

1

Verification of Low Power Designs using
CPF

Noah Bamford, Freescale Semiconductor, Saji George, Freescale Semiconductor, Milind
Padhye, Freescale Semiconductor

Abstract— The power wasted by leakage current can no
longer be ignored in sub-micron designs. As the size of
transistors shrink, the amount of current due to leakage
rises exponentially. In order to minimize the power lost
due to leakage, several design techniques have been
developed. Functional defects can be introduced if these
features designed to reduce power are either specified or
implemented incorrectly. The problem is not only being
able to detect these functional defects, but also being able
to detect them early enough in the design cycle to avoid
costly delays. This paper explains how CPF (Common
Power Format) enabled tools can be used functionally
verify that the features added to save power have not
introduced defects. The paper will illustrate how the
specification of design features such as Power Switch Off
(PSO), Save Restore Registers (SR) and Isolation (ISO) can
be verified at a RTL level and the advantages of using a
CPF based flow over an ad-hoc solution.

Index Terms—Low Power Verification, Common Power
Format, Logic Equivalency

I. INTRODUCTION
n 1965, Gordon Moore wrote an article for Electronics
Magazine in which he observed that the number of

transistors on a chip was doubling every two years and
he hypothesized that this growth would continue
perpetually. The growth predicted continues today,
fueled by advances in design automation and shrinking
transistor sizes. The advances in computer aided
design have allowed engineers to create larger designs
using limited resources. Shrinking lithography has
resulted in the package size growing smaller even as
circuits have gotten more complex. As the design
elements entered the sub-micron space, the leakage
current began to grow to a point where it could no longer

be ignored. New methodologies and design techniques
were invented to diminish the effects of leakage. Many
of these techniques, such as power switch off, can
change the functionality of a design if either specified or
implemented incorrectly. Because of this, functional
verification must address the low power methodologies
and prove that the design elements inserted to reduce
leakage power have not altered functionality. This paper
will address the verification of power switch off and the
design practices associated with removing power from a
domain such as isolation and state retention registers. It
will show the advantages of using a complete solution
utilizing common power format (CPF) over ad-hoc
methods. In order to understand the need for
verification, first the design practices will be explained
and some of the possible defects will be revealed.

Noah Bamford has worked for 8 years as a verification engineer in the

wireless group of Freescale Semiconductors. He received his BS in ECE from
Carnegie Mellon University

Milind Padhye is Low Power Design Manager at Freescale Semiconductor,
Wireless design organization. He has been working in the field of low power
design for last six years and has multiple patents on power reduction
techniques and integration. He has leaded multiple chips for low power
architecture and design. Milind holds MS-EE from IIT Kharagpur

Saji George has led the integration of numerous wireless and transportation
SoC products at Freescale Semiconductors. He received his MS in EE from
UTEP

II. POWER SWITCH OFF AND ISOLATION
ne of the most effective means of reducing leakage
current is to switch off the power or ground rails in

portions of the design during low power modes. After
disconnecting the power rail, nets that were driven from
powered down logic will float. In order to ensure that
these floating outputs do not corrupt logic that is still
powered on and active, the powered off domain must be
isolated from the rest of the system. To isolate the
domain, outputs from the switch off domain are driven to
a known value by elements that remain powered on.
There are three primary types of isolation: isolation one,
which will drive the output to one, isolation zero, which
will drive the output to zero, and an isolation keep, which
will latch the output of the powered off domain and
continue to drive the value after the power has been
removed. After the power rail is reconnected to the
supply, the isolation must be made transparent so that
logic in the newly powered up domain can once again
drive the outputs.

There are four major stages of a low power mode
involving power switch off and isolation that are relevant
from the verification perspective. These stages, shown
in Fig. 1, are Power Down (operation of device while
domain is powering off), Power Off (operation will
domain is off), Power Up (operation while domain is
powering up), and Power On (operation after power has

I

O

2

been restored). Functional coverage points need to be
identified in each of these stages, and stimulus needs to
be written to achieve the coverage.

The first stage, “Power Down”, isolation is asserted

and the power is switched off. Correct operation is
dependent on both the proper values being used for
isolating the outputs and the sequence in which the logic
is powered down. If the power is switched off before the
isolation begins driving outputs, it is possible for
unknown values to be propagated from powered off
domain. For example, a zero may be sense coming
from an active low interrupt which was to be isolated
high. This zero will be treated as an interrupt, which will
in turn wake the system out of the low power mode. In
simulation, the X representation of the powered of
domain will cause the logic in the interrupt controller to
be corrupted.

The next stage is “Power Off”. Portions of the design
are still active in this stage, and certain activities are still
required to be performed. The correct isolation values
are required to insure operation of the powered on
portion of the device. For example, if a wait signal is
isolated active, an erroneous access to the domain
could cause the system to lock up. As in the example
shown during power off, isolating an interrupt to the
active state may cause the low power mode to be exited
prematurely. In addition, it is important to verify that
logic is not powered off erroneously. If logic is required
to exit from the low power mode, for example, one must
be certain that it is in the powered on domain.

The third stage is “Power Up”. During power on, it is
important to ensure that isolation is indeed removed,
and also that the correct sequence of switch and making
the isolation transparent is followed: the isolation should
not be removed until after power has been restored. In
addition, care must be taken to insure that the primary
outputs of the powered on domain are being driven to
the correct state by the logic inside the domain. The
power up sequence may need to reset the logic to
ensure that the powered up logic are driving good
values. In the forth stage, “Power On”, the logic that
was powered off is once again being used in the system.
The logic needs to be in a known state that enables all
functionality required to be performed. The reset that

drove the primary outputs to a known state before power
up may be required to reset other portions of the design.
An example of the sequencing of reset, isolate, and
switch, along with the ideal response of a flop and output

can be seen in Fig. 2.

Power Up Power OnPower Down Power Off

Iso

Retain

Switch Switch

Restore

IsoActivity

Activity

Fig. 1. Power scenarios that must be tested

Fig. 2. Behavior of a register with a reset value of zero, an isolation value of
one and a value of one at the time of power off

III. STATE RETENTION
he system may require the state of a powered down
domain to be equivalent both before and after the

low power mode. If the logic in the domain is not
required during the low power mode, it can still be
powered down. One of the methods of retaining the
state of the domain is to have software save register
values to memory, and then write the saved values back
after exiting the low power mode. This method can only
be used if the requirements of the system only call for
memory mapped registers to be saved. Another method
is to use state retention registers for the logic whose
state is required to be maintained. A portion of these
registers remain powered on in order to retain the value
while the vast majority of the logic is powered off. The
result is a significant saving in leakage current during the
low power mode while also maintaining the value of
registers in the domain.

Retention may be implemented in either all the
registers in a domain, or only in a portion of them as
required. The verification effort changes for some of the
four stages of power down that were discussed in Power
Switch Off. During “Power Down”, the value of the
registers being retained must be saved off by the system
prior to power being switched off. There are no changes
for the “Power Off” stage. For the “Power Up”, the
register must restore the value after power is restored,
but before isolation is removed. For a design were only
a portion of the logic is being retained, the restoration of
value must occur after the non retained portion of the
design has been reset. Once again, one must be certain
that primary outputs are being driven to a known good
value before removing isolation. In the forth stage,
“Power On”, the activities being tested now span power
off. The activities should test that the correct portion of
the logic has been retained. Operations that require the
pre and post power mode state of the design to be

T

3

maintained should be run. An example of the
sequencing of retention, isolate, and switch, along with
the ideal response of a flop and output can be seen in

Fig. 3.

IV. AN AD-HOC VERIFICATION SOLUTION
aced with the challenge of verifying low power logic,
an engineer may try to piece together an ad-hoc

verification solution. If the domain being powered off is
small, the verification may begin using the RTL netlist.
Most likely, however, the number of memory elements
will delay the verification effort until a gate level netlist is
available.

RTL simulations require test bench elements to mimic
the state retention, power switch off, and isolation. For
isolation, the value to be isolated is forced on the
primary outputs by a test-bench element. In some
cases, an isolation wrapper may be inserted by the
design team and the test-bench element used to mimic
isolation will not be required. In order to simulate state
retention, the verification or design engineer must first
identify all registers whose state is to be retained. A
test-bench element must be created to store values from
the registers when the retention sequence occurs. The
values are deposited back to the registers by the test-
bench element after restore sequence take places. For
power switch off, all nodes must be forced to ‘bX by test
bench elements. One can see as the design grows this
task becomes overwhelming.

Gate level simulations have isolation cells and state
retention registers in the netlist. Therefore the test
bench is not required to model these elements. The test
bench is still required to model the power switch off
unless a physical netlist with power and ground is used
(and the verilog library elements support power down).
Because there is no way to verify that the elements i.e.,
isolation and retention, identified in RTL are the same as
are present in the gate netlist, the full verification suite
must be re-run.

The need for gate level simulation means that design

defects may not be identified until late in the cycle. An
incorrect isolation value may not be found until days
before tape-out. One may not identify a register that
needed to be retained until after the masks have been
created. With the cost of masks growing exponentially
as the lithography shrinks, these can be extremely costly
mistakes.

Fig. 3. Behavior of a state retaining register with a an isolation value of one
and a value of one at the time of power off

V. CPF VERIFICATION SOLUTION
here are many problems with the ad-hoc solution: a
large effort to create test bench elements, reliance

on gate level simulations, and the numerous opportunity
to introduce human error. A CPF based solution
addresses many of these concerns and enables an
enhanced verification solution.

A CPF file can be considered a netlist or specification
of power related information. Just as the RTL verilog
netlist is read by both the design and verification tools,
the CPF file is also read by multiple tools in the flow
such as the synthesis tool and the RTL simulator. The
file contains a description of the low power architecture
of design: which domains can be powered off, which
values to isolate, and which registers to retain. In
addition, the power control signals that govern when to
retain, restore and isolate are contained within the file.

When a simulation is run with the CPF file, the
simulator takes care of isolating the output of the
powered off domains. It will also drive powered down
nodes to ‘bX, and is responsible for retaining and
restoring the correct register values. Written in Tcl, wild
cards enable registers and isolation ports to be identified
easily. This removes the burden of writing cumbersome
test bench code that existed with the ad-hoc solution.
With the weight lifted, verification engineers can
concentrate their efforts on ensuring that the four stages
of the low power modes are adequately tested.

The second major benefit of CPF is that it can be read

by formal tools. While using CPF in simulation enables
one to accomplish the same tasks faster and more
efficiently then the ad-hoc solution, using it in a formal
environment allows one accomplish things that were
impossible in the ad-hoc flow. The logical equivalency
between what used for RTL simulation, the netlist and
CPF file, and the gate level netlist can be proven. This
removes the need to re-run every simulation from the
RTL level on the gate level netlist.

In order to get the most from a CPF based verification
flow, the same file which is verified by simulation should
be used by synthesis. The chance of human error being
introduced is decreased by having one central location
for the power specification. An error present in the CPF
used for synthesis is caught early by the RTL

F

T

4

verification. In the ad-hoc solution, the error would not
be found until gate simulations had begun. In addition,
the CPF can be checked formally against low power
rules at on the RTL level, rather than having to wait for a
structural netlist.

VI. CONCLUSION
New techniques and methodologies introduced into

submicron design can not be ignored by verification.
While it is possible to use ad-hoc methods to verify
these design elements, the methods are often far from
ideal and can be slow, cumbersome and incomplete.
CPF enabled simulators and formal verification tools
enable a superior solution. A solution that is easier to
implement and can let engineers spend their time where
the return on investment is greatest. In addition, CPF
enables a complete solution, allowing one not only to
simulate in RTL, but also to formally prove equivalency
between what was simulated and what was taped out.

	I. INTRODUCTION
	II. Power Switch Off and Isolation
	State Retention
	IV. An Ad-Hoc Verification Solution
	V. CPF Verification solution
	VI. Conclusion

