the FIFO is not emtpy, a read should eventually occur. 
//psl assume_ev_rd: assume always( 
// {~(&empty)} |-> {[*];(|rd)}! 
//)@(posedge clk); 
 
`ifdef FA_ONLY_CHECKS 
// The test_data net is undriven and therefore formal will try all 
// legal values and sequences of values.  The stable_data constraint 
// however limits the proof to only try all legal values because 
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// the data is constrained to be stable for any particular sequence. 
wire [W-1:0] test_data; 
//psl assume_stable_data: assume always(stable(test_data)); 
 
// Extra verification logic to detect when a write or read occurs of  
// the test_data occurs.  Used in properties to follow. 
reg wr_test_data,rd_test_data; 
integer testi; 
always @* begin 
  wr_test_data=0; 
  for(testi=0;testi<WR_P;testi=testi+1) begin 
    wr_test_data=wr_test_data | (wr[testi] & (wr_data_md[testi]==test_data)); 
  end 
 
  rd_test_data=0; 
  for(testi=0;testi<RD_P;testi=testi+1) begin 
    rd_test_data=rd_test_data | (rd[testi] & (rd_data_md[testi]==test_data)); 
  end 
end 
 
// Data that is written should eventually be read. 
//psl assert_data_in_data_out: assert always( 
//  {wr_test_data} |=> {[*];rd_test_data}!  
//)@(posedge clk); 
 
// Data should only be read if it has previously been written. 
//psl endpoint wr_rd_test_data = {wr_test_data;[*];rd_test_data}; 
//psl assert_good_data_out: assert always( 
// {rd_test_data} |-> {wr_rd_test_data} 
//)@(posedge clk); 
 
`endif 
// If writes stop occuring, the FIFO should empty. 
//psl assert_fifo_empties: assert always( 
// {[*];(&empty)}! abort (|wr) 
//)@(posedge clk); 
 
// Since the full signal is based on the clocked rd address, if 
// one port is considered full all the following ports should indicate 
// full as well. 
//psl assert_good_full: assert  
// forall i in {0:WR_P-1}: forall j in {0:WR_P-1}: always( 
//  {i<j & full[i]} |-> {full[j]} 
//)@(posedge clk); 
 
// Same as full 
//psl assert_good_empty: assert  
// forall i in {0:RD_P-1}: forall j in {0:RD_P-1}: always( 
//  {i<j & empty[i]} |-> {empty[j]} 
//)@(posedge clk); 
 
// Coverage sequences to detect interesting functional conditions. 
//psl cover_all_wr: cover {&wr} @(posedge clk); 
//psl cover_all_rd: cover {&rd} @(posedge clk); 
//psl cover_full: cover {&full} @(posedge clk); 
//psl cover_empty: cover {&empty} @(posedge clk); 
//psl cover_empty_full_empty: cover { 
// (&empty);[*];(&full);[*];(&empty) 
//} @(posedge clk); 
 
`endif 
endmodule 
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Appendix B 
$ ifv fifo.v +define+ABV_ON +define+FA_ONLY_CHECKS +tcl+run.tcl 
 
run.tcl: 
 
force rst_l 0 
run 100 
init -load -current 
constraint -add -pin rst_l = 1 
define effort 2 hr 
prove 
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