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Abstract 
 

In this session the importance of using the complete spectrum of verification tools is 
highlighted, as well as automating random test generator development and reusing 
verification IP. Only this way Silicon Hive is able to cope with the functional verification 
complexity, as VLIW DSPs are generated from a high level processor description. The 
protocol level is where the customer interfaces with the IP, so it is extremely important to get 
this absolutely right. Using AMBA verification IP with Incisive Formal Verifier (IFV) and 
Specman gives great confidence in correct protocol implementation. When block level 
verification is using IFV, bugs are already found and fixed before integration. Random test 
generation is done on most blocks and memory subsystem. The e code for the memory 
subsystem is generated automatically using an internally developed tool and the abstract 
processor description. An evc has been developed internally to verify the proprietary 
interfaces within the processor. At integration level, accessing the processor from the system 
and basic processor functionality is verified, using a combination of SystemC and NCsim and 
using an FGPA prototype. Using code and functional coverage is mandatory in understanding 
where you are in the verification process. Using functional coverage very powerful constructs 
are built to see if for example all possible write back buffer read/write conflicts have been 
generated. By applying all tools in the verification tool spectrum and automating random test 
generator development we can create very high confidence in Silicon Hive IP functionality, in 
weeks rather than months. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

1. Introduction 
 
There is a growing need for processors that are application specific. Such processors will be 
used in embedded systems where power consumption should be minimal. So most power, if 
not all, should be used by the processor performing arithmetic, processing the data that the 
embedded system has been designed for. 
 
Programmability is important, as standards that these embedded system operate upon will 
change in the process of drafting them, or are updated in the future. 
 
Silicon Hive has found a solution for this. All the complexity of the processor that is not related 
to computations has been moved to the C compiler. Processors are generated from an 
abstract description, which makes it possible to tune the processor exactly to the 
computational needs of the application, minimizing power consumption and silicon area. 
 
3 prefab cores are available off the shelf: an image processor: ISP, a video processor: VSP, 
and a communications processor: CSP. Possibilities are not limited to these specific 
processors: using a proprietary high level language it is possible to construct a wide variety of 
processors and tune them to a specific application while still being fully C programmable. 
 
Due to this configurability and generating the processor from a high level description, it is 
difficult for the functional verification team to keep up with the development of the hardware, 
the verification bottleneck is in our case worse than ever. 
 
This paper describes how we are able to cope with this problem by using all the verification 
tools available from the spectrum, and automating as much as possible, even generating e 
code from the processor description. The paper finishes with a conclusion and what we will 
work on next, but first a short description of the processor and software toolchain are given. 
 

2. The device under verification: processor and 
software tool chain 

 
To understand what is actually being verified a short description of the processor architecture 
and generation flow is needed. This description is by no means meant to be exhaustive. 
 
Starting point of the generation flow is the processor description in a proprietary language, 
TIM. It contains details on which hardware building blocks should be used and how they are 
connected, for example which arithmetic blocks should be used, the sizes of the register files, 
data widths, memories, interfaces to the rest of the system. The result from the generation 
flow is synthesizable RTL and a Software Development Kit (SDK). 
 
The hardware building blocks are written in a proprietary language, CHDL. This language is 
very similar to VHDL, but has additional constructs for configurability and the RTL generation 
flow. 
 
The generation of the processor core and software development kit from the processor 
description is illustrated in Figure 1. 
 
The main advantage of being able to generate the processor is the quick iteration time. With a 
tool that is part of the software development kit you can analyse how well the application 
maps onto the processor. With this information you can either optimize the application for the 
core, or the core for the application, or both, to get to an optimal result.  
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Figure 1: The Silicon Hive generation flow 
 
With this flow it is possible to create a wide variety of processors, optimized for all kinds of 
different application areas.  
 
The underlying architecture is based on the VLIW (Very Long Instruction Word) principle 
which enables massive instruction level parallelism. Data level parallelism (SIMD) is 
implemented by the functional units, and task level parallelism is achieved by using multiple 
Silicon Hive cores in a system. 
 
The core is designed to be as computationally efficient as possible, a lot of the hardware 
complexity has been moved to the C compiler. The compiler schedules instructions taking 
care of all the resource conflicts.  
 
All processors are built from a generic template, see Figure 2. The core contains the 
functional units, most of which implement arithmetic functions, and some implement 
instructions that will load or store data from the memory subsystem. These functional units 
are connected to the memory subsystem through a proprietary bus protocol. An issue slot can 
contain multiple functional units, and can start a new instruction every clock cycle. 
 
The core also contains the register files that contain the source and result values for the 
functional units. The sequencer in the core controls the program flow. The host can start an 
application using the status and control register located in the memory subsystem. 
 
The memory subsystem contains any number of memories. These can be accessed from one 
or more functional units, and from the system using the slave port. An arbiter between the 
functional unit and the slave port takes care of access conflicts. A stream interface can be 
used to synchronise several Silicon Hive cores in the same system, or to stream data to and 
from the processor. With the master port the processor can actively access data located in 
the system. These master and slave ports can be any standard bus protocol, AHB, DTL, AXI. 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 
 
Figure 2 processor architecture 
 

3. Functional verification bottleneck 
 
Without taking proper measures functional verification would be a massive bottleneck for 
Silicon Hive: the design productivity has been increased being able to describe the processor 
at a higher level than RTL, and the amount of possible processors with the processor 
architecture is infinite. 
 
Just making sure that the building blocks are working correctly is not enough, the generation 
itself and the software tool chain need to be verified as well. 
 
As an IP company, it is very important to have good confidence in the quality of the designs 
that are shipped. Especially the interfaces to the system, at the level that the customer 
integrates the IP, need to be absolutely correct. 
 
And all this needs to be done in a reasonable amount of time with a reasonable amount of 
resources. 
 
Using all the tools in the functional verification tool spectrum, and automating as much as 
possible was the solution for Silicon Hive. In the next few sections the tool spectrum will be 
explained in detail. 
 
 



3.1. Silicon Hive verification spectrum 
 
In the last few years we have been carefully constructing the verification flow to a mature level. 
This work is of course never finished, see section 4 for our plans for the coming year. Table 1 
summarises the verification tools in our spectrum. 
 
 
  C IFV specman ncsim systemC conformal FPGA 

Module X X X X       

System       X X X X 

 
Table 1: the Silicon Hive verification tool spectrum 
 

C 
When a module or functional unit is being developed, this is the entry point in the verification 
flow. This is a very early step in the design phase, remember that the later a bug is found, the 
more expensive it is to fix it, so better find bugs early. The Silicon Hive internal development 
environment creates an executable C model and testbench from the CHDL module 
description. The testbench generates random instructions and source operand data for the 
instructions that are implemented by the functional unit. These random stimuli are not very 
refined, and no code- or functional coverage can be applied to the C model, but this is good 
start to filter out the first problems. This step in the verification process runs every night for all 
modules, so if there is a regression in the basic quality of one of the modules it is found 
instantly. 

IFV 
Incisive Formal Verifier is the latest addition to our functional verification flow. The modules 
that the tool is used on come out very clean and ready for integration, saving debug time and 
iterations later on. Ramping up time is very quick, a couple of PSL properties and 
assumptions can be written in a few hours for first pipe cleaning.  
 
When more complex PSL properties are written it is likely to encounter some properties that 
do not complete, that are in the IFV explored status. The tool cannot prove or disprove them 
in a reasonable amount of time. One solution for this is to simplify the design. There is a risk 
to oversimplify the design, and to miss bugs. 
 
Compared to formal tools in the past, you do not have to be a formal methods expert to be 
able to use the tool. 

Specman 
 
With the Specman verification environment a test generator for basically any digital design 
can be implemented. Within Silicon Hive, a test generator has been implemented for the dma 
module, a special video memory, and for one of the most critical blocks in the processor, the 
memory subsystem. See Figure 3 for a diagram of this test generator. Next to containing the 
internal memories, the subsystem also connects to the outside world. The IP is integrated at 
this level by the customer, so it is absolutely vital that these interfaces work correctly. 
 
An e verification component (evc) has been developed to generate stimuli for the proprietary 
bus that connects the functional units with the memory subsystem. The AHB evc is licensed 
to generate stimuli for the AHB interfaces. And a DTL evc is used for the streaming interfaces. 
 



For each of the evc’s configured to be a master, a large sequence library has been developed. 
With this sequence library three types of tests have been written: simple tests that exercise all 
functionality once, a test that exercises all functionality simultaneously, and a test that stress 
the design to its maximum, trying to find all corner case bugs. These tests usually run for 2 
weeks continuously whenever a major design baseline has been delivered. 
 
A scoreboard and e memory model make sure that all transactions are correct, that no 
transactions are lost, and that there are not too many transactions. There are also some very 
specific checks that are used to measure the performance of all transactions that go to/come 
from the system level. We found out that our performance to the AHB bus was not optimal, so 
we iterated until we got the maximum performance. 
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Figure 3: Specman test generator for memory subsystem 
 
Functional coverage is used to make sure some very specific scenarios are generated. We 
found a mistake in a Specman test where not all AHB transaction types were used in one test. 
When we corrected the test, a rare sequence of AHB transactions was generated and found a 
bug.  
 
Functional coverage is also used for example on the write back buffer, a mechanism to speed 
up write transactions to the system level. The write back buffer keeps several written 
addresses and corresponding values. There are several access conflicts possible:  
- a read from an address that is still kept in the write back buffer should return the value from 
the write back buffer and not from the system. 
- a write to an address that is still kept in the write back buffer should overwrite the value in 
the write back buffer. 
When generating random transactions to the system, you can only be sure that the interesting 
write back buffer scenarios have been generated when using functional coverage. 
 



Due to configurability there is a infinite amount of possible memory subsystem variations, it is 
impossible to verify them all. So only test generators are developed for the processors that 
are on the shelf, and for 12 specific test cores. Even for this number of cores it is impossible 
to write test generators by hand within a reasonable amount of time. If it is possible to 
generate RTL from an abstract processor description, then it should be possible as well to 
generate e code for the test generator, so this is what we did. Of course it is not possible to 
generate the evc’s themselves, but the instantiation and configuration of the evc’s is 
generated, as well as the 3 test as described earlier. 
 
A perl script scans all the log files for failing tests, and creates a batch run script to rerun all 
the failing simulations with the signal traces enabled for debug, and after fixing the problem, 
to rerun the test to see if the problem has been fixed. At the end of each test the number of 
read and write transactions for each evc is printed. The perl script also scans for these 
numbers, and creates statistics for all transactions in all tests generated for a particular 
processor. 

Ncsim: VHDL/Verilog/SystemC/C cosimulation 
 
Ncsim is used in combination with Specman, but also to run the testbench that executes the 
tests that are written by hand. These tests are: 
- example algorithms for customers and for internal development 
- example applications, written by Silicon Hive and received from customers 
- benchmarks 
- direct tests, verifying some very specific scenarios 
- tests for the connection to the host 
- integration tests for customers 
 
The SystemC part wraps C code that models the connection to the host. The VLIW processor 
IP is written in VDHL and/or Verilog at RTL level, or Verilog only at gate level netlist level. 
 
The tests above are part of a regression that automatically runs each time when there is a 
new baseline. The release of a new baseline is detected, and a regression run is started 
automatically. 
 
Writing tests by hand is quite time consuming, so the purpose of this platform is mostly to run 
tests and applications that have been written in C. This way the complete chain from 
compiling the C code with the SDK, to uploading and starting the test through the host, is 
exercised. 
 
Block coverage, Expression coverage and FSM coverage numbers are collected, and merged 
where possible. Analysis of the results and using the feedback to create new test cases is a 
very time consuming task, but mandatory and worth the effort. 

Conformal 
The Conformal equivalence checker is used to make sure that several representations of the 
design are identical to each other. The customer receives the script that checks RTL versus 
gate level after synthesis. Internally we also use scripts that check the gate level against gate 
level after layout. We also have 2 RTL to RTL scripts, first when a module is being re-written 
without changing the functionality or location of registers, and secondly when an option is 
enabled that slices the register files in order to make routing in the back-end easier. In both 
cases you want to make sure that the modified RTL is absolutely identical to the original RTL. 
 
The Conformal tool is also able to do some structural checks. We have not spent a lot of time 
with this so far, it is not a standard part of our verification spectrum yet. Currently we are 
implementing the checks to make sure that clock domain crossing is correctly implemented. 
 
The tool does not report problems very often, and when it does it is usually a user error. We 
have found a problem with a synthesis tool from another vendor once. When we moved to 
another technology library the logic resulting from synthesis was not correct. The tool does 



give complete confidence about different designs being functionally identical and does 
therefore create peace of mind, even when not so many problems are being reported. Also, 
the equivalence scripts are mainly a service to our customers, as they do the actual synthesis. 

FPGA 
An FPGA platform has been developed internally, and is used to verify the complete system, 
for demonstrations and for prototyping. For example, for the ISP we have a prototype with an 
image sensor and a LCD display. An image is captured by the sensor, delivered to the Silicon 
Hive ISP running an internal image processing pipeline or one delivered by a customer, and 
the results from the processing is visible on the LCD. See Figure 4 for the diagram of the 
HiveGates ISP prototyping platform. A prototype like this is a very good confidence builder 
with customers as they can actually see, touch and use the system. 
 
In some cases the applications that are used with the Ncsim simulation platform take too 
much time to complete. Running them on the FPGA saves a lot of time, although debug is a 
lot more complicated. 
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Figure 4: HiveGates FPGA prototyping platform for ISP2200 
 

3.2. Importance of using the complete spectrum 
 
Having gradually built our verification flow in the past few years we have come to the 
conclusion that it is very important to use the complete spectrum of tools that is available to 
you. Leaving out one element immediately increases the risk of a bug being left undetected.  
 
Each time a new element was added to the verification tool spectrum, new problems have 
been found. There is certainly some overlap between the different tools, but it is better to 
deliver the best quality you can and have a very high level of confidence in your design, then 
to save some time and money and deliver an inferior design to your customers. 
 
Also, each element has its strengths and weaknesses. The weaknesses of each element are 
covered by other elements in the tool spectrum: 
- the C testbench is fast and early (remember that later bugs are more expensive to fix), but it 
is very random and it will be rare to find a complex corner case. System level issues will not 
be found by module level tests. 
- IFV is thorough, it is early in the design phase, and it is quick to get started with, but 
sometimes there is a need to simplify or scale down design. In one case, with a dma design, 
we needed to simplify a counter, and found a bug later on in the verification process when 
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simulating the design using the Specman dma test generator. We probably oversimplified a 
counter in the dma design and did not trigger the bug. This would have been a killer bug on 
silicon as it locked up the complete dma. 
- Specman is a very flexible test generator development environment, but it is difficult to be 
exhaustive. Implementing functional coverage helps, but is a time consuming task. Due to the 
controllability of the randomness, the Specman test generators are very effective bug finders, 
also for complex bugs when the test generator is instructed to generate very stressful tests. 
The dma test generator found a bug that was not seen in IFV due to simplification. This is just 
one of the justifications to use both tools, it is the combination of tools that gives best possible 
confidence. 
- the NCsim:VHDL/Verilog/SystemC/C environment finds mostly system level bugs, problems 
with the toolchain or problems with the host accessing the processor. Also, as this 
environment is used for regressions, it is a vital indicator of the stability of all deliverables. 
- Conformal has no overlap with other tools. As we provide our customers with an 
equivalence checking script to prove that the RTL is identical to the gate level netlist after 
synthesis, we need to make sure that the script works and that the check passes. 
- FPGA is a fast simulation platform, and mandatory for applications which are too long for 
RTL simulation. And above all it is an excellent confidence builder, also with the customer. If 
there is one single small problem, anywhere between the image sensor and the LCD, it will be 
very visible from the image that can be seen on the LCD. There is some overlap with the 
NCSIM:VHDL/Verilog/SystemC/C environment, but the FPGA environment has its own 
justifications as just mentioned. 
 

3.3. Automate as much as possible 
 
All these environments are quite a lot of work to implement, but also to use, and to maintain 
or update according to new or changing functionality. To be able to cope with all this effort, 
you need to automate all the routine work that can be automated, leaving time for the more 
interesting implementation work. 
 
Things like regression runs are a good candidate for automation. Why kicking off the flow 
yourself when you can have something like a cron job that watches for a new release being 
made, then generates the RTL code and SDK, starts the regression and collects the results 
automatically ? 
 
Also the development of the Specman subsystem test generator is automated. This is not the 
case for the evc’s, they still need to be developed by hand, as well as sequences, but building 
the test generator that makes use of the evc’s is done automatically. This saves a huge 
amount of time. In our case it was not so complicated, as there was already a framework in 
place that could extract design information from the abstract processor description. The same 
framework is used to generate e code for the complete subsystem test generator: the e code 
for the instantiation of the Coreio, AHB or DTL evc, the e code to configure these evc’s, the e 
code that implements the simple, normal and stressful tests, and e code that synchronises the 
different evc’s with each other. 
 
In our case it was mandatory to automate the generation of the Specman subsystem test 
generator as we would not have been able to cope with all the possible configurations. 
 
For others not so fortunate to have a framework lying around for extracting processor design 
information, there are other possibilities to generate a system level test generator 
automatically. It already saves time to work from something like a simple system level design 
description file, and write a script in Perl or Python that generates the e code for all evc 
instantiation and configuration files. 
 
Specman elements can be re-used, it saves a lot of time to license evc’s for standard 
interfaces, like the AHB, AXI, or OCP bus. Licensing evc’s makes sure that IP can be easily 
integrated into customer system on chip, and by licensing verification IP that is used by a lot 
of other companies this will also set some kind of common quality standard. Developing your 



own evc’s for proprietary busses is worth the effort as well, as these busses will probably not 
change very much after initial development, and the evc can be re-used again and again. 
 
The Ncsim:VHDL/Verilog/SystemC/C environment is automatically configured, there is no 
need to write any testbench code by hand anymore. After simulations did run, code coverage 
report generation scripts are called to generate an html report and summary reports. 
 
Also the Conformal equivalence checking scripts are generated automatically. With the recent 
RTL Compiler tool versions, a Conformal script is generated automatically. 
 

4. Future work 
 
A verification engineer’s work is never finished. There is always something to improve or add 
to the verification flow. The following things are what we will focus on in the next year. 
 
- Formal verification IP for standard bus interfaces. 
As with licensing Specman evc’s for standard busses, it will save a lot of time when formal 
verification IP is used. It would be interesting to see if the formal verification IP can find bugs 
that were not detected by the Specman evc’s. There is also a need to understand if there is 
not too much overlap here. 
 
- Specman test generators for processor and system level.  
Some studies we did revealed some frameworks for processor test generation that could be 
used, like the ISG or OpenCores processor test generators. Such processor test generators 
need some knowledge about the instruction set. Such information can also be extracted from 
the processor description using our framework, so processor test generators can be 
automatically generated to a large extend. 
 
- Use Conformal to make sure that generated Verilog is identical to VHDL 
The Silicon Hive RTL generation flow generates VHDL or Verilog RTL code for the same 
processor. Conformal will be the tool to prove that the generated Verilog model is functionally 
identical to the VHDL model. 
 
- Advanced regression and test generator results collection and reporting. 
A lot of the reporting is done by hand, or merged by hand. It will be possible to collect all the 
results from all the different elements in the verification tool spectrum, and to generate one 
report with all results automatically. 
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