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Objective

• To develop an automated test-environment which incorporates following 
features of URM

- Constrained random stimulus generation

- Coverage driven verification

- Reusability

- Modularity

- Scalability



GbE VIP Features

• Configurable 10Mbps/100Mbps/1Gbps Ethernet MAC and compliant with 
MII/GMII Standards

• Half/Full Duplex mode data transfer 

• Full CSMA/CD support - jamming, backoff and automatic retransmission

• Supports generation of 

- Data Frames, Control Frames (Pause Frames), 

Jumbo Frames, VLAN Tagged Frames (IEEE P802.1Q)



GbE VIP Features contd..

• Programmable error injection

• Error detection

• Introducing collisions randomly

• Built-in functional coverage 



Universal Reuse Methodology (URM)

- URM is a complete methodology for developing high quality reusable 
verification components.

Features:-

• Language Independent (System verilog, Specman ‘e’, VHDL, System C).

• Fully constrained-random, automated test-stimulus generation and 
functional coverage driven approach.

• Module based and class based architectures

- Generated transactions are classes but TB infrastructure is module based.

- Easier to adopt.

- Object-oriented approach.

- Testbench automation using base classes.



GbE uVC Architecture
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Transaction Class

• Base class containing different packet fields of GbE frame.

• Defined inside a package and can be imported across modules of TB to 
access transactions.

• User-defined constraints, basic properties and methods.

• Post-randomize functions (CRC calculation, Padding and Extension field 
for GbE).

• Can be extended to add/override constraints, properties, methods.



package trans_P;
typedef struct packed
{
bit [56:0] preamble;
bit [47:0] sfd;            
bit [1:0] length;
bit [100:0] payload;

} struct_packet_S;

class tel_data_C;
rand struct_packet_S packet_obj;   //object of struct defined as rand
//Adding basic constraints 
constraint basic_const 
{
packet_obj.preamble == {28{2’b10}};
packet_obj.sfd == 8’b10101011;

}

//add properties to the class
//add various methods to the class (functions and tasks)

function void post_randomize();
for (int i=0; i<length; i++)
begin
payload[i] = $urandom;

end
fpadding();
fcrc();
fextension();

endfunction
endclass

endpackage

Transaction Class Example



Driver

• Generates packet instance containing random GbE 
packets required by DUT.

• Generates sequences of random transactions with user 
controllability.

• Connected to BFM via channel (BFM Interface).

• Passes generated transactions to BFM by putting into 
BFM interface.

• Directed and random testcase compatible.
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BFM Interface
• A channel to pass transactions from driver to BFM.

• Blocks the next transaction until current transaction is 
executed by the BFM.

for (int i=1; i<= count; i++) 
begin
success = packet_obj.randomize();
// blocking put

bfm_if.put(packet_obj);
end

task automatic put(
input struct_packet packet1);
@bfm_if.done;

endtask
task automatic get(

output struct_packet packet1);
endtask

forever begin
// blocking get

bfm_if.get(packet_obj);
……..
……..
-> bfm_if.done;
end

BFM I/F

Sequence
Driver

“put”

“get”

BFM



BFM

• Protocol-specific module implementing low-
level protocol.

• Fetches random packet generated by driver 
from BFM Interface.

• Designed to work in Pull mode, pulls next 
transaction from BFM interface.

• Blocked if there are no pending transactions.

• Converts transactions into bit-stream and 
drives it to DUT via DUT Interface following 
GbE Protocol.
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Monitor

• Connected to DUT Interface to receive 
transactions from DUT and monitoring bus-
level activities.

• Collects data (bit stream) from bus and  and 
reassembles it to form GbE packet.

• Protocol checkers, bug reporting mechanism 
are a part of monitor.

• Sends the packet to scoreboard for data 
integrity checking.

• Passes data to coverage module for 
functional coverage calculation and analysis.
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Assertions

• Placed at interface side.

• Report any protocol violations at I/F level.

• Monitor Tx/Rx signals ensuring that GbE protocol violation doesn't 
occur.

• ABV methodology is used for assertions development (implemented 
using SVA).



Coverage

Calculates and analyzes functional coverage of GbE VIP.

• Stimulus coverage

- Generated data packet coverage

• Checker coverage

- Protocol checkers coverage 

• Scenario coverage

- Corner-case scenario coverage

• Cross coverage

- Coverage between two or more coverpoints within a covergroup 

e.g. frame type with length and payload type.



Coverage GUI



Scoreboard
• Abstract and un-timed reference models.

• Perform data-integrity check on data received.

• Contains 

- Packet driven to DUT.

- Data driven by DUT in response to it.
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Conclusion

• URM helped us to create an efficient, scalable and reusable test
environment.

• Constrained based random stimulus generation helped us to 
reduce the time involved in creating directed test scenarios.

• Strong functional coverage analysis model which helped us to 
cover corner case scenarios also.



Thank You !!!


