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Abstract— The power wasted by leakage current can no 
longer be ignored in sub-micron designs.  As the size of 
transistors shrink, the amount of current due to leakage 
rises exponentially.  In order to minimize the power lost 
due to leakage, several design techniques have been 
developed.  Functional defects can be introduced if these 
features designed to reduce power are either specified or 
implemented incorrectly.  The problem is not only being 
able to detect these functional defects, but also being able 
to detect them early enough in the design cycle to avoid 
costly delays.  This paper explains how CPF (Common 
Power Format) enabled tools can be used functionally 
verify that the features added to save power have not 
introduced defects.  The paper will illustrate how the 
specification of design features such as Power Switch Off 
(PSO), Save Restore Registers (SR) and Isolation (ISO) can 
be verified at a RTL level and the advantages of using a 
CPF based flow over an ad-hoc solution. 
 

Index Terms—Low Power Verification, Common Power 
Format, Logic Equivalency 
 

I. INTRODUCTION 
n 1965, Gordon Moore wrote an article for Electronics 
Magazine in which he observed that the number of 

transistors on a chip was doubling every two years and 
he hypothesized that this growth would continue 
perpetually.  The growth predicted continues today, 
fueled by advances in design automation and shrinking 
transistor sizes.  The advances in computer aided 
design have allowed engineers to create larger designs 
using limited resources.  Shrinking lithography has 
resulted in the package size growing smaller even as 
circuits have gotten more complex.  As the design 
elements entered the sub-micron space, the leakage 
current began to grow to a point where it could no longer 

be ignored.  New methodologies and design techniques 
were invented to diminish the effects of leakage.  Many 
of these techniques, such as power switch off, can 
change the functionality of a design if either specified or 
implemented incorrectly.  Because of this, functional 
verification must address the low power methodologies 
and prove that the design elements inserted to reduce 
leakage power have not altered functionality.  This paper 
will address the verification of power switch off and the 
design practices associated with removing power from a 
domain such as isolation and state retention registers.  It 
will show the advantages of using a complete solution 
utilizing common power format (CPF) over ad-hoc 
methods.  In order to understand the need for 
verification, first the design practices will be explained 
and some of the possible defects will be revealed. 
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II. POWER SWITCH OFF AND ISOLATION 
ne of the most effective means of reducing leakage 
current is to switch off the power or ground rails in 

portions of the design during low power modes.  After 
disconnecting the power rail, nets that were driven from 
powered down logic will float.  In order to ensure that 
these floating outputs do not corrupt logic that is still 
powered on and active, the powered off domain must be 
isolated from the rest of the system.  To isolate the 
domain, outputs from the switch off domain are driven to 
a known value by elements that remain powered on.  
There are three primary types of isolation: isolation one, 
which will drive the output to one, isolation zero, which 
will drive the output to zero, and an isolation keep, which 
will latch the output of the powered off domain and 
continue to drive the value after the power has been 
removed.  After the power rail is reconnected to the 
supply, the isolation must be made transparent so that 
logic in the newly powered up domain can once again 
drive the outputs.   
 

There are four major stages of a low power mode 
involving power switch off and isolation that are relevant 
from the verification perspective.  These stages, shown 
in Fig. 1, are Power Down (operation of device while 
domain is powering off), Power Off (operation will 
domain is off), Power Up (operation while domain is 
powering up), and Power On (operation after power has 
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been restored).  Functional coverage points need to be 
identified in each of these stages, and stimulus needs to 
be written to achieve the coverage. 

 
The first stage, “Power Down”, isolation is asserted 

and the power is switched off.  Correct operation is 
dependent on both the proper values being used for 
isolating the outputs and the sequence in which the logic 
is powered down.  If the power is switched off before the 
isolation begins driving outputs, it is possible for 
unknown values to be propagated from powered off 
domain.  For example, a zero may be sense coming 
from an active low interrupt which was to be isolated 
high.  This zero will be treated as an interrupt, which will 
in turn wake the system out of the low power mode.  In 
simulation, the X representation of the powered of 
domain will cause the logic in the interrupt controller to 
be corrupted.   
 

The next stage is “Power Off”.  Portions of the design 
are still active in this stage, and certain activities are still 
required to be performed.  The correct isolation values 
are required to insure operation of the powered on 
portion of the device.  For example, if a wait signal is 
isolated active, an erroneous access to the domain 
could cause the system to lock up.  As in the example 
shown during power off, isolating an interrupt to the 
active state may cause the low power mode to be exited 
prematurely.  In addition, it is important to verify that 
logic is not powered off erroneously.  If logic is required 
to exit from the low power mode, for example, one must 
be certain that it is in the powered on domain. 
 
The third stage is “Power Up”.  During power on, it is 
important to ensure that isolation is indeed removed, 
and also that the correct sequence of switch and making 
the isolation transparent is followed: the isolation should 
not be removed until after power has been restored.  In 
addition, care must be taken to insure that the primary 
outputs of the powered on domain are being driven to 
the correct state by the logic inside the domain.  The 
power up sequence may need to reset the logic to 
ensure that the powered up logic are driving good 
values.  In the forth stage, “Power On”, the logic that 
was powered off is once again being used in the system.  
The logic needs to be in a known state that enables all 
functionality required to be performed.  The reset that 

drove the primary outputs to a known state before power 
up may be required to reset other portions of the design.  
An example of the sequencing of reset, isolate, and 
switch, along with the ideal response of a flop and output 

can be seen in Fig.  2.   

Power Up Power OnPower Down Power Off
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Fig.  1.   Power scenarios that must be tested 

Fig.  2.  Behavior of a register with a reset value of zero, an isolation value of 
one and a value of one at the time of power off 

III. STATE RETENTION 
he system may require the state of a powered down 
domain to be equivalent both before and after the 

low power mode.  If the logic in the domain is not 
required during the low power mode, it can still be 
powered down.  One of the methods of retaining the 
state of the domain is to have software save register 
values to memory, and then write the saved values back 
after exiting the low power mode.  This method can only 
be used if the requirements of the system only call for 
memory mapped registers to be saved.  Another method 
is to use state retention registers for the logic whose 
state is required to be maintained.  A portion of these 
registers remain powered on in order to retain the value 
while the vast majority of the logic is powered off.  The 
result is a significant saving in leakage current during the 
low power mode while also maintaining the value of 
registers in the domain.   
 

Retention may be implemented in either all the 
registers in a domain, or only in a portion of them as 
required.  The verification effort changes for some of the 
four stages of power down that were discussed in Power 
Switch Off.  During “Power Down”, the value of the 
registers being retained must be saved off by the system 
prior to power being switched off.  There are no changes 
for the “Power Off” stage.  For the “Power Up”, the 
register must restore the value after power is restored, 
but before isolation is removed.  For a design were only 
a portion of the logic is being retained, the restoration of 
value must occur after the non retained portion of the 
design has been reset.  Once again, one must be certain 
that primary outputs are being driven to a known good 
value before removing isolation.  In the forth stage, 
“Power On”, the activities being tested now span power 
off.  The activities should test that the correct portion of 
the logic has been retained.  Operations that require the 
pre and post power mode state of the design to be 
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maintained should be run.  An example of the 
sequencing of retention, isolate, and switch, along with 
the ideal response of a flop and output can be seen in 

Fig.  3.    

IV. AN AD-HOC VERIFICATION SOLUTION 
aced with the challenge of verifying low power logic, 
an engineer may try to piece together an ad-hoc 

verification solution.  If the domain being powered off is 
small, the verification may begin using the RTL netlist.  
Most likely, however, the number of memory elements 
will delay the verification effort until a gate level netlist is 
available. 
 

RTL simulations require test bench elements to mimic 
the state retention, power switch off, and isolation.  For 
isolation, the value to be isolated is forced on the 
primary outputs by a test-bench element.  In some 
cases, an isolation wrapper may be inserted by the 
design team and the test-bench element used to mimic 
isolation will not be required.  In order to simulate state 
retention, the verification or design engineer must first 
identify all registers whose state is to be retained.  A 
test-bench element must be created to store values from 
the registers when the retention sequence occurs.  The 
values are deposited back to the registers by the test-
bench element after restore sequence take places.  For 
power switch off, all nodes must be forced to ‘bX by test 
bench elements.  One can see as the design grows this 
task becomes overwhelming.   
 

Gate level simulations have isolation cells and state 
retention registers in the netlist.  Therefore the test 
bench is not required to model these elements.  The test 
bench is still required to model the power switch off 
unless a physical netlist with power and ground is used 
(and the verilog library elements support power down).  
Because there is no way to verify that the elements i.e., 
isolation and retention, identified in RTL are the same as 
are present in the gate netlist, the full verification suite 
must be re-run.   
 

The need for gate level simulation means that design 

defects may not be identified until late in the cycle.  An 
incorrect isolation value may not be found until days 
before tape-out.  One may not identify a register that 
needed to be retained until after the masks have been 
created.  With the cost of masks growing exponentially 
as the lithography shrinks, these can be extremely costly 
mistakes. 

Fig.  3.  Behavior of a state retaining register with a an isolation value of one 
and a value of one at the time of power off 

V. CPF VERIFICATION SOLUTION 
here are many problems with the ad-hoc solution: a 
large effort to create test bench elements, reliance 

on gate level simulations, and the numerous opportunity 
to introduce human error.  A CPF based solution 
addresses many of these concerns and enables an 
enhanced verification solution.   
 

A CPF file can be considered a netlist or specification 
of power related information.  Just as the RTL verilog 
netlist is read by both the design and verification tools, 
the CPF file is also read by multiple tools in the flow 
such as the synthesis tool and the RTL simulator.  The 
file contains a description of the low power architecture 
of design: which domains can be powered off, which 
values to isolate, and which registers to retain.  In 
addition, the power control signals that govern when to 
retain, restore and isolate are contained within the file. 
 

When a simulation is run with the CPF file, the 
simulator takes care of isolating the output of the 
powered off domains.  It will also drive powered down 
nodes to ‘bX, and is responsible for retaining and 
restoring the correct register values.  Written in Tcl, wild 
cards enable registers and isolation ports to be identified 
easily.  This removes the burden of writing cumbersome 
test bench code that existed with the ad-hoc solution.  
With the weight lifted, verification engineers can 
concentrate their efforts on ensuring that the four stages 
of the low power modes are adequately tested.   

 
The second major benefit of CPF is that it can be read 

by formal tools.  While using CPF in simulation enables 
one to accomplish the same tasks faster and more 
efficiently then the ad-hoc solution, using it in a formal 
environment allows one accomplish things that were 
impossible in the ad-hoc flow.  The logical equivalency 
between what used for RTL simulation, the netlist and 
CPF file, and the gate level netlist can be proven.  This 
removes the need to re-run every simulation from the 
RTL level on the gate level netlist.   
  

In order to get the most from a CPF based verification 
flow, the same file which is verified by simulation should 
be used by synthesis.  The chance of human error being 
introduced is decreased by having one central location 
for the power specification.  An error present in the CPF 
used for synthesis is caught early by the RTL 
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verification.  In the ad-hoc solution, the error would not 
be found until gate simulations had begun.  In addition, 
the CPF can be checked formally against low power 
rules at on the RTL level, rather than having to wait for a 
structural netlist. 

VI. CONCLUSION 
New techniques and methodologies introduced into 

submicron design can not be ignored by verification.  
While it is possible to use ad-hoc methods to verify 
these design elements, the methods are often far from 
ideal and can be slow, cumbersome and incomplete. 
CPF enabled simulators and formal verification tools 
enable a superior solution. A solution that is easier to 
implement and can let engineers spend their time where 
the return on investment is greatest.  In addition, CPF 
enables a complete solution, allowing one not only to 
simulate in RTL, but also to formally prove equivalency 
between what was simulated and what was taped out. 
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