
Formal verification of AHB interfaces

Session 5.1

Formal Verification of AHB

interfaces

Maurizio Spadari

NemeriX

Formal verification of AHB interfaces

Agenda

Company & personal overview

Main project features

AMBA bus features

Verification challenge & strategy

AMBA verification strategy

Benefits of the approach

Conclusion

Formal verification of AHB interfaces

Company overview

NemeriX (http://www.nemerix.com) is a provider of

GPS solutions

• Analog RF receivers

• Digital base-band chip

• Processors

NemeriX’s core competence is development of

low-power integrated circuits

Formal verification of AHB interfaces

Personal overview

10+ year of experience in digital design &

verification at various companies (LSI-Logic,

ST-Microelectronics)

Currently managing design verification and

verification methodologies at NemeriX

Formal verification of AHB interfaces

Next generation base-band processor

Proprietary IP for GNSS signal processing

3rd-party IP processor

3rd-party communication peripherals

Commodity IP developed in-house

Modules connected via AMBA interface

Design overview

Formal verification of AHB interfaces

Base-band processor

Processor

(AHB Master)

DMA Controller

(AHB Master)

GNSS IP
Communication

IP.s

Communication

IP.s

Communication

IP

Commodity

IP

AMBA bus

Formal verification of AHB interfaces

AMBA bus structures

Multi-master system (processor + DMA

controller)

AHB-Lite interface for slave peripherals

Requirement for AMBA bus

• Robustness

• Low power implementation

• No routing overhead

• Reduced toggling activity

Formal verification of AHB interfaces

AMBA bus features

Read-Data from slave are ORed together

• Peripherals should keep HRDATA bus low when not

addresses

Multi-clock domain system

• Source/Destination register may be in general on a clock

domain different than HCLK

• Fields of the same register might be in clock domains

different from each other

Formal verification of AHB interfaces

AMBA bus implementation

For write/read operation re-timing and hand-shake

might be required

• For read operation value is returned on HRDATA only

when hand-shake has completed

• For write operation peripherals assert HREADY only when

data has been transferred to destination register

Since hand-shake circuitry has a penalty in term of area

and timing it should be used only when necessary

For time critical operation where hand-shake is

required a read-ahead mechanism is implemented

Formal verification of AHB interfaces

Register handshake

AHB slave

interface

Reg. field B

Reg. field A

HCLK

AHB slave

interface

HSK

CLK A

HSK

CLK B

CLKB

CLKA

Formal verification of AHB interfaces

Design flow

RTL

verification

Application

software

C-model

RTL code

FPGA

ASIC

Gate-level

verification

System

validation

Formal verification of AHB interfaces

Final “green-light” is given by system team that checks

the SW drivers achieve the expected performances on

the HW.

GPS signal processing requires long integration

(especially when acquiring “low” signals)

System must be checked with real-life signals

An FPGA implementation is mandatory

Architectural exploration is also made at FPGA level

• This implies several architectural modifications also in

AMAB bus structure

Verification challenges

Formal verification of AHB interfaces

AMBA design &verification requirements

The above approach demands frequent changes on the

AMBA structure:

• Register changes/additional/removal

• Address map changes to improve efficiency in register

access

A design methodology is required to quickly implement

and verify changes

• Automatic generation of register structure

• Automated verification methodology

Formal verification of AHB interfaces

AMBA register generation

A Python script (RegGen) has been devised to generate

AHB infrastructure at peripheral level:

• AHB-Slave Lite interface

• Hand-shake mechanism for register fields requiring it

Script structure

• GUI interface

• Generation of Verilog HDL code

• Generation of documentation (HTML file)

Formal verification of AHB interfaces

RegGen script : user interface

Via GUI user can

• Define register map

• At register level define each field and its relevant clock domain

• Place a short field and register description (for documentation

purposes)

Deliverables

• Documentation : HTML file

• Generation of Verilog HDL code

• Python script for re-loading session (useful for modifying an

existing register configuration)

RegGen script is not a pre-defined product but a living script:

new feature are added continuously

Formal verification of AHB interfaces

RegGen script : RTL deliverables

RegGen generates following deliverables:

• AMBA interface control logic

• Handles AHB interface signal

• Generate the clock hand-shake signals

• Register interface

• Handles the register hand-shake signals

• Generate read/write signals to physical register (located in

design hierarchy)

Formal verification of AHB interfaces

RegGen RTL structure

AHB

Interface

Register

Interface

AHB

Slave

Itf.

HSK

Control

& data

Reg. field

Reg. field

RegGen output

Formal verification of AHB interfaces

RegGen script : RTL deliverables

Interface control logic block is relatively independent

from actual register configuration

• Variable parts of this blocks are number of clock domains

and specific block features like read-ahead buffer

Register interface block is very implementation specific

since it handles hand-shake signals for bit fields of

registers being instantiated

Formal verification of AHB interfaces

Formal verification on AMBA

Formal verification (FV) methodology is well suited to

validate current AMBA structure.

FV explores all possible scenarios and interactions

between AMBA operations.

AMBA VIP allows to check that slave responses are

consistent with AMBA.

VIP checks are supplemented with additional checks

that ensure that project specific features (hand-shake,

look-ahead buffer) operate correctly.

Formal verification of AHB interfaces

Modular approach

RegGen script allows a modular approach to validation.

out-of-context verification

• When a new feature or a modification is done on script,

script itself is validated by generating a simple but

exhaustive test-case

in-context verification

• When register file is modified at module-level the new

module is validated via IFV

Formal verification of AHB interfaces

Out-of-context verification

Purpose of out-of-context verification is to ensure all

supported features operate correctly

Test-case used for validation should be exhaustive in

the sense that contains all features supported by the

script

Verification is done with a combination of AMBA VIP

together with additional checks

• AMBA VIP ensures that module is compliant to AMBA

specification

• Additional checks ensure compliancy to project-specific

requirements

Formal verification of AHB interfaces

Project specific requirements

Project specific requirements are captured in a
verification plan and address project-specific features
of the AMBA bus

Example of project-specific features:

• Valid address: An access to an unmapped area (inside the
slave address space) should return an error response on
HRESP bus

• Register write : A write operation should update register
content.

• Register read : A read operation should return register
content.

• Hand-shake : In a read/write operation the correct hand-
shake signals should activate

Formal verification of AHB interfaces

Testcase

Out-of-context test-bench

AHB

interface

Register

interface

Sample

Reg. block

AMBA VIP
Project specific

assertions

AMBA VIP

Slave

AMBA VIP

Master

Formal verification of AHB interfaces

Advantage of out-of-context verification

A simple test-case allows faster turn-around time

Limited number of assertions required to validate

design

• Easy to add specific assertions to debug/analyze in-depth

the FSM and control block parts

Due to module structure out-of-context verification will

stress mostly the control part which is less

implementation specific

Formal verification of AHB interfaces

In-context validation

In-context validation is applied to the AHB peripheral

It ensures that register file structure is consistent with

specification

• Unused areas are correctly defined

• Address map is correct : a write access places correct data

in the physical register

• Each register is mapped to correct clock domain

Formal verification of AHB interfaces

Slave peripheral

In-context test-bench: case 1

AMBA VIP

Slave
Project specific

assertions

Formal verification of AHB interfaces

DMA controller

In-context test-bench case 2

AMBA VIP

Slave Project specific

assertions

AMBA VIP

Master

Formal verification of AHB interfaces

Advantage of in-context validation

Most of control logic already validated in out-of-context

verification

• Less likelihood to find a bug there

Larger number of assertion required but most of them

are similar and can be generated via a Perl script

Using the regression script itself to generate assertions

is not recommended since an error on input files will be

reflected in both HDL and assertions

Formal verification of AHB interfaces

Example of bugs found (1)

HCLK

HADDR

HTRANS NSQ

HREADY

IDLE IDLE NSQ IDLE

Bug occurred on

access marked in red

A register access is

done on the same

cycle hand-shake

completes and

HREADY is released

AMBA protocol is not

violated however re-

gister is not updated

Reg.
A A A A A

Formal verification of AHB interfaces

Example of bugs found (2)

HCLK

HADDR

HTRANS NSQ

HREADY

IDLE IDLE IDLE

HREADY is released

when handshake

completes, i.e. when

acknowledge is

asserted

If acknowledge does

not occur AMBA bus

is held indefinitely

Need to check that

this never occurs

IDLE

REQ

ACK

Formal verification of AHB interfaces

Benefit

Modular approach reduces time spent on AMBA

validation without compromising on accuracy and

completeness

RegGen script is fully reusable for future projects

In previous projects SpecMan had been used to

validate AMBA bus

• Once the test has been put in place several investigation

has been done to ensure that all possible corner cases are

covered: no guarantee that this goal is reached

• IFV approach is opposite: we check property on all possible

cases and then we restrict search space by ruling out false

cases. Faster method and more comprehensive.

Formal verification of AHB interfaces

Conclusions

VIP approach is a time-saving approach

• It allows to quickly verify standard bus & interfaces

A re-usable methodology is essential to capitalize effort

spent on assertion generation

