
Methods to improve verification quality on module level

Markus Groß Siemens AG Automation and Drives Erlangen

ASIC Design Center Erlangen

Motion Control Systems

Introduction

Verification Planning

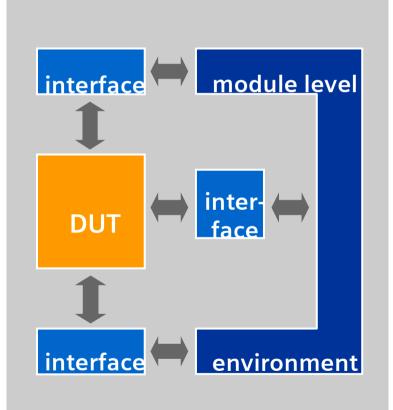
Methodology Mix

Measureable CDV

Summary

ASIC Design Center Erlangen

- 14 team members
- Designing SoC ASICs for tough real-time systems
- application: industrial automation


Why module level?


- faster runs
- easier to stimulate
- easier to reuse

- Module level as quality key
 Bug free systems always consist of bug free modules
- Quality is a bottom-up task

Our Challenge

Up to 50 modules per chip No planned redesign

About Modules

Verification Planning

Methodology Mix

Measureable CDV

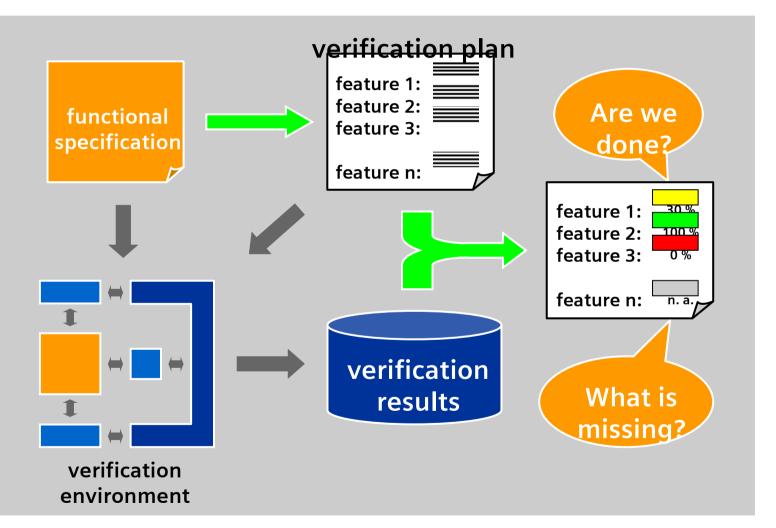
Summary

Verification Planning

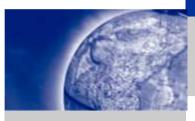
Make Closure Measurable

Closure Measurement

Motion Control Systems


Introduction

Verification Planning


Methodology Mix

Measureable CDV

Summary

SIEMENS

Verification Planning Session: Goal

Motion Control Systems

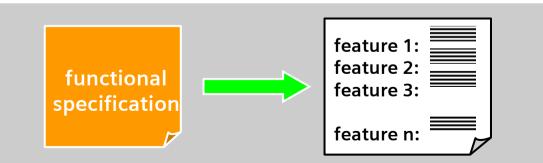
Introduction

Verification Planning

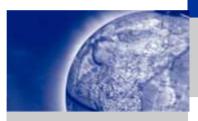
Methodology Mix

Measureable CDV

Summary


Create verification plan from functional specification
 Transfer knowledge about DUT to verification team

Have a very effective specification review


Participants

Goal

- Moderator
- Author of specification
- Designer of DUT
- Verification engineer
- Other experts for functionality of DUT, e. g. software developers

Introduction

Verification Planning

Methodology Mix

Measureable CDV

Summary

Verification Planning Session: Schedule

Take your time

- At least 1 day
 Up to 5 days on complex modules
- Very exhausting

Schedule

- After functional specification is stable
- Before start of verification
- Rather independent of state of design

Never start verification without stable specification

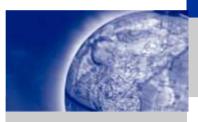
- Great impact on quality (many dangerous late changes)
- Great impact on schedule (up to 3 times of planned effort)

About Modules

Verification Planning

Methodology Mix

Measureable CDV


Summary

Methodology Mix

Best of all Worlds

3 Principles of Successful Verification

Motion Control Systems

Introduction

Verification Planning

Methodology Mix

Measureable CDV

Summary

Must-Run-In-Batch Principle

- Every test or run must result in a simple pass or fail
 - self checking mechanism required
 - transcripts and wave only for debugging
- Every test must ensure that functionality is really covered
 - By design of the test itself (test based verification)
 - By method itself (formal property checking)
 - By filled coverage (coverage driven verification)

Two-Head Principle:

Designers never verify their own modules

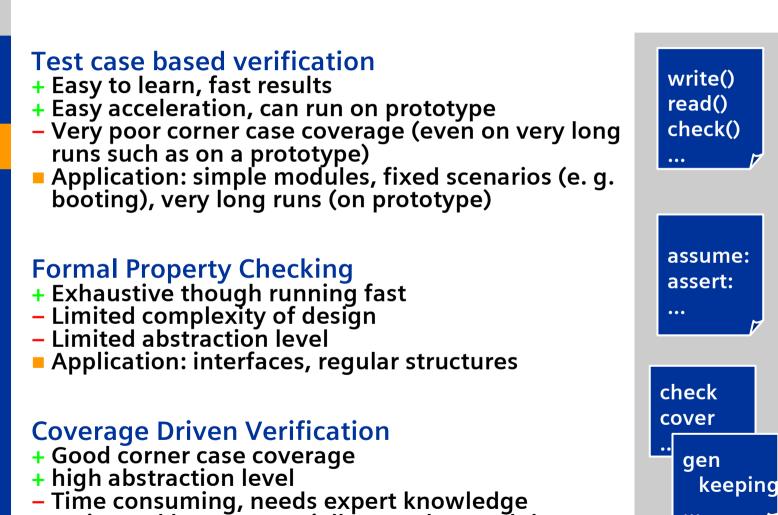
- Double approach: Two engineers make different mistakes
- No double knowledge: Design and verification need different competences

Use-Best-Methodology Principle

Every single feature is verified with the methodology suited best to this feature

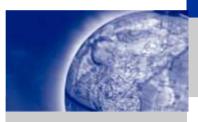
Methodology Overview

Motion Control Systems


Introduction

Verification Planning

Methodology Mix


Measureable CDV

Summary

Total Coverage

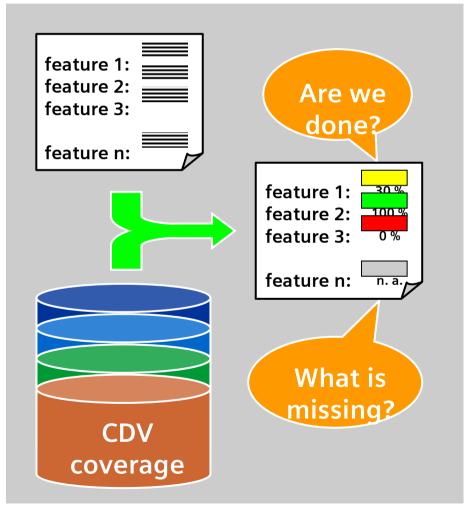
Motion Control Systems

Introduction

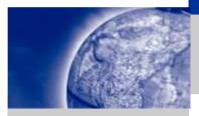
Verification Planning

Methodology Mix

Measureable CDV


Summary

Every verification item (test, property, coverage) mapped to features of the verification plan


All verification results brought together in one chart

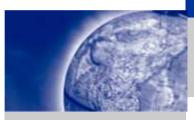
Free mixture of verification methodologies

Control over results of a whole team

About Modules

Verification Planning

Methodology Mix


Measurable CDV

Summary

Measureable Coverage Driven Verification

Successful regressions need reliable checks

Introduction

Verification Planning

Methodology Mix

Measurable CDV

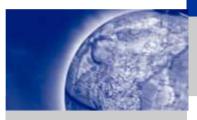
Summary

Reliable Checker Requirements

Reliable Checkers must fire on DUT errors

- ... or you might miss them
- Check your checkers

Reliable Checkers must not fire when there is no DUT error - ... or you will spend most of your time analysing failed runs


 ... or you might miss DUT errors because you cannot analyse every failed run

Reliable Checkers must be linked with coverage

- A check without coverage might never check at all
- A coverage without check might cover an unchecked feature

Reliable Checkers allow massive parallel regression ... because you can trust the results

First Collect Then Check

Motion Control Systems

Introduction

Verification Planning

Methodology Mix

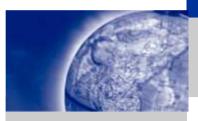
Measurable CDV

Summary

Expected behaviour approach: Verification Environment ...

- observes (or creates) stimulus
- ... calculates expected reaction of DUT
- ... compares expected reaction with actual reaction of DUT

Permitted behaviour approach: Verification Environment ...


- ... observes (or creates) and collects stimulus
- ... observes and collects reaction of DUT
- ... checks whether collected dataset is within specification

Advantages of permitted behaviour approach

- Can cope with multiple allowed reaction
- Can easier be adapted to unexpected corner cases

Weak Checks

Motion Control Systems

Introduction

Verification Planning

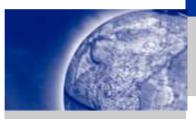
Methodology Mix

Measurable CDV

Summary

Functional Specification allows many different implementations

- Current DUT is only one of them
- Implementation of DUT may change
- Reliable checkers should cover all possible implementations


Typical uncertainties

- When does a register write take effect?
- How fast should the DUT react on external signals?
- In which sequence does the DUT react on concurrent events?

Weak checks

- ... only check what the functional specification requires
- In allow as many different behaviours as possible
- … consider target application needs

Resynchronisation to DUT

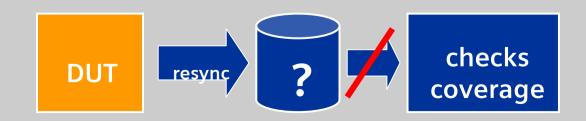
Motion Control Systems

Introduction

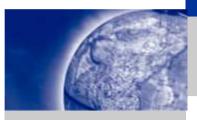
Verification Planning

Methodology Mix

Measurable CDV


Summary

Problem: DUT behaviour becomes unpredictable


- Concurrent events or unexpected corner case
- Multiple different reactions possible
- Multiple possible states of DUT afterwards
- No need to check actual reaction of DUT
- But need to know state of DUT for further checking

Solution: Resynchronisation to DUT

- Switch off checks and coverage
- Wait until DUT is stable again
- Copy state of DUT into environment
- Resume checks and coverage

Summary

Motion Control Systems

Introduction

Verification Planning

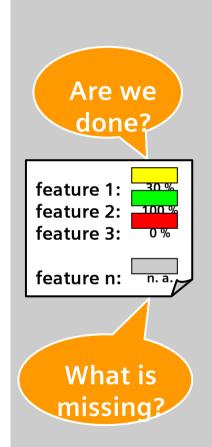
Methodology Mix

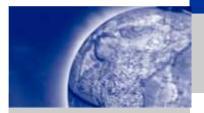
Measureable CDV

SIEMENS

Summary

Verification Planning Session


- Knowing when you are done needs a definition what to do
- Effective process to create verification plan
- Total Coverage: Map all verification results to verification plan


Best of all worlds

- Several verification methodologies available
- Use them all!
- Create best mix for your module

Reliable Checkers

- Checkers must be able to cope with random tests
- First collect, then check; create "weak checks"
- Reliable checkers need long experience
- Reliable checkers find more bugs

Thank you very much

