

 Page 1 uRM compliant GbE VIP

Developing a Gigabit Ethernet VIP Using the Plan
to Closure Methodology Featuring SystemVerilog

 By TATA ELXSI Limited

In this era of reusable IP, multi-million gate ASICs and SoC designs, verification has
become the major bottleneck because it consumes a significant portion of overall
development efforts. Thus, it has become even more challenging for us to know when the
verification of a design is complete and has met specified implementation criteria. These
increasing design complexities have driven us to look at higher abstraction levels and
modular approaches to help us develop an effective verification plan for our verification
IP development.

Verification reuse is one area we are focused on because it enhances reliability and saves
a tremendous amount of time, especially when developing a complex protocol such as a
Gigabit Ethernet. In our case we used the Cadence Incisive Plan-to-Closure
Methodology that features the Universal Reuse component of Plan-to-Closure with
SystemVerilog. Lets take a closer look at the protocol we were developing and many
features of this methodology we incorporated into our flow that helped us successfully
complete the task.

Getting started on our Gigabit Ethernet project

Gigabit Ethernet is a transmission technology based on the Ethernet frame format and
protocol. Its wide applications include Local Area Networks (LANs) for transmission at
higher data-rates. It is defined in IEEE standard-802.3z. GbE employs the CSMA/CD &
MAC protocol and frame format similar to its predecessors (10Mb/s and 100Mb/s).
Because of these attributes as well as support for Full-duplex operation, Gigabit Ethernet
is an ideal backbone interconnect technology.

For our overall development we chose the SystemVerilog language. Some key features
we liked included randomization and the object-oriented capabilities. The module-based
view of the Universal Reuse Methodology (URM) within Plan-to-Closure uses these
features in a way that is appealing to design team and users new to SystemVerilog. This
capability provides reusability at multiple levels including constraint-driven random
stimulus generation, independent environment checking and overall reduction in the code
density.

 Page 2 uRM compliant GbE VIP

These features of SystemVerilog and URM together are what helped us develop our
automated test environment for our Gigabit Ethernet VIP. But, before we get too far
ahead of ourselves lets introduce the various aspects in our VIP development – then take
a deeper look.

1) VIP Design and Development
This included development of different modules of Verification IP (i.e.
transactions, sequence driver, bfm, monitor, functional coverage etc.)

2) Testbench Development
This stage included development of PHY module (Collision detection and
collision sensing module) and stitching the VIP with reference module.

3) Random Test Generation
This stage included development of different test scenarios for GbE testing.
Generated scenarios are properly constrained so that they won’t generate any
invalid scenarios. Users can configure to generate either random packets or
directed packets.

4) Assertions Development
Development of assertions for GMII (Gigabit Media Independent Interface) Using
SystemVerilog Assertions (SVA) were used to check this interface.

5) Scripts Development
To test the verification environment, scripts were developed in the Perl scripting
language. Standalone and regression scripts were also developed.

Universal Re-use Methodology (URM)
URM within the Plan-to-Closure methodology provided our team the framework to easily
develop reusable, high quality universal verification components (UVCs) for a mixed-
language environment. UVCs can be developed using SystemVerilog, SystemC (IEEE
1666), e (IEEE 1647), or a mixed code in any of these languages. URM draws on
hundreds of successful projects and provides a blueprint methodology so that the
testbench code is effectively organized for constrained-random testing. Our UVCs are
developed in SystemVerilog.

Building Blocks of the URM-based Verification Environment
In our case the URM methodology help us build the basic building blocks of our
verification environment. These building blocks of the URM based verification
environment are shown in figure 1. The architecture we followed is point to point
architecture having a single agent. A brief description about these building blocks of our
VIP Environment is also given below.

 Page 3 uRM compliant GbE VIP

AGENT

BFMSequence
Driver

CONFIGURATION

DUT

COVERAGE

TESTS

Self
Checking
Monitor

GbE VIP

Fig. 1: GbE Verification Environment (uRM)

Configurations of Our GbE VIP
In our case we had two classes that had been used in GbE verification environment. The
configuration points are distributed in transaction class and configuration class. The
configuration points that are related to normal frame generation are present in transaction
class. On the other hand, configuration points for error injection in different frame fields
(for error-frame generation) and other VIP configuration points are present in
configuration class.

Randomization of these classes are dynamic in nature, some of the configuration points
of these classes were randomized during simulation to generate different frames and
different scenarios.

 Transaction Class

This class defines different packet fields of GbE Frame, which are used by the sequence
driver for randomization. It also defines a certain set of configuration points for normal
frame generation.

In URM, transactions are defined inside a class. This class, generally known as base
class, contains basic constraints, properties (structures and variables) and methods (basic
functions/tasks) e.g. the CRC calculation function, post-randomize function, display

 Page 4 uRM compliant GbE VIP

function, padding function etc. This base class can be extended anywhere to add new
constraints, properties and methods. Users have the ability to extend this class and
constrain the properties to generate different scenarios.

The class is declared inside package and can be imported across the modules to access
the contents of base class. Some pseudo code is provided below illustrating transaction
class usage:

 Package tel_trans_P;
 typedef struct packed {
 bit [56:0] preamble;
 bit [47:0] sfd;
 bit [47:0] sa;
 bit [47:0] da;
 } tel_struct_packet_S;

 class tel_data_C;
 rand tel_struct_packet_S packet_obj; //object of struct defined as rand
 constraint basic_const {
 packet_obj.preamble == {28{2’b10}};
 packet_obj.sfd == 8’b10101011;
 } //Adding basic constraints

 //add properties to the class
 //add various methods to the class (functions and tasks)
 endclass
 endpackage

 Configuration class
Configurations are defined inside a class in a package in uRM. Our block contains
various configuration points for controlling the verification IP and this package is used in
most of the modules. Below are we dive deeper into a few of the configuration points
such as the number of packets, pause timer value, burst timer value, operation mode,
frame type, and error type.

Sequence Driver

Sequences are basically a series of transactions for commonly used scenarios. Sequences
are implemented in SystemVerilog using tasks. In module-based URM, the sequence
driver (Generator) is defined as a module and also uses interface implementation. The
sequence driver generates constrained random stimuli, defines a set of test scenarios,
controls the stimuli, and provides functionality to inject errors in randomized
transactions. The randomly generated packet is passed to a BFM module and uses a BFM
interface as a channel to pass the random transaction to the BFM (driver).

The generator will “put” the random packet to BFM Interface. At the time of our work,
mailboxes were not supported, so to pass the transaction across modules, we developed a

 Page 5 uRM compliant GbE VIP

workaround. (Mailboxes are now supported in the Incisive simulator.) We developed an
interface called BFM interface, with “put” and “get” functions which take and return the
transaction type. Thus, the BFM interface gave an exact solution for the mailbox
functionality. The pseudo code for sequence driver functionality is shown below:

module tel_sequence_driver (tel_bfm_if bfm_if);
 tel_data_C class_obj; //object of classes
 tel_struct_packet_S struct_packet;
task main();
 int success;
 success = class_obj.randomize(); //randomization of class
 bfm_if.put(struct_packet); //passing the transaction to bfm interface
 //put task will block until transaction is executed by bfm
endtask
endmodule

Bus Functional Module (BFM)

Our BFM (driver) is defined as a module in the module-based URM. It is a protocol
specific module that implements a low level protocol. It works at pin-level and directly
connects to the DUT Interface. It is designed to work in pull mode and it pulls the next
transactions (GbE Packet) from the BFM Interface using the “get” functionality and will
block if there is no pending transactions. Then it converts the transactions to bit-stream
and drives this bit-stream (transactions) to DUT Interface pins following the GbE
Protocol. The pseudo code for BFM functionality is listed below:

module tel_bfm (tel_bfm_if bfm_if, tel_dut_if dut_if);
 tel_struct_packet_S struct_packet; //object of structure
initial
 begin
 forever
 begin
 bfm_if.get(struct_packet); //getting the packet from bfm interface
 bfm_if.done(struct_packet); //indicates execution of transaction
 end

 end
endmodule

Monitor

The monitor is a passive element of the VIP Environment and defined as a module in
module-based URM. It is responsible for monitoring bus-level (pin-level) activities. It is
connected to DUT Interface to receive the transactions after DUT has performed its
operation on the transaction. The monitor collects the bit stream from DUT Interface and
reassembles it to form GbE packet. Protocol checkers are implemented in monitor, and
they check the received packet. Bug reporting and error-checking mechanisms are the

 Page 6 uRM compliant GbE VIP

main parts of monitor. The monitor will also pass the data to coverage module for
coverage calculation and analysis.

Assertions Module

In our case a set of SystemVerilog assertions (SVA) were developed to check the GMII
interface, these assertions sit closely to the GMII interface and report any interface
violations. The pseudo code for assertions for GMMI is given below:

module tel_gmii_assert (tel_dut_if dut_if);
typedef enum {half_duplex, full_duplex} mode_operartion_t;
mode_operartion_t mode_oper;

 property p1;
 @(posedge dut_if.clk)
 disable iff(mode_oper != half_duplex)
 ($rose(dut_if.COL) ##[1:$] $fell(dut_if.COL)) within ($rose(dut_if.CRS) ##[1:$]
$fell(dut_if.CRS));
endproperty

assert property(p1)
 $display($time,"COL Signal is deasserted before CRS ");
else
 $error($time,"BUG : CHKR ID -> CHGBE_COL_CRS_ERR2: ASSERTION: CRS
Signal is deasserted before COL");

endmodule

Functional Coverage
When applying random test generation, functional coverage is an essential part of the
verification flow. In our case to calculate and analyze the functional coverage of our GbE
protocol, we define a coverage module. This block used a coverage interface to receive
transactions from the BFM (driver). Our coverage interface has the mailbox functionality
implemented using the “put” and “get” functions. It also has covergroups, which are
sampled at appropriate events. Various coverpoints (variables) were taken inside these
covergroups and have bins defined for capturing specific coverage values.

Cross-coverage of different coverpoints can also be defined. The coverage details with
individual bins can be observed in the GUI window of ICCR tool within the Incisive
Design Team simulator. The tool generates functional coverage (fcov) files for each
testcase after they are run. These fcov files can later be merged to check overall coverage
and generate complete coverage analysis report.
The pseudo code for coverage module is given below:

module tel_coverage (tel_bfm_if bfm_if, tel_dut_if dut_if);
 tel_struct_packet_S struct_packe_covt; //object of structure

 Page 7 uRM compliant GbE VIP

covergroup fcs_error_frame_reception_cg @(mon_cov_I.FCS_error_frame_received);
 PAYLOAD_TYPE_E: coverpoint mon_cov_I.payload_type_cov
 {
 bins ALL_ONES_PAYLOAD_E = {ALL_ONES};
 bins ALL_ZEROS_PAYLOAD_E = {ALL_ZEROES};
 bins RANDOM_PAYLOAD_E = {RANDOM};
 }
 LENGTH_TYPE_E: coverpoint type_len_mon
 {
 bins SMALL_LENGTH_E = {[46:64]};
 bins MID_LENGTH_E = {[64:800]};
 bins LARGE_LENGTH_E = {[801:1500]};
 bins JUMBO_LENGTH_E = {[10200:10245]};
 }

 FCS_ERR_X1: cross PAYLOAD_TYPE_E, LENGTH_TYPE_E;
 Endgroup

//MAKING INSTANCE OF FCS-ERROR FRAME RECEPTION COVERGROUP
fcs_error_frame_reception_cg fcs_error_frame_instance = new();
endmodule

In our case the above components were instantiated in an “agent” which is defined as a
module in uRM and the agent is then instantiated in “environment” module.
Environment module and testcases module are instantiated in “top” module.

Our GbE VIP Testbench Architecture
The testbench architecture for our GbE VIP includes the VIP with a golden reference
mode (DUT) and PHY module. The PHY module provides CRS and COL control
functionality. It also has 8B/10B encoding decoding modules for data transfer between
the VIP and DUT and a scoreboard that was developed for data integrity checking.
A user interface was also provided for coverage analysis and scoreboard. The coverage
interface was developed to transfer transactions from the monitor to the coverage module.
Also, for transferring transactions to scoreboard, a user interface was developed using
“put” and “get” functionalities.

To verify the GbE VIP, we have used the following architecture: -

 Page 8 uRM compliant GbE VIP

ENVIRONMENT

ETHERNET
VIP 1

Tx

Rx

GOLDEN
REFERENCE
MODEL
(DUT)

Rx
Tx

Rx_FrameTx_Frame

Rx_Frame Tx_Frame

SCOREBOARD

8B
to
10
B

8B
to
10
B

crs/col CRS and COL Control crs/col

Fig2: GbE Test Environment

SYSTEM VERILOG BASED MODULES

VERILOG BASED MODULES

Fig.2: GbE VIP Testbench Architecture.

Benefits Realized

Benefits of using URM methodology and the Incisive Design Team simulator are as
follows:
• URM implementation gave us maximum reusability at different modules e.g. BFM,

agents, environments.
• Various user configuration points had been used. So, it provided a higher degree of

flexibility to the user for testing the environment in different modes by simply
altering the configuration points.

• GbE VIP was our first VIP developed using URM. The Cadence support team
provided valuable support while we developing our VIP with the URM.

• The Incisive Design Team simulator version 05.83-v128 (check
http://www.cadence.com for the latest release) was successfully tested and used for
its effectiveness in URM and SystemVerilog.

Limitations

While the current version of the Incisive Design Team simulator supports the
SystemVerilog features in the Incisive Design Team simulator our version of the
simulator did not and we needed to work around those limitations. We are looking

 Page 9 uRM compliant GbE VIP

forward to working with the newer version and eliminating these work arounds. A list of
our workarounds is listed below.

• Queues (Now supported in the Incisive Simulator 6.1 and later)
Queues, one of the features of SystemVerilog was unsupported. To resolve this, we had
to declare an array of maximum size resulting in memory consumption. This was the
only workaround for the queues. So, we have to declare full range of variable in an array.

For example:

bit [0:10245][0:7] payload_class_var;

• Enumeration Type ranges inside Constraint Block (Now supported in the

Incisive Simulator 6.1 and later)
Inside constraint blocks, we could not specify the ranges for enumeration types.
For example, If we have enum type as enum {red, green, blue, white} color; and if we
wanted to use ranges in constraint block like color inside {[red : white] then it is
unsupported.

To resolve this, the only workaround was to declare full range in constraint like

color inside {[red, green, blue, white]};

• Mailboxes (Now supported in the Incisive Simulator 6.1 and later)
To communicate across different blocks or to pass data between classes, SystemVerilog
has defined a feature called as mailbox. Mailbox is a kind of FIFO, which passes the data
between the classes. Cadence provides a workaround technique for mailbox named as
“BFM interface”. This interface has two methods named as “put” and “get” same as
mailbox has, and the functionality is somewhat similar to put and get of mailbox. The
“put” task of BFM interface is called to put the transaction on the interface and the “get”
task is called to take the transaction from the interface. The arguments to be passed must
be of same type as mentioned in the put and get task of BFM interface.

For example:

//put task of bfm interface
task automatic put (tel_gbe_struct_packet_S obj);
 cur_trans_prvt = obj;
 -> bfm_if_ready;
 //Signal defining that a transaction is ready
 trans_ready_prvt = 1;
 @trans_done_prvt;
 //Release the semaphore. Calling task to release semaphore
 release_sem_prvt();

 endtask // put

 //get task of bfm interface

 Page 10 uRM compliant GbE VIP

task automatic get (output tel_gbe_struct_packet_S obj);
 // wait for a transaction to be ready
 while (trans_ready_prvt == 0)
 begin
 @(trans_ready_prvt);
 end
 // consume the transaction
 trans_ready_prvt = 0;
 $display($time," BFM I/F:: GET TASK");
 obj = cur_trans_prvt;
endtask // get

• Randomization of 2-D array (Now supported in the Incisive Simulator 6.1 and
later)

If we have to randomize a 2-d array like bit [0:10245][0:7] payload_class_var, then
declaring it as “rand” would not randomize this array. The workaround for this limitation
is to use “$urandom” function to randomize the full array bit by bit. $urandom is an in-
line randomization function, which returns 32-bit random value. By the help of inline
constraints, we could constraint the randomization.

For example:
 payload_class_var[1] = $urandom; // “u” is used with random to

 // Specify the unsigned data.

• “ignore” and “binsof” constructs were unsupported in cross coverage (Now

supported in the Incisive Simulator 6.1 and later)
“ignore” keyword is used to reject some of the bins in cross coverage, which have no
significance. But ignore was not supported in our older version of the simulator. Also
“binsof” construct, which is used to declare specific bins, was unsupported. The only
workaround was to declare only those bins, which are significant. This will resulted in an
increase in code, but it helped us to achieve true & good coverage.

For example:

 covergroup yy;
 cross a, b
 {
 ignore_bins foo = binsof(a) intersect {5, [1:3]};
 }

 endgroup
is unsupported.

Conclusion:
For developing highly reusable verification components, URM is a highly effective
methodology. We also found the module-based approach gave us a fast independent
development environment for modules, especially for logic designers unfamiliar with

 Page 11 uRM compliant GbE VIP

advanced object-oriented programming. Our logic designers were able to build an
environment because we could use many reusable components.

The environment was highly user-configurable which provided greater flexibility to the
user. SystemVerilog, being an object-oriented language with features such as
randomization and functional coverage proved to be a very effective language for
creating our test environment. While the latest Incisive Design Team simulator version
supports the object-oriented SystemVerilog features, our version 05.83-v128 had some
limitations but had very good support for the SVA (System verilog assertions), so overall
it was a great solution to use for SystemVerilog with the URM methodology.

References:
• IEEE Std 802.3™-2002 - 802.3-2002.pdf
• IUS User Guide (User Reference manual by Cadence).
• SystemVerilog IEEE 1800 LRM.
• www.demosondemand.com

Authors and Bios
Author: Sarvana Kumar Y N. Senior specialist at TATA ELXSI LTD., Bangalore.
Qualification: BE (Electronics and Communication), NIE College, Mysore University.
Total Experience: 9+ years, Having 6+ years in Functional Verification domain, 2 years
in embedded domain, 1 year in C modeling Domain, presently working at TEL since 7
years and handling the verification activity.
Protocol knowledge: USB2.0, GbE, FiberChannel, CAN, LIN, I2C, SPI, FlexRay, OCP
and AHB.
Language expertise: System Verilog, e, Verilog, VHDL,
Methodology expertise: eRM, URM, VMM, AVM
Processor knowledge: ARM, Microchip dsPIC, 8051.
Having good knowledge on the communication protocols, done functional verification of
some of the protocols USB2.0, GbE, CAN, LIN, I2C, SPI used third party verification IP
to verify the USB2.0, Involved in development of verification IP’s, eVC’s and C Models
and SOC Verification based on Xtensa and ARM Processors.

Author: Jagvinder Yadav
Qualification: PG Diploma in VLSI Design from CDAC.
 BE (Electronics and Instrumentation), Apeejay College of Engg, Haryana.
Total Experience: 1.5 Years in Functional Verification domain at TATA ELXSI Ltd.
Protocol Knowledge: GbE, I2C, ESCON, OPB.
Language expertise: System Verilog, Verilog, VHDL.
Methodology expertise: URM, VMM.
Presently working on development of VIPs for different protocols.

Author: Gaurav Singh
Qualification: PG Diploma in VLSI Design from CDAC.
 BE (Electronics and Communication), J.E.C.R.C, Jaipur.

 Page 12 uRM compliant GbE VIP

Total Experience: 1.8 years, 1.5 Years in Functional Verification domain at TATA
ELXSI Ltd. 3 months in Quality testing at ELYMER Electronics.
Protocol Knowledge: GbE, HDLC, PHY, OPB
Language expertise: System Verilog, Verilog, VHDL.
Methodology expertise: URM, VMM.
Presently working on development of VIPs for different protocols

