
Gigabit Ethernet VIP Development using URM

Jagvinder Yadav
Gaurav Singh

Agenda

• Introduction

- Objective, GbE VIP, URM, Verification Environment.

• Testbench Architecture

• Components of UVC

- Sequence Driver

- BFM

- Monitor

- Assertions

- Coverage

- Scoreboard

Objective

• To develop an automated test-environment which incorporates following
features of URM

- Constrained random stimulus generation

- Coverage driven verification

- Reusability

- Modularity

- Scalability

GbE VIP Features

• Configurable 10Mbps/100Mbps/1Gbps Ethernet MAC and compliant with
MII/GMII Standards

• Half/Full Duplex mode data transfer

• Full CSMA/CD support - jamming, backoff and automatic retransmission

• Supports generation of

- Data Frames, Control Frames (Pause Frames),

Jumbo Frames, VLAN Tagged Frames (IEEE P802.1Q)

GbE VIP Features contd..

• Programmable error injection

• Error detection

• Introducing collisions randomly

• Built-in functional coverage

Universal Reuse Methodology (URM)

- URM is a complete methodology for developing high quality reusable
verification components.

Features:-

• Language Independent (System verilog, Specman ‘e’, VHDL, System C).

• Fully constrained-random, automated test-stimulus generation and
functional coverage driven approach.

• Module based and class based architectures

- Generated transactions are classes but TB infrastructure is module based.

- Easier to adopt.

- Object-oriented approach.

- Testbench automation using base classes.

GbE uVC Architecture

12345671
98765431
23902904
45843298
23432432
24324322
55252255
09273822
13814791
4098e092
23432424
24242355
25262622
26452454
24524522
25262622
26452454
24524522
25262622
26452454
24524522
25262622
26452454
24524522
13814791
4098e092
23432424
24242355
25262622
26452454
24524522
25262622
26452454
24524522
25262622
26452454
25262622
26452454
24524522
25262622
26452454
24524522
25262622
26452454

Random Seeds

DUT Interface

DUT

BFM

Sequence
Driver

Configurations

Monitor Assertions

VIP AGENT

GbE VIP ENVIRONMENT

Tests

BFM I/F

Coverage

Cov I/F

Verification Environment

ENVIRONMENT

Tx
GbE VIP

Rx

Rx
GMAC DUT

Tx

Rx_Frame
Tx_Frame

Rx_Frame Tx_Frame

SCOREBOARD

crs/col CRS and COL Control crs/col

HOST
uVC

Transaction Class

• Base class containing different packet fields of GbE frame.

• Defined inside a package and can be imported across modules of TB to
access transactions.

• User-defined constraints, basic properties and methods.

• Post-randomize functions (CRC calculation, Padding and Extension field
for GbE).

• Can be extended to add/override constraints, properties, methods.

package trans_P;
typedef struct packed
{
bit [56:0] preamble;
bit [47:0] sfd;
bit [1:0] length;
bit [100:0] payload;

} struct_packet_S;

class tel_data_C;
rand struct_packet_S packet_obj; //object of struct defined as rand
//Adding basic constraints
constraint basic_const
{
packet_obj.preamble == {28{2’b10}};
packet_obj.sfd == 8’b10101011;

}

//add properties to the class
//add various methods to the class (functions and tasks)

function void post_randomize();
for (int i=0; i<length; i++)
begin
payload[i] = $urandom;

end
fpadding();
fcrc();
fextension();

endfunction
endclass

endpackage

Transaction Class Example

Driver

• Generates packet instance containing random GbE
packets required by DUT.

• Generates sequences of random transactions with user
controllability.

• Connected to BFM via channel (BFM Interface).

• Passes generated transactions to BFM by putting into
BFM interface.

• Directed and random testcase compatible.

Sequence
Driver

“put”

BFM I/F

BFM

“get”

BFM Interface
• A channel to pass transactions from driver to BFM.

• Blocks the next transaction until current transaction is
executed by the BFM.

for (int i=1; i<= count; i++)
begin
success = packet_obj.randomize();
// blocking put

bfm_if.put(packet_obj);
end

task automatic put(
input struct_packet packet1);
@bfm_if.done;

endtask
task automatic get(

output struct_packet packet1);
endtask

forever begin
// blocking get

bfm_if.get(packet_obj);
……..
……..
-> bfm_if.done;
end

BFM I/F

Sequence
Driver

“put”

“get”

BFM

BFM

• Protocol-specific module implementing low-
level protocol.

• Fetches random packet generated by driver
from BFM Interface.

• Designed to work in Pull mode, pulls next
transaction from BFM interface.

• Blocked if there are no pending transactions.

• Converts transactions into bit-stream and
drives it to DUT via DUT Interface following
GbE Protocol.

BFM I/F

BFM

“get”

DUT I/F

DUT

Monitor

• Connected to DUT Interface to receive
transactions from DUT and monitoring bus-
level activities.

• Collects data (bit stream) from bus and and
reassembles it to form GbE packet.

• Protocol checkers, bug reporting mechanism
are a part of monitor.

• Sends the packet to scoreboard for data
integrity checking.

• Passes data to coverage module for
functional coverage calculation and analysis.

DUT I/F

DUT

BFM I/F

Sequence
Driver
“put”

“get”

BFM
Monitor

Assertions

• Placed at interface side.

• Report any protocol violations at I/F level.

• Monitor Tx/Rx signals ensuring that GbE protocol violation doesn't
occur.

• ABV methodology is used for assertions development (implemented
using SVA).

Coverage

Calculates and analyzes functional coverage of GbE VIP.

• Stimulus coverage

- Generated data packet coverage

• Checker coverage

- Protocol checkers coverage

• Scenario coverage

- Corner-case scenario coverage

• Cross coverage

- Coverage between two or more coverpoints within a covergroup

e.g. frame type with length and payload type.

Coverage GUI

Scoreboard
• Abstract and un-timed reference models.

• Perform data-integrity check on data received.

• Contains

- Packet driven to DUT.

- Data driven by DUT in response to it.

OPB
BUS
uvc

GMAC DUT GbE VIP

Scoreboard

Conclusion

• URM helped us to create an efficient, scalable and reusable test
environment.

• Constrained based random stimulus generation helped us to
reduce the time involved in creating directed test scenarios.

• Strong functional coverage analysis model which helped us to
cover corner case scenarios also.

Thank You !!!

