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Developing a Gigabit Ethernet VIP Using the Plan 
to Closure Methodology Featuring SystemVerilog 

 
 By TATA ELXSI Limited 
 
 
 
 
 
 
 
In this era of reusable IP, multi-million gate ASICs and SoC designs, verification has 
become the major bottleneck because it consumes a significant portion of overall 
development efforts. Thus, it has become even more challenging for us to know when the 
verification of a design is complete and has met specified implementation criteria. These 
increasing design complexities have driven us to look at higher abstraction levels and 
modular approaches to help us develop an effective verification plan for our verification 
IP development.   
 
Verification reuse is one area we are focused on because it enhances reliability and saves 
a tremendous amount of time, especially when developing a complex protocol such as a 
Gigabit Ethernet.  In our case we used the Cadence Incisive Plan-to-Closure 
Methodology that features the Universal Reuse component of Plan-to-Closure with 
SystemVerilog.  Lets take a closer look at the protocol we were developing and many 
features of this methodology we incorporated into our flow that helped us successfully 
complete the task. 
 

 
Getting started on our Gigabit Ethernet project 
 

Gigabit Ethernet is a transmission technology based on the Ethernet frame format and 
protocol. Its wide applications include Local Area Networks (LANs) for transmission at 
higher data-rates. It is defined in IEEE standard-802.3z. GbE employs the CSMA/CD & 
MAC protocol and frame format similar to its predecessors (10Mb/s and 100Mb/s). 
Because of these attributes as well as support for Full-duplex operation, Gigabit Ethernet 
is an ideal backbone interconnect technology.  

 
For our overall development we chose the SystemVerilog language.  Some key features 
we liked included randomization and the object-oriented capabilities. The module-based 
view of the Universal Reuse Methodology (URM) within Plan-to-Closure uses these 
features in a way that is appealing to design team and users new to SystemVerilog. This 
capability provides reusability at multiple levels including constraint-driven random 
stimulus generation, independent environment checking and overall reduction in the code 
density.  
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These features of SystemVerilog and URM together are what helped us develop our 
automated test environment for our Gigabit Ethernet VIP.  But, before we get too far 
ahead of ourselves lets introduce the various aspects in our VIP development – then take 
a deeper look. 
 

1) VIP Design and Development 
This included development of different modules of Verification IP (i.e. 
transactions, sequence driver, bfm, monitor, functional coverage etc.) 
 

2) Testbench Development 
This stage included development of PHY module (Collision detection and 
collision sensing module) and stitching the VIP with reference module. 
 

3) Random Test Generation 
This stage included development of different test scenarios for GbE testing. 
Generated scenarios are properly constrained so that they won’t generate any 
invalid scenarios. Users can configure to generate either random packets or 
directed packets. 
  

4) Assertions Development 
Development of assertions for GMII (Gigabit Media Independent Interface) Using 
SystemVerilog Assertions (SVA) were used to check this interface. 
 

5) Scripts Development 
To test the verification environment, scripts were developed in the Perl scripting 
language. Standalone and regression scripts were also developed. 
 

Universal Re-use Methodology (URM) 
URM within the Plan-to-Closure methodology provided our team the framework to easily 
develop reusable, high quality universal verification components (UVCs) for a mixed-
language environment. UVCs can be developed using SystemVerilog, SystemC (IEEE 
1666), e (IEEE 1647), or a mixed code in any of these languages. URM draws on 
hundreds of successful projects and provides a blueprint methodology so that the 
testbench code is effectively organized for constrained-random testing. Our UVCs are 
developed in SystemVerilog. 

 
 
Building Blocks of the URM-based Verification Environment 
In our case the URM methodology help us build the basic building blocks of our 
verification environment. These building blocks of the URM based verification 
environment are shown in figure 1. The architecture we followed is point to point 
architecture having a single agent.  A brief description about these building blocks of our 
VIP Environment is also given below.  
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Fig. 1: GbE Verification Environment (uRM)

Configurations of Our GbE VIP 
In our case we had two classes that had been used in GbE verification environment. The 
configuration points are distributed in transaction class and configuration class. The 
configuration points that are related to normal frame generation are present in transaction 
class. On the other hand, configuration points for error injection in different frame fields 
(for error-frame generation) and other VIP configuration points are present in 
configuration class. 
 
Randomization of these classes are dynamic in nature, some of the configuration points 
of these classes were randomized during simulation to generate different frames and 
different scenarios. 

 
 
    Transaction Class 

This class defines different packet fields of GbE Frame, which are used by the sequence 
driver for randomization. It also defines a certain set of configuration points for normal 
frame generation.  
 
In URM, transactions are defined inside a class. This class, generally known as base 
class, contains basic constraints, properties (structures and variables) and methods (basic 
functions/tasks) e.g. the CRC calculation function, post-randomize function, display 
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function, padding function etc. This base class can be extended anywhere to add new 
constraints, properties and methods. Users have the ability to extend this class and 
constrain the properties to generate different scenarios. 
 
The class is declared inside package and can be imported across the modules to access 
the contents of base class. Some pseudo code is provided below illustrating transaction 
class usage: 
 
       Package tel_trans_P; 
        typedef struct packed { 
             bit [56:0] preamble; 
             bit [47:0] sfd;             
             bit [47:0] sa; 
             bit [47:0] da; 
           } tel_struct_packet_S; 
             
       class tel_data_C; 
        rand  tel_struct_packet_S packet_obj;   //object of struct defined as rand 
        constraint  basic_const { 
              packet_obj.preamble == {28{2’b10}}; 
              packet_obj.sfd == 8’b10101011; 
             }               //Adding basic constraints 
 
                  //add properties to the class 
                  //add various methods to the class (functions and tasks) 
         endclass   
   endpackage 
 

     Configuration class 
Configurations are defined inside a class in a package in uRM. Our block contains 
various configuration points for controlling the verification IP and this package is used in 
most of the modules. Below are we dive deeper into a few of the configuration points 
such as the number of packets, pause timer value, burst timer value, operation mode, 
frame type, and error type. 

  
Sequence Driver 

Sequences are basically a series of transactions for commonly used scenarios. Sequences 
are implemented in SystemVerilog using tasks. In module-based URM, the sequence 
driver (Generator) is defined as a module and also uses interface implementation. The 
sequence driver generates constrained random stimuli,  defines a set of test scenarios, 
controls the stimuli, and provides functionality to inject errors in randomized 
transactions. The randomly generated packet is passed to a BFM module and uses a BFM 
interface as a channel to pass the random transaction to the BFM (driver).  
 
The generator will “put” the random packet to BFM Interface. At the time of our work, 
mailboxes were not supported, so to pass the transaction across modules, we developed a 
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workaround. (Mailboxes are now supported in the Incisive simulator.) We developed an 
interface called BFM interface, with “put” and “get” functions which take and return the 
transaction type. Thus, the BFM interface gave an exact solution for the mailbox 
functionality. The pseudo code for sequence driver functionality is shown below: 
      
module tel_sequence_driver (tel_bfm_if bfm_if); 
   tel_data_C class_obj;  //object of classes 
  tel_struct_packet_S struct_packet; 
task main(); 
   int success; 
   success = class_obj.randomize();  //randomization of class 
   bfm_if.put(struct_packet);        //passing the transaction to bfm interface  
                                                    //put task will block until transaction is executed by bfm   
endtask 
endmodule 

 
 
Bus Functional Module (BFM) 

Our BFM (driver) is defined as a module in the module-based URM. It is a protocol 
specific module that implements a low level protocol. It works at pin-level and directly 
connects to the DUT Interface. It is designed to work in pull mode and it pulls the next 
transactions (GbE Packet) from the BFM Interface using the “get” functionality and will 
block if there is no pending transactions. Then it converts the transactions to bit-stream 
and drives this bit-stream (transactions) to DUT Interface pins following the GbE 
Protocol. The pseudo code for BFM functionality is listed below: 
 
module tel_bfm  (tel_bfm_if bfm_if, tel_dut_if dut_if); 
   tel_struct_packet_S struct_packet;   //object of structure 
initial  
  begin 
 forever  
 begin 
  bfm_if.get(struct_packet);     //getting the packet from bfm interface 
  bfm_if.done(struct_packet);  //indicates execution of transaction 
 end 
     
  end 
endmodule 

 
Monitor  

The monitor is a passive element of the VIP Environment and defined as a module in 
module-based URM. It is responsible for monitoring bus-level (pin-level) activities. It is 
connected to DUT Interface to receive the transactions after DUT has performed its 
operation on the transaction. The monitor collects the bit stream from DUT Interface and 
reassembles it to form GbE packet. Protocol checkers are implemented in monitor, and 
they check the received packet. Bug reporting and error-checking mechanisms are the 
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main parts of monitor. The monitor will also pass the data to coverage module for 
coverage calculation and analysis. 

 
Assertions Module   

In our case a set of SystemVerilog assertions (SVA) were developed to check the GMII 
interface, these assertions sit closely to the GMII interface and report any interface 
violations. The pseudo code for assertions for GMMI is given below: 
 
module tel_gmii_assert  (tel_dut_if dut_if); 
typedef enum {half_duplex, full_duplex} mode_operartion_t; 
mode_operartion_t mode_oper; 
 
 property p1; 
  @(posedge dut_if.clk) 
    disable iff(mode_oper != half_duplex) 
     ($rose(dut_if.COL) ##[1:$] $fell(dut_if.COL)) within  ($rose(dut_if.CRS) ##[1:$] 
$fell(dut_if.CRS)); 
endproperty 
 
assert property(p1) 
  $display($time,"COL Signal is deasserted before CRS "); 
else 
  $error($time,"BUG : CHKR ID -> CHGBE_COL_CRS_ERR2: ASSERTION: CRS 
Signal is deasserted before COL"); 
 
endmodule 
 

Functional Coverage 
When applying random test generation, functional coverage is an essential part of the 
verification flow. In our case to calculate and analyze the functional coverage of our GbE 
protocol, we define a coverage module. This block used a coverage interface to receive 
transactions from the BFM (driver). Our coverage interface has the mailbox functionality 
implemented using the “put” and “get” functions. It also has covergroups, which are 
sampled at appropriate events. Various coverpoints (variables) were taken inside these 
covergroups and have bins defined for capturing specific coverage values.  
 
Cross-coverage of different coverpoints can also be defined. The coverage details with 
individual bins can be observed in the GUI window of ICCR tool within the Incisive 
Design Team simulator. The tool generates functional coverage (fcov) files for each 
testcase after they are run. These fcov files can later be merged to check overall coverage 
and generate complete coverage analysis report.  
The pseudo code for coverage module is given below: 
 
module tel_coverage  (tel_bfm_if bfm_if, tel_dut_if dut_if); 
   tel_struct_packet_S struct_packe_covt;   //object of structure 
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covergroup fcs_error_frame_reception_cg @(mon_cov_I.FCS_error_frame_received);   
    PAYLOAD_TYPE_E: coverpoint mon_cov_I.payload_type_cov 
      { 
        bins ALL_ONES_PAYLOAD_E  = {ALL_ONES}; 
        bins ALL_ZEROS_PAYLOAD_E = {ALL_ZEROES}; 
        bins RANDOM_PAYLOAD_E    = {RANDOM}; 
      } 
   LENGTH_TYPE_E: coverpoint type_len_mon 
      { 
        bins SMALL_LENGTH_E = {[46:64]}; 
        bins MID_LENGTH_E   = {[64:800]}; 
        bins LARGE_LENGTH_E = {[801:1500]}; 
        bins JUMBO_LENGTH_E = {[10200:10245]}; 
      } 
 
   FCS_ERR_X1: cross PAYLOAD_TYPE_E, LENGTH_TYPE_E;    
  Endgroup 
 
//MAKING INSTANCE OF FCS-ERROR FRAME RECEPTION COVERGROUP 
fcs_error_frame_reception_cg fcs_error_frame_instance = new(); 
endmodule 

 
In our case the above components were instantiated in an “agent” which is defined as a 
module in uRM and the agent is then instantiated in “environment” module. 
Environment module and testcases module are instantiated in “top” module.  
 

Our GbE VIP Testbench Architecture 
The testbench architecture for our GbE VIP includes the VIP with a golden reference 
mode (DUT) and PHY module. The PHY module provides CRS and COL control 
functionality. It also has 8B/10B encoding decoding modules for data transfer between 
the VIP and DUT and a scoreboard that was developed for data integrity checking.  
A user interface was also provided for coverage analysis and scoreboard. The coverage 
interface was developed to transfer transactions from the monitor to the coverage module. 
Also, for transferring transactions to scoreboard, a user interface was developed using 
“put” and “get” functionalities. 
 
To verify the GbE VIP, we have used the following architecture: - 
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Fig.2: GbE VIP Testbench Architecture.

 
Benefits Realized 

Benefits of using URM methodology and the Incisive Design Team simulator are as 
follows:  
• URM implementation gave us maximum reusability at different modules e.g. BFM, 

agents, environments.  
• Various user configuration points had been used. So, it provided a higher degree of 

flexibility to the user for testing the environment in different modes by simply 
altering the configuration points. 

• GbE VIP was our first VIP developed using URM.  The Cadence support team 
provided valuable support while we developing our VIP with the URM.  

• The Incisive Design Team simulator version 05.83-v128 (check 
http://www.cadence.com for the latest release) was successfully tested and used for 
its effectiveness in URM and SystemVerilog. 

 
Limitations 

While the current version of the Incisive Design Team simulator supports the 
SystemVerilog features in the Incisive Design Team simulator our version of the 
simulator did not and we needed to work around those limitations.  We are looking 
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forward to working with the newer version and eliminating these work arounds. A list of 
our workarounds is listed below. 
 
• Queues (Now supported in the Incisive Simulator 6.1 and later) 
Queues, one of the features of SystemVerilog was unsupported. To resolve this, we had 
to declare an array of maximum size resulting in memory consumption.  This was the 
only workaround for the queues. So, we have to declare full range of variable in an array. 
 
For example:  

bit [0:10245][0:7] payload_class_var;  
 

 
• Enumeration Type ranges inside Constraint Block (Now supported in the 

Incisive Simulator 6.1 and later) 
Inside constraint blocks, we could not specify the ranges for enumeration types. 
For example, If we have enum type as enum {red, green, blue, white} color; and if we 
wanted to use ranges in constraint block like color inside {[red : white] then it is 
unsupported. 
 
To resolve this, the only workaround was to declare full range in constraint like 

color inside {[red, green, blue, white]}; 
 

• Mailboxes (Now supported in the Incisive Simulator 6.1 and later) 
To communicate across different blocks or to pass data between classes, SystemVerilog 
has defined a feature called as mailbox. Mailbox is a kind of FIFO, which passes the data 
between the classes. Cadence provides a workaround technique for mailbox named as 
“BFM interface”. This interface has two methods named as “put” and “get” same as 
mailbox has, and the functionality is somewhat similar to put and get of mailbox. The 
“put” task of BFM interface is called to put the transaction on the interface and the “get” 
task is called to take the transaction from the interface. The arguments to be passed must 
be of same type as mentioned in the put and get task of BFM interface.   
 
For example: 

//put task of bfm interface 
task automatic put (tel_gbe_struct_packet_S obj);                               
   cur_trans_prvt = obj;        
  -> bfm_if_ready; 
  //Signal defining that a transaction is ready 
  trans_ready_prvt = 1; 
  @trans_done_prvt; 
  //Release the semaphore. Calling task to release semaphore 
  release_sem_prvt();  

           endtask // put   
 

 
            //get task of bfm interface 
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task automatic get (output tel_gbe_struct_packet_S obj); 
    // wait for a transaction to be ready 
  while (trans_ready_prvt == 0)  
    begin 
      @(trans_ready_prvt); 
    end   
    // consume the transaction 
  trans_ready_prvt = 0; 
  $display($time," BFM I/F:: GET TASK");  
  obj = cur_trans_prvt; 
endtask // get 
 

• Randomization of 2-D array (Now supported in the Incisive Simulator 6.1 and 
later) 

If we have to randomize a 2-d array like bit [0:10245][0:7] payload_class_var, then 
declaring it as “rand” would not randomize this array. The workaround for this limitation 
is to use “$urandom” function to randomize the full array bit by bit. $urandom is an in-
line randomization function, which returns 32-bit random value. By the help of inline 
constraints, we could constraint the randomization.  
 
For example: 
                         payload_class_var[1] = $urandom;  // “u” is used with random to                

                                                                        // Specify the unsigned data. 
 
• “ignore” and “binsof” constructs were unsupported in cross coverage (Now 

supported in the Incisive Simulator 6.1 and later) 
“ignore” keyword is used to reject some of the bins in cross coverage, which have no 
significance. But ignore was not supported in our older version of the simulator. Also 
“binsof” construct, which is used to declare specific bins, was unsupported. The only 
workaround was to declare only those bins, which are significant. This will resulted in an 
increase in code, but it helped us to achieve true & good coverage. 
 
For example: 

          covergroup yy; 
                            cross a, b 
                            { 
                             ignore_bins foo = binsof(a) intersect {5, [1:3]}; 
                           } 

           endgroup 
is unsupported. 
 

Conclusion: 
For developing highly reusable verification components, URM is a highly effective 
methodology. We also found the module-based approach gave us a fast independent 
development environment for modules, especially for logic designers unfamiliar with 
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advanced object-oriented programming. Our logic designers were able to build an 
environment because we could use many reusable components.  
 
The environment was highly user-configurable which provided greater flexibility to the 
user. SystemVerilog, being an object-oriented language with features such as 
randomization and functional coverage proved to be a very effective language for 
creating our test environment. While the latest Incisive Design Team simulator version 
supports the object-oriented SystemVerilog features, our version 05.83-v128 had some 
limitations but had very good support for the SVA (System verilog assertions), so overall 
it was a great solution to use for SystemVerilog with the URM methodology.  
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