

Gigabit Ethernet VIP Development using URM

Jagvinder Yadav Gaurav Singh

© 2002 TATA ELXSI LTD INTEGRATION SERVICES

- Introduction
 - Objective, GbE VIP, URM, Verification Environment.
- Testbench Architecture
- Components of UVC
 - Sequence Driver
 - BFM
 - Monitor
 - Assertions
 - Coverage
 - Scoreboard

- To develop an automated test-environment which incorporates following features of URM
 - Constrained random stimulus generation
 - Coverage driven verification
 - Reusability
 - Modularity
 - Scalability

- Configurable 10Mbps/100Mbps/1Gbps Ethernet MAC and compliant with MII/GMII Standards
- Half/Full Duplex mode data transfer
- Full CSMA/CD support jamming, backoff and automatic retransmission
- Supports generation of
 - Data Frames, Control Frames (Pause Frames), Jumbo Frames, VLAN Tagged Frames (IEEE P802.1Q)

- Programmable error injection
- Error detection
- Introducing collisions randomly
- Built-in functional coverage

Universal Reuse Methodology (URM)

- URM is a complete methodology for developing high quality reusable verification components.

Features:-

- Language Independent (System verilog, Specman 'e', VHDL, System C).
- Fully constrained-random, automated test-stimulus generation and functional coverage driven approach.
- Module based and class based architectures
- Generated transactions are classes but TB infrastructure is module based.
- Easier to adopt.
- Object-oriented approach.
- Testbench automation using base classes.

- Base class containing different packet fields of GbE frame.
- Defined inside a package and can be imported across modules of TB to access transactions.
- User-defined constraints, basic properties and methods.
- Post-randomize functions (CRC calculation, Padding and Extension field for GbE).
- Can be extended to add/override constraints, properties, methods.


```
Transaction Class Example
package trans P;
  typedef struct packed
   Ł
    bit [56:0] preamble;
    bit [47:0] sfd;
    bit [1:0] length;
    bit [100:0] payload;
  } struct_packet_S;
  class tel_data_C;
    rand struct_packet_S packet_obj; //object of struct defined as rand
    //Adding basic constraints
    constraint basic const
     {
       packet_obj.preamble == \{28\{2'b10\}\};
       packet obj.sfd == 8'b10101011;
     }
    //add properties to the class
    //add various methods to the class (functions and tasks)
    function void post randomize();
      for (int i=0; i<length; i++)</pre>
      begin
        payload[i] = $urandom;
      end
      fpadding();
      fcrc();
      fextension();
    endfunction
  endclass
endpackage
```

C) 2002 TATA ELXSI LTD INTEGRATION SERVICES

- Generates packet instance containing random GbE packets required by DUT.
- Generates sequences of random transactions with user controllability.
- Connected to BFM via channel (BFM Interface).
- Passes generated transactions to BFM by putting into BFM interface.
- Directed and random testcase compatible.

BFM

Protocol-specific module implementing lowlevel protocol.

- Fetches random packet generated by driver from BFM Interface.
- Designed to work in Pull mode, pulls next transaction from BFM interface.
- Blocked if there are no pending transactions.
- Converts transactions into bit-stream and drives it to DUT via DUT Interface following GbE Protocol.

Monitor

- Connected to DUT Interface to receive transactions from DUT and monitoring buslevel activities.
- Collects data (bit stream) from bus and and reassembles it to form GbE packet.
- Protocol checkers, bug reporting mechanism are a part of monitor.
- Sends the packet to scoreboard for data integrity checking.
- Passes data to coverage module for functional coverage calculation and analysis.

- Placed at interface side.
- Report any protocol violations at I/F level.
- Monitor Tx/Rx signals ensuring that GbE protocol violation doesn't occur.
- ABV methodology is used for assertions development (implemented using SVA).

Calculates and analyzes functional coverage of GbE VIP.

- Stimulus coverage
 - Generated data packet coverage
- Checker coverage
 - Protocol checkers coverage
- Scenario coverage
 - Corner-case scenario coverage
- Cross coverage
 - Coverage between two or more coverpoints within a covergroup e.g. frame type with length and payload type.

	ICC — Coverage Totals		
<u>File View Window</u>			Help
A A			Threshold 100 %
Coverage GUI			
Code Coverage File: Tcc.cov Toggle Coverage File	n ▼ Coverage		Include: bet ▼ Passing Ratio
Module/Unit		92 %	7110 / 7649
Instance		93 %	7446 / 7985
FSM Coverage File: icc.fsm 💌	Coverage	1	Passing Ratio
State		97 %	67 / 69
Arc	I	84 %	150/177
Control-oriented Data-oriented	1 	% 99 %	0 / 0 795 / 800
Summary Code/Data FSM Functional	/space/dmav1/TEL_MAC	2/Development/top	_env/code_coverage_reg/cov_work/design/icc.dg
Functional Coverage File: icc.fcov Filter: *	Displaying 88 coverage points	;	
		+Count	e.error_packet_txd_bfm_instance.FULL_DUPLE Coverage per bin:
iter tel_gpe_coverage.packet_transmitted_ptm_instance.FULL_DUPLEX_FRAME_BFM_X2		1/1	
Herein and the coverage packet transmitted bfm instance FULL DUPLEX FRAME BEM X3		979	6000000
B tel gbe coverage, packet rxd carext instance.BX NORMAL EXTN PACKET HALF X1		9/9	
E tel_gbe_coverage.packet_rxd_instance.RX_BURST_PACKET_X2		9/9	
B tel_gbe_coverage.packet_transmitted_bfm_instance.BURST_FRAME_BFM_X2		18/18	
B tel_gbe_coverage.packet_transmitted_bfm_instance.NORMAL_FRAME_EXT_BFM_X1		18/18	4000000
+ tel_gbe_coverage.packet_transmitted_bfm_instance.NORMAL_FRAME_BFM_X1		27 / 27	9
		27 / 27	∰
		28 / 36	
e tel_gbe_coverage.packet_rxd_instance.RX_NORMAL_PACKET_HALF_X1		29/36	2000000

35/36

36/36

72/72

72/72

84 / 90

163/180

176 / 180

0

6

20

40

Bins

60

 $\textcircled{B} \label{eq:bound} \textcircled{B} \label{eq:bound} = tel_gbe_coverage.error_packet_txd_bfm_instance.HALF_DUPLEX_ERROR_FRAME_EXT_BFM_X1 \label{eq:bound} = tel_gbe_coverage.error_packet_txd_bfm_instance.HALF_DUPLEX_ERROR_FRAME_FRA$

tel_gbe_coverage.error_packet_txd_bfm_instance.FULL_DUPLEX_ERROR_FRAME_BFM_X1

=--- tel_gbe_coverage.error_packet_txd_bfm_instance.HALF_DUPLEX_ERROR_FRAME_BFM_X1

+--- tel_gbe_coverage.error_packet_txd_bfm_instance.HALF_DUPLEX_ERROR_FRAME_BFM_X2

 $\textcircled{B} \label{eq:below} = -- \ tel_gbe_coverage.error_packet_txd_bfm_instance.BURST_ERROR_FRAME_BFM_X2$

C 2002 TATA ELXSI LTD INTEGRATION SERVICES

Scoreboard

- Abstract and un-timed reference models.
- Perform data-integrity check on data received.
- Contains
 - Packet driven to DUT.
 - Data driven by DUT in response to it.

• URM helped us to create an efficient, scalable and reusable test environment.

• Constrained based random stimulus generation helped us to reduce the time involved in creating directed test scenarios.

• Strong functional coverage analysis model which helped us to cover corner case scenarios also.

Thank You !!!

