PLATFORM APPLICATION NOTE -~
cadence

The Role of Assertions in Verification Methodologies

USING ASSERTIONS IN A SIMULATION ENVIRONMENT

February 2003

TABLE OF CONTENTS

Cadence Incisive Verification PlatfOrm ... 1
1 ASSEIIONS OVEIVIEWeiiiiiiiee ittt ettt ettt e e e et e e e ea b et e e e e bee e e e sttt e e e eabbeeeeeanbeeeeeabeeeesantaeeenns 1
2 1] (oo (U1 o o HO P PPRPTRRRP 1
3 Benefits Of USING ASSEITIONSuuiiiiiiiiiie ittt ettt e e s bt e s e e e e snneee s 1
4 OVEIVIEW Of PSL/SUGATeiiiiiiiiie ittt st e e ettt e e et e e e e st e e e e stae e e e ensaeeeeennteeesnnseeeeennees 2
5 Practical Example - AMBA AHB Interface ASSEItiONS............oooiiiiiiiiiiiiiiie e 6
6 Assertion Use Model in the Incisive verification Platform..............ccocoiiiinii e, 10
7 RS T 0] 0 £ =1 PSP 14

CADENCE INCISIVE VERIFICATION PLATFORM

Verifying today’s complex ICs requires the speed and efficiency that can only be provided in a unified verification
methodology. The Cadence Incisive verification platform enables the development of a unified methodology from system
design to system design-in for all design domains. A unified verification methodology consists of many different tools,
technologies and processes all working together in a common environment. The Incisive platform provides the tools,
technologies, a common user environment and the support needed to develop a unified methodology. This application note
details specific topics for using the tools and technologies in the Incisive platform to help create a unified methodology to
verify your design.

1 ASSERTIONS OVERVIEW

Assertions play an important role in a unified verification methodology. Assertions allow the architect or designer to capture
his or her design intent and assumptions in a manner that can be verified in the implementation. Assertions are captured
during the development process and are continually verified throughout the process. Assertions, working in a unified
verification methodology, reduce the verification time by detecting bugs earlier, isolating where a bug is located, and
detecting protocol violations that may not cause functional errors to propagate to the outputs. In addition to bug detection,
assertions improve the efficiency in a unified methodology by improving reuse, enhancing testbench checking, and capturing
coverage information.

2 INTRODUCTION

Assertions express functional design intent in terms of behavior. Assertions can be used to express assumed input behavior,
expected output behavior, or forbidden behavior. For example, if a processor has a read signal and a write interface signal,
a designer might assume that “the read signal and the write signal should never be both active at the same time.” With
assertion-based verification (ABV) in a simulation environment, if during a particular simulation run, there was ever a cycle
when both the read and the write signals were active,

then the assertion would fire and report a message. Application Alnte'face /‘\Str UCtL.lr al
This is an example of an interface assertion. Interface Assertion ssertions Sjert(ons
assertions are used to check the protocol of interfaces t

between blocks. Other types of assertions include / \
architectural assertions and structural assertions, as x

shown in Figure 1. Application assertions are used to /

prove architectural properties such as fairness and Arbiter | .

deadlocks. For example, “after a request for transfer, D PCI " ,I . @
eventually an acknowledge is granted.” Structural Bus v O
assertions are used to verify low-level internal "

structures within an implementation, such as a FIFO " FIFO FSM
overflow or incorrect FSM transitions. For example, “if Processor |« P

the read and write pointers of a FIFO are the same, 'g:f

then the state of the FSM remains FIFO_Overflow until

data is read.” Figure 1. Types of Assertions

This document provides an introduction to the

PSL/Sugar assertion language and to the PSL/Sugar-based implementation of ABV (Dynamic ABV) that is supported in the
Cadence Incisive verification Platform. The benefits of using assertions are discussed, and a specific example of interface
assertions for the AMBA AHB processor type interface is presented. The use models of Cadence’s implementation of
Assertion-Based Verification are also discussed, including how you run a simulation with assertions, debug them, and turn
them on and off.

3 BENEFITS OF USING ASSERTIONS

Assertions are created in the unified verification methodology whenever design or architecture information is captured.
These assertions are then used throughout the verification process to efficiently verify the design. The use of assertions
improves the speed and efficiency of verification by bug catching and by enhanced testbench checking. Assertions also
facilitate re-use and provide data that is useful in evaluating functional coverage.

3.1 BUG CATCHING

The primary focus of Cadence’s implementation of assertion-based verification is to identify bugs as close to the source as
possible. This reduces the debug time, especially after full chip integration of blocks when bugs take longer to propagate to
the output and are more difficult to isolate. Assertion checking during simulation can identify internal errors within the module

1 PLATFORM APPLICATION NOTE

sooner and closer to the source than is possible without assertions. Without assertions, errors must propagate to the outputs
before being detected. Assertions reduce the time it takes to locate difficult bugs by identifying where in a design the bug
first appears. Assertions also catch bugs that do not propagate to the output. When an assertion fires, it provides an
immediate localization of the failure, which simplifies the insertion of intellectual property (IP) into design environments.

3.2 ENHANCING TESTBENCH CHECKING

Assertions help to supplement testbench checking. Often testbench checkers require added complexity to verify the correct
operation of internal device under verification (DUV) behavior, such as verifying that an arbiter, buried deep in the design, is
servicing requests in a fair manner. Assertions reduce the necessity for complexity in the checker as they can verify internal
operations close to the source in a simple manner. By placing assertions throughout the design you are enhancing the
overall checking ability of the testbench.

3.3 RE-USE

Time to market pressures, and the high cost and risk of new developments continues to increase the importance of re-use,
both for design and verification IP. A key objection that designers have in adopting re-use methodologies is that it is difficult
to understand and integrate someone else’s code, especially when the developer is no longer available for consultation.
Also, there is a general lack of confidence in how proven the code is and how accurate the documentation is.

Assertions help to instill confidence that the design is well documented and functions as specified. Embedded assertions
provide a standard format of documented behavior that is checked by simulation vectors. Embedded assertions travel with
the design, making the design easier to integrate. Assertions can flag when the assumptions of the original designer are not
true, or when assumed interface protocol is violated. The error is caught at or near the source.

PSL/Sugar helps in providing good code documentation because it easy to express, and therefore interpret, both assumed
and expected behavior. Each behavior is verified with the simulation vectors, so in a sense, the documentation becomes a
standardized format that is proven and continually tested by simulation vectors.

3.4 COVERAGE

With Cadence’s implementation of ABV, assertion statistics represent coverage information. This coverage information can
be helpful in identifying boundary conditions, corner cases, or sequences that have not been tested.

4 OVERVIEW OF PSL/SUGAR

The Verilog and VHDL simulators of the Incisive verification platform support the use of assertions with native simulation
support for the PSL/Sugar assertion language. This section provides an overview of the features commonly used. Refer to
the Simulation-Based Assertion Checking Guide for complete details of which features the simulators in the Incisive
verification platform support.

PSL/Sugar makes it easy to express very complex behavior. PSL/Sugar is based on Boolean expressions, and defines
dialects that are specific to hardware languages. PSL/Sugar makes it straightforward to express the following behavior:

A behavior may always or never hold true

A behavior may always or never hold true only within some window

A behavior may express some specific sequence of events (including overlapping sequences)

A behavior may express an eventuality

Any behavior may have exceptions to the rule

Any behavior may only hold true for specific configurations

The Verilog and VHDL simulators in the Incisive verification platform provide native support of PSL/Sugar language. Native
support is very important for optimal performance.

ook wbh~

41 BOOLEANS

PSL/Sugar is designed to be used in conjunction with hardware description languages (HDL) such as Verilog or VHDL. At
the bottom level, the PSL/Sugar language is used to specify the conditions that define a behavior of interest, referring to
signals, variables, and values within an HDL description of a design. Those conditions are represented by HDL expressions
that can be interpreted as having Boolean values. Using the underlying HDL syntax and semantics for such expressions
ensures that the assertion language can cover the full range of behavior that can be described in the HDL, and that there is
no chance of semantic mismatch between the HDL description of a behavior and the PSL/Sugar description of the same
behavior. This also reduces the learning curve for being able to express a behavior. Cadence’s implementation of ABV
supports two dialects of PSL/Sugar. Boolean expressions take on the syntax of the language of the compiler. NCVerilog
supports the Verilog dialect and NCVHDL supports the VHDL dialect.

2 PLATFORM APPLICATION NOTE

4.2 CLOCKING AND EVALUATION

PSL/Sugar assertions are declarative in nature. This means that every assertion is evaluated on every verification cycle, and
all assertions are evaluated concurrently. Activation of assertions is not dependent on the HDL code. In other words,
activation of assertions are not affected by placement in a conditional statement, like a case statement or an if statement.
Asynchronous or synchronous behavior can be expressed. You can also define a default clock that applies if no explicit
sampling clock is attached to an expression. The clock can be defined as any other Boolean expression, and can make use
of edge functions.

4.3 SEQUENCE EXPRESSIONS

Sequences can express a simple Boolean expression or a multi-cycle behavior of Boolean expressions, where each cycle of
a sequence is separated by a “;”.A sequence can be defined once as a sequence declaration and then be referenced, like
an alias. The declaration syntax is:

Verilog: sequence <nane> = {<sequence_definition>};

VHDL: sequence <nane> is {<sequence_definition>}
For example, if a, b, c, d, and e are Boolean expressions, then the following define legal sequences:

sequence seql = { a };

sequence seq2 = { b;c };

sequence conpl ex_seq = {{seql}; {seq2}};
The complex sequence, conpl ex_seq, evaluates to true when a is true followed by b is true followed by c is true.

Note the following:

1. Sequence names are enclosed in braces when referenced, indicating it is a sequence expression.

2. Successive cycles of a sequence are separated by a semicolon (;) .

3. A boolean expression may be viewed as having a sequence length of one. Defining a sequence expression of length
one allows you to give the expression a more meaningful name to improve readability.

4. The keyword t r ue can be used to specify a don’t care condition during any cycle.

5. You cannot apply the Verilog ! or VHDLnot operator on a sequence expressions. (for example,
I {sequence_expr essi on} is not valid).

6. Repetition specifiers can be used for any expression of a cycle. i nf can be used to express infinity. Formats exist for
each HDL dialect. The more commonly used operaters are shown below:

Verilog Dialect VHDL Dialect Definition

[*] [* 1] Indicates that the expression may occur zero or more consecutive times.

[+] [+] Indicates that the expression may occur one or more consecutive times.

[* n] [* n] Indicates that the expression should occur exactly n consecutive times.

[*n :inf] [*n to inf] Indicates that the expression should occur a minimum of n consecutive times.

[* : m] [* to m] Indicates that the expression may occur a maximum of m consecutive times.

[*n : m] [*n to m] Indicates that the expression may occur n or m consecutive times.
PROPERTIES

A property defines a behavior to be checked. A property can be thought of as containing an optional enabling condition, a
fulfilling condition, which is the behavior to be checked, an optional discharging condition, and an optional clocking condition.
The most general form of a property and the definition of terms is shown below:

Verilog:
property <nane> = [operator] [enabling condition(s)]
[inmplication_operator(s)] (fulfilling_condition)
[until | until_ | abort discharging_condition] [@clock_expression)];
VHDL:
property <nanme> is [operator] [enabling_condition(s)]
[inmplication_operator(s)] (fulfilling_condition)
[until | until_ | abort discharging_condition] [@clock_expression)];

3 PLATFORM APPLICATION NOTE

The following describes the key terms of a property expression:

1.
2.

8.

property is a declaration that what follows is a behavior. The simulator, by default, will verify this behavior.

A property <name> is a unique identifier. This should be a very descriptive name because the failure message reports
only this name and the time of failure. HDL naming conventions apply. The name must be unique to the module or
entity in which it is used.

The operator is one of always or never and indicates whether the behavior should always occur or should never occur.
Note that you may choose to omit the always or never term, in which case the check occurs at time zero only.

The enabling condition can be any Boolean expression or sequence expression. Multiple enabling conditions and
implication operators can be strung together to form a complex enable. The assertion is considered to begin when the
first sequence of the enabling condition evaluates to true.

The implication operator specifies the logical relationship between two expressions. The operator is one of the
following symbols:

-> Evaluation of the right hand side(RHS) is started when the left hand side(LHS) is true. The
behavior can be read as “if (enabling condition) is true, then the (fulfilling condition) must also be
true”. The LHS must be boolean.

-> next Evaluation of the RHS is evaluated in the next cycle after the LHS becomes true. The behavior
can be read as “if (enabling condition) is true, then the (fulfilling condition) must be true in the
next verification cycle”. The LHS must be boolean

| -> Evaluation of the RHS is started in the last cycle of the LHS. The LHS must be a sequence
when this is used.

| => Evaluation of the RHS is started following the cycle when the LHS condition becomes true. The
LHS must be a sequence when this is used.

eventual | y! The RHS is true in some future cycle, and must be true before the end of simulation. The RHS
must be a boolean or a sequence.

The fulfilling condition is the behavior to be tested. It is checked on every verification cycle by default. The fulfilling
condition can be any Boolean expression or sequence. The fulfilling condition is the last expression prior to any
discharging condition.

The discharging condition is a condition that indicates to stop the checking of the behavior. Discharging conditions
include the following:

unti | (Boolean expression) When all of the enabling conditions have evaluated to true, the fulfilling condition
must be true until the Boolean expression becomes true. It then finishes
immediately. unt i | has no affect until the fulfilling condition is being checked.

unti | _ (Boolean expression) When all of the enabling conditions have evaluated to true, the fulfilling condition
must remain true up to and including the cycle where the Boolean expression is
true. It then finishes immediately. unt i | _ has no affect until the fulfilling condition
is being checked

abort (Boolean expression) Abort cancels the checking of an assertion. An abort that occurs during the
checking of the enabling condition or the fulfilling condition will cancel the checking.
This is different than the unti | orunti | _ that requires that the fulfilling condition
is being checked.

The clock expression is the condition that is used to sample the assertion. This is generally a clock edge, but can be
any Boolean expression. A default clock can be specified, eliminating the need to specify it for every assertion.

Some examples are as follows:

Assuming read and write are interface signals, the following is an example of an interface assertion:

Verilog: property Never RAW Bot hActive = never ((read == 1) && (wite == 1));
VHDL: property Never RAW Bot hActive is never ((read = 1) and (wite = 1));

4 PLATFORM APPLICATION NOTE

An application assertion might be that every request is eventually granted unless a reset occurs:

Verilog: property EveryRequest|sEventual | yGranted = al ways (
Req -> eventual ly! (Granted == 1)) abort (reset == 1) @ posedge cl k)
VHDL: property EveryRequestlsEventual |l yGranted is always (
Req -> eventually! (Granted = 1)) abort (reset = 1) @clk’event and clk = “1")

A structural assertion might be that if the memory task is clear (m t ask = 2’ b00), it must always be followed by a three-
cycle sequence that must be repeated 256 times. The sequence is wri t e_n low for one sample followed by a write high for
two samples. The write signal is synchronous to the positive edge of cl k. Reset is high and will cancel the write.

Veril og:
sequence WRITE_PULSE = {(wite_n == 0);(wite_n == 1);(wite_n == 1)};
property CLEAR MEM WRI TE_N = al ways
{mtask == 2" b00} |=> {WRI TE_PULSE[*256] }
abort (reset == 1) @posedge cl k),
VHDL:
sequence WRITE_PULSE is {(wite_n = 0);(wite_n = 1);(wite_n = 1)};
property CLEAR MEM WRI TE_N i s al ways
{mtask = "00"} |=> {WRI TE_PULSE[*256] }
abort (reset = 1) @clk’event and clk = *1");

4.4 DIRECTIVES

A sequence or a property by itself just describes behavior, there is no inherent obligation for the behavior to occur.
Directives specify whether a given property is expected to hold (assert) or assumed to hold (assune). In addition, a cover
directive specifies the desire to ensure that a sequence is encountered during verification. Properties are always asserted or
assumed. For assertions used in simulation, assert and assune have the same meaning. (Static verification will prove
properties that are asserted, and will use assumed properties to limit the state space of the search.) Sequences can be
used in properties or they can be used explicitly for coverage. The format is as follows for both Verilog and VHDL:

assume | assert <property_name>;
cover <sequence_name>;:

In Cadence’s implementation of simulation-based assertion verification, all properties are treated as if they are asserted.
That is to say, the assert or assune directives are optional.

4.5 DEFINING ASSERTIONS

Cadence’s implementation of ABV supports defining assertions embedded in the same module or entity/architecture as the
HDL with which it is associated, or in a separate file. Embedded assertions are in comments and are identified using the
special pragma identifier sugar . For example, the following is an embedded assertion that expresses that the read and
write signals are never both active, assuming the active state is high:

Verilog: // sugar property NeverRdWrBothActive = never ((read == 1) && (write == 1))
VHDL: -- sugar property NeverRdWrBothActive is never ((read = 1) and (write = 1))

Because the assertions can be specified as comments, they will be ignored by tools that do not support PSL/Sugar.
Assertions may also exist in an external file that references signals, variables, and values within an HDL description of a
design. Using assertions from an external file is described in the Simulation-Based Assertion Checking Guide in Cadence
documentation.

Structural assertions that are used to verify low level internal structures within an implementation will likely be inline with the
HDL code. This is the recommended approach when the assertion is specific to a design, because the assertion is
guaranteed to travel with the design.

Application assertions that are used to prove architectural properties may be embedded in the design HDL, or they may be
in an external file that references the design HDL. The primary reason for defining assertions in an external file is to express
behavior that references signals from multiple modules or entities. Another use for assertions in an external file is when
assertions are added to legacy IP, where the IP cannot be modified.

Interface assertions that check the protocol of interfaces between blocks, are likely to be in a separate file, but that file is a
standalone module or entity. The interface assertions are self-contained in the module/entity that contains HDL code, so
they have the same effect as embedded assertions. The HDL code is minimal but can be used, for example, to calculate
expected values that are then used in the assertions. Placing the assertions in a separate file allows the interface assertions
to be instantiated in any block that makes use of that interface (for block level verification) or on the interface itself when the
blocks are integrated. Defining a separate module or entity that is instantiated also allows the signal names to be mapped
when the interface assertions are instantiated, making it easier to use. The AMBA AHB Interface assertions discussed in the
next section provide an example.

5 PLATFORM APPLICATION NOTE

5 PRACTICAL EXAMPLE - AMBA AHB INTERFACE ASSERTIONS

The AMBA AHP interface is a typical processor interface. This section details how to write PSL/Sugar compliance assertions
using the Verilog dialect for an AHB interface. Each behavior is described and the PSL/Sugar representation is shown. The
next section will show how to simulate with these assertions. The detailed AHB specification can be found at

www. ar m cont ar nt ech/ AMBA_Spec?QpenDocunent .

Signaling interface monitors will be HDL based assertions that use the PSL/Sugar language. This choice keeps the clock
level analysis in the native language of the simulator so it does not require having to traverse a lower performance interface.
You may not want to check that the contents of what was written were written correctly, you may just want to check that the
protocol specified for the transfer was adhered to. Higher layer protocols are better checked using higher level languages
like SystemC because of its extended capabilities, such as queuing, and other features for tracking expected results.

The AHB assertions will be embedded in an interface assertion monitor that can be instantiated in the design. This allows
the assertion monitor to be instantiated within any AHB interface device, or once on any AHB bus interface. The PSL/Sugar
code is shown below. The top of the file simply declares all the signals. It also defines parameters used to improve
readability. Some HDL code is required to create variables used in the assertions. The assertions are then defined. For each
assertion, the behavior is described and then defined in PSL/Sugar. Note that all properties are asserted by default in the
simulators of the Incisive verification platform, so the assume directive is not used.

/****************** AHB Interface PSL Sugar ASSEl’thnS ****************/
“tinmescale 1 ns / 100 ps

modul e ahbConpl i ance (ahbAddr i, ahbTrans_i, ahbWite_i, ahbSize_ i,
ahbBurst _i, ahbProt_i, ahbWbata_i, ahbRData_i, ahbReady_i, ahbResp_i,

ahbReq_i, ahbLock_i, ahbGnt i, ahbResetn_i, ahbSel i, ahbMaster i,
ahbMast Lock_i, ahbSplit_i, ahbdk_i);

par anet er dat aBusW dth = 32;

par anet er nunSl aves = 32;

par anet er busMast er = 0;

/* these paraneters define the Transfer Type as specified by HIrans */

paraneter |DLE = 2'b00;
paraneter BUSY = 2' b01;
paraneter SEQ = 2'bl1l;

paraneter NONSEQ = 2' b10;

/* these paraneters define the Burst Mde as specified by HBurst */

paraneter SINGLE = 3' b00O;
paraneter INCR = 3'b001;
paraneter WRAP4 = 3' b010;
paraneter INCR4 = 3'b011;
paraneter WRAP8 = 3' bl00;
paraneter INCR8 = 3'bl01;
paraneter WRAP16 = 3' b110;
paraneter INCR16 = 3'blll;

/* define the ambunt of data in each beat as specified by HSize*/

paraneter bits8 = 3' b000;
paraneter bitsl6 = 3' b001;
paraneter bits32 = 3' b010;
paraneter bits64 = 3'b011;
paraneter bitsl128 = 3'bl100;
paraneter bits256 = 3'bl01;
paraneter bits512 = 3'bl10;
paraneter bitsl1024 = 3' bl111;

/* define the transfer response signals as specified by HResp*/
paraneter OKAY = 2' b00;

paraneter ERROR = 2' b01;

paraneter RETRY = 2' bl0;

paraneter SPLIT = 2'bl1l;

i nput [31:0] ahbAddr _i, ahbWata_ i, ahbRData_i;
i nput [1:0] ahbTrans_i, ahbResp_i;

i nput ahbWite_i, ahbReady_i, ahbReq_i;
i nput [2:0] ahbSi ze_i, ahbBurst_i;

i nput [3:0] ahbProt _i, ahbMaster_i;

i nput ahbLock_i, ahbGnt _i, ahbMastLock_i;
i nput [nunSl aves-1:0] ahbSel _i;

i nput [15:0] ahbSplit_i;

i nput ahbResetn_i, ahbd k_i;

6 PLATFORM APPLICATION NOTE

reg [31:0] prev_ahbAddr, prev_ahbAddrPl usSi ze;

reg prev_ahbWite, prev_ahbReady;

reg [nunSl aves-1:0] prev_ahbSel;

reg [3:0] prev_ahbProt;

reg [2:0] prev_ahbSi ze, prev_ahbBurst;

reg [dataBusW dt h-1:0] prev_ahbRData, prev_ahbWat a;
reg [1:0] prev_ahbTrans, prev_ahbResp;

i nteger Addrlncrenent;

i nt eger Nunber Beat s=0;

/1 synopsys transl ate_off

/* capture data that is needed in the foll ow ng assertions */
al ways @ posedge ahbd k_i or negedge ahbResetn_i)
begi n

prev_ahbAddr <= ahbAddr _i;

prev_ahbReady <= ahbReady_i;

prev_ahbWite <= ahbWite_i;

prev_ahbRData <= ahbRData_i;

prev_ahbWata <= ahbWoata_i ;

prev_ahbTrans <= ahbTrans_i;

prev_ahbBurst <= ahbBurst_i;

prev_ahbResp <= ahbResp_i;

prev_ahbSel <= ahbSel _i;

prev_ahbSi ze <= ahbSi ze_i;

prev_ahbProt <= ahbProt_i;

case (ahbSize_i) /* Addrincrement is used to check the address */

bi t s8: Addr | ncr enent =1;

bi t s16: Addr | ncr ement =2;

bi t s32: Addr | ncr enent =4;

bi t s64: Addr | ncr enent =8;

bits128: Addrl ncrenent =16;

bi ts256: Addrl ncrenment =32;

bi ts512: Addrl ncrenent =64;

bi t s1024: Addr | ncrenment =128;

default: ;
endcase
/* NumberBeats is used to check packet |engths */
if (ahbTrans_i == | DLE
Nunmber Beat s <= 0;
else if (ahbTrans_i == NONSEQ
Nunmber Beat s <= 1;
else if ((ahbTrans_i == SEQ && (ahbReady_i == 1))
Nunber Beat s <= Nunber Beats + 1;
el se

Nunmber Beat s <= Nunber Beat s;
/* determine the predicted address */
if ((ahbTrans_i != BUSY) && (ahbReady_i != 0))
prev_ahbAddr Pl usSi ze <= ahbAddr _i + Addrl ncrenent;
end

/**************************** SLmR ASSERTI O\IS **************************/

/* define default clock that will be used to sanple all subsequent asserts */

/* NOTE: it is inmportant that data does not change on the same edge as cl ock
because, |ike HDL, assertions can be sensitive to races */

/1 sugar default clock = (posedge ahbd k_i);

/* Behavior: If reset is active then Transfer Type is IDLE and Resp is OKAY
(default clock) */

/'l sugar property |dl eAndOkayDuri ngReset = al ways
11 {(ahbResetn_i == 0);(ahbResetn_i == 1)} |->
/1 {(ahbTrans_i == |IDLE) && (ahbResp_i == OKAY)};

/* Behavior: If the transfer type is NONSEQ and Burst Mdde is S| NGLE,
then on the next clock cycle, the transfer type is not SEQ and not BUSY
(default clock) */

/'l sugar property BusyAndSeqNever Fol | owNonseqOnSi ngl eTr ansfer = al ways (
/1 (ahbTrans_i == NONSEQ && (ahbBurst_i == SINGLE) ->
11 next ((ahbTrans_i != SEQ && (ahbTrans_i != BUSY)));

/* Behavior: If the transfer type is BUSY and sl ave is ready,
then on the next clock cycle, the transfer type must not be |IDLE and
must not be NONSEQ unless grant is O and ready is 1 (default clock) */

/'l sugar property Never GoFronBusyTol dl eOr NonseqUnl essNoGrant = al ways (

11 ((ahbTrans_i == BUSY) && (ahbReady_i == 1)) ->

11 next ((ahbTrans_i != IDLE) && (ahbTrans_i != NONSEQ)

/1 abort ((ahbGnt_i == 0) && (ahbReady_i == 1)) || (ahbResetn_i == 0));

/* Behavior: if the transfer type is IDLE, then on the next clock
cycle, the transfer type nust be either IDLE or NONSEQ (default clock)*/

/'l sugar property Al waysCGoToNonseqFrom dl e = al ways (
11 (ahbTrans_i == |IDLE) ->
/1 next ((ahbTrans_i == IDLE) || (ahbTrans_i == NONSEQ));

7 PLATFORM APPLICATION NOTE

Behavior: if the transfer type is BUSY then on the correspondi ng
data transfer , the slave nust provide a zero wait state OKAY response

(default clock) */

sugar property ResponseToBusyMist BeZer oWai t OKAY = al ways (
((ahbTrans_i == BUSY) && (ahbReady_i == 1)) ->
next ((ahbResp_I == OKAY) && (ahbReady_ i == 1)));

Behavior: if the transfer type is IDLE then on the correspondi ng data
transfer, the slave nust provide a zero wait state OKAY response

(default clock) */

sugar property ResponseTol dl eMust BeZer oWai t OKAY = al ways (
((ahbTrans_i == IDLE) && (ahbReady_i == 1)) ->
next ((ahbResp_i == OKAY) && (ahbReady_i == 1)));

Behavior: if the previous response was OKAY, and the current response
is not OKAY, then Ready nust be O during the second not OKAY response

(default clock) */

sugar property ReadyMist BeZer oDuri ngFi r st Not OkayResponse = al ways
{(ahbResp_i == OKAY); (ahbResp_i != OKAY)} |->

{ahbReady_i == 0}

Behavior: if the response is SPLIT or RETRY, the master nust drive |DLE

(default clock) */

sugar property FirstNot CkayResponseCausesNext!ldl e = al ways (
((ahbResp_i == SPLIT) || (ahbResp_i == RETRY)) && (ahbReady_i == 0) ->
IDLE));

next (ahbTrans_i ==

Behavior: if the transfer type is SEQ or BUSY, then the controls of the

correspondi ng data transfer nust

be the sanme as their previous control

(default clock) NOTE: the equival ence operator is used with ahbProt
because this is an optional signal and may be an "X" value if not

connected */

sugar property Control Must BeConst ant Duri ngABurst = al ways (

(ahbTrans_i == SEQ || (ahbTrans_i == BUSY) ->
((ahbSi ze_i == prev_ahbSi ze) && (ahbProt_i === prev_ahbProt) &&
(ahbWite_i == prev_ahbWite)));

Behavior: if Ready is 0 and the response is OK or ERROR the address
and control, and data fromthe master are held constant (default clock)
NOTE: the equival ence operator is used with ahbProt because this is an
optional signal and may be an "X' value if not connected */

sugar property Control Must BeConst ant WhenS| aveNot Ready = al ways (

(ahbReady_i == 0) && ((ahbResp_i == OKAY) || (ahbResp_i == ERROR)) -> next
(ahbTrans_i == prev_ahbTrans) && (ahbSize_i == prev_ahbSize) &&
(ahbProt _i === prev_ahbProt) && (ahbWite_i == prev_ahbWite) &&
(ahbAddr _i == prev_ahbAddr) && (ahbBurst_i == prev_ahbBurst))
abort (ahbResetn_i == 0);
Behavior: if ready is O and the previous transfer type was SEQ or NONSEQ

then on the next cycle the wite data is the same as the previous wite data

(default clock) (This assertion is designed to fail!!l) */
sugar property Wi teDat aMust BeConst ant WhenS| aveNot ReadyAndDat aBei ngTr ansf err ed
(ahbReady_i == 0) && (ahbWite_i == 1) &&
((prev_ahbTrans == SEQ || (prev_ahbTrans == NONSEQ) -> next
(ahbWbat a_i == prev_ahbWata))

abort (ahbResetn_i

== O)’

Behavior: if transfer type is BUSY then address does not change

(default clock) */

sugar property AddrHel dwhenMast er Busy = al ways (

(ahbTrans_i == BUSY) ->

next (ahbAddr_i == prev_ahbAddr));

Behavior: if transfer is in progress, then 1K boundary is not exceeded

(default clock) */

sugar property PageAddressNever ExceedslkBoundary = al ways (
((ahbTrans_i == SEQ || (ahbTrans_i == BUSY)) ->
(ahbAddr _i [31: 10] == prev_ahbAddr[31:10]));

Behavior: If the burst type is not INCR and the transfer type is not
IDLE , then the NunberBeats for the Burst Mdyde is not exceeded

(default clock) */

sugar property BurstlsNot TooLong = al ways (

(ahbBurst_i != INCR) && (ahbTrans_i != IDLE) ->
((ahbBurst _i == SINGLE) && (NunberBeats <= 1)) ||
((ahbBurst_i == WRAP4) && (NunberBeats <= 4)) ||
((ahbBurst _i == WRAP8) && (NunberBeats <= 8)) ||
((ahbBurst _i == WRAP16) && (NunberBeats <= 16)) ||
((ahbBurst_i == INCR4) && (NunmberBeats <= 4)) ||
((ahbBurst _i == INCR8) && (NunberBeats <= 8)) ||
((ahbBurst _i == INCR16) && (NunberBeats <= 16)));

Behavi or: For all but | NCR Burst

nmode, if the end of the packet is being

transferred as indicated by a transition from SEQ to | DLE when Resp is ok
then the NunmberBeats for the Burst Mdde is the max nunber unless grant i

(default clock) */

s 0

PLATFORM APPLICATION NOTE

/'l sugar property BurstlsNot TooShort = al ways

11 {((ahbBurst_i != INCR) && (ahbResp_i == OKAY) && (ahbTrans_i == SEQ);
11 (ahbTrans_i == IDLE) YI->

11 {((prev_ahbBur st SINGLE) && (NunmberBeats == 1)) ||
11 ((prev_ahbBurst == WRAP4) && (NunberBeats == 4)) ||
11 ((prev_ahbBurst == WRAP8) && (NunmberBeats == 8)) ||
11 ((prev_ahbBurst == WRAP16) && (NumberBeats == 16)) ||
11 ((prev_ahbBurst == INCR4) && (NunberBeats == 4)) ||
11 ((prev_ahbBurst == INCR8) && (NunmberBeats == 8)) ||
11 ((prev_ahbBurst == | NCR16) && (NunberBeats == 16))}
/1 abort (ahbGat_i == 0) ;

/* Behavior: if the transfer type is IDLE, then on the next clock cycle,
the transfer type is not SEQ and the transfer type is not BUSY
(default clock) */

/'l sugar property Never GoFroml dl eToSeqOr Busy = al ways (
11 (ahbTrans_i == IDLE) ->
11 next ((ahbTrans i = SEQ && (ahbTrans_i != BUSY)));

/* Behavior: RETRY is always asserted for two cycles unless reset is asserted
(default clock)*/

/'l sugar property RetryResponseMist Persi st TwoCycl es = al ways
11 {(ahbResp_i != RETRY); (ahbResp_i == RETRY)} |=>

11 {(ahbResp_i == RETRY)}

11 abort (ahbResetn_i == 0);

/* Behavior: SPLIT is always asserted for two cycles unless reset is asserted
(default clock) */

/'l sugar property SplitResponseMist Persi st TwoCycl es = al ways
11 {(ahbResp_i != SPLIT); (ahbResp_i == SPLIT)} |=>

/1 {(ahbResp_i == SPLIT)}

/1 abort (ahbResetn_i == 0);

/* Behavior: ERROR is always asserted for two cycles unless reset is asserted
(default clock) */

/'l sugar property ErrorResponseMist Persi st TwoCycl es = al ways
11 {(ahbResp_i != ERROR); (ahbResp_i == ERROR)} |=>

11 {(ahbResp_i == ERROR)}

/1 abort (ahbResetn_i == 0);

[****xx*x jncorrect AddressCal cul ation for 3 exanple WRAP nodes: This cal cul ates
whet her the next address is correct for all wap nodes***x*=*x*/
/* Behavior: if Burst node is WRAP4 and Size is 8 bits, then if
transfer node is SEQ or BUSY, then if previous transfer node is not
busy and previous Ready is not zero, then check that the address is as predicted */
/'l sugar property Correct AddressDuri ngPageSi ze4Burst Wap = al ways (
11 ((ahbBurst _i == WRAP4) && (ahbSize_i == bits8)) ->
/1 ((ahbTrans_i == SEQ || ahbTrans_i == BUSY)) ->
11 ((prev_ahbTrans != BUSY) && (prev_ahbReady != 0)) ->
11 ((ahbAddr _i [31: 2] == prev_ahbAddr[31:2]) &&
/1 (ahbAddr_i[1: 0] == prev_ahbAddr Pl usSize[1:0])));
/'l sugar property CorrectAddressDuri ngPageSl ze8BurstWap = al ways (
11 ((ahbBur st _ |:: WRAP4) && (ahbSize_i == bitsl16)) ||
/1 ((ahbBurst _i == WRAP8) && (ahbSize_ i == bits8)) ->
11 ((ahbTrans_l == SEQ || (ahbTrans_i == BUSY)) ->
11 ((prev_ahbTrans != BUSY) && (prev_ahbReady !'= 0)) ->
/1 ((ahbAddr _i [31: 3] == prev_ahbAddr[31:3]) &&
11 (ahbAddr _i [2: 0] == prev_ahbAddr Pl usSi ze[2:0])));

/'l sugar property Correct AddressDuri ngPageSi ze2048Bur st Wap = al ways (

I ((ahbBurst _i == WRAP16) && (ahbSize_i == bits1024)) ->

11 ((ahbTrans_i == SEQ || (ahbTrans_i == BUSY)) ->

11 ((prev_ahbTrans != BUSY) && (prev ahbReady '= 0)) ->

11 ((ahbAddr _i [31: 11] == prev_ahbAddr[31: 11]) &&

11 (ahbAddr _i [10: 0] == prev_ahbAddr Pl usSi ze[10:0])));

/* Behavior: the address must increment by size during all INCR beats */
/'l sugar property AddresslncBySi zeDuringAl |l BurstlncrBeats = al ways (

/1 ((ahbBurst_i == INCR16) || (ahbBurst_i == I NCR8) ||

11 (ahbBurst _i == INCR4)) ->

11 ((ahbTrans i == SEQ || (ahbTrans_i == BUSY)) ->

/1 ((prev_ahbTrans != BUSY) && (ahbReady_i !=0)) ->

11 (ahbAddr _i == prev_ahbAddr Pl usSi ze));

* Behavi or: always address nust be aligned to the transfer size */
| sugar property AddressNot Al i gnedToTransferSize = al ways (

/ ((ahbSi ze_i == bits8)

/ ((ahbSi ze_i == bitsl16) && (ahbAddr _i[0] == 1'b0)) ||

/ ((ahbSi ze_i == bits32) && (ahbAddr_i| == 2'b00)) ||

/ ((ahbSi ze_i == bits64) && (ahbAddr_i| == 3'b000)) ||
/ ((ahbSi ze_i == bits128) && (ahbAddr_i] == 4'b0000)) ||
/ ((ahbSi ze_i == bits256) && (ahbAddr _i] == 5'b00000)) |
/ ((ahbSi ze_i == bits512) && (ahbAddr _i] == 6'b000000)) ||

/ ((ahbSi ze_i == bits1024) && (ahbAddr_ 0] == 7'b0000000))));

9 PLATFORM APPLICATION NOTE

/* Behavi or: always the maxi mum nunber of wait states is 16 */
/'l sugar property NeverMreThanl6Wait States = al ways

11 {(ahbReady_i == 1);(ahbReady_i == 0)} |=>

11 {{(ahbReady_i == 0)[*0..15]}; {ahbReady_i == 1}}

/1 abort (ahbResp_i != OKAY);

/'l synopsys transl ate_on
endnodul e

5.1 TIPS FOR WRITING ASSERTIONS
Here are a few things to remember that will help you to get started with writing assertions:

1. Performance is adversely affected by eventualities and by unbounded repetition in the right hand side of the assertion.

2. Assertions are sensitive to race conditions just like HDL, so it will be appropriate to evaluate most assertions relative to
a clock.

3. You should avoid using never or not applied to an implication. The semantics are non-intuitive, because the
implication (a - > b)is true if a is false, so property exanpl e = never (a->b) can only be true if a is always true.
In addition, the statistics will not indicate that a never assertion ever finishes because it can only fail.

4. Assertions inside functions and Verilog tasks and VHDL procedures are ignored. However, an assertion can utilize a
function as part of a Verilog or VHDL expression.

5. Remember that assertions are evaluated at every verification cycle and all are evaluated concurrently. An assertion that
expresses a sequence of length 3 can have three concurrent evaluations ongoing simultaneously if the initial
expression remains true for extended cycles. This is very powerful because it allows for detection of overlapping
conditions.

6. As you will see in the next section, it is important to give your properties descriptive names because the name is the
message that is provided when the assertion fires.

6 ASSERTION USE MODEL IN THE INCISIVE VERIFICATION PLATFORM

This section describes how to run a Verilog simulation with assertions and how to debug assertion failures. Most assertions
should be enabled all the time because the overhead is very low relative to the overall simulation times and they provide
tremendous value in isolating the cause of bugs. It is not necessary to always probe assertions because failures will be
reported regardless of whether or not the assertion is probed.

6.1 RUNNING A VERILOG SIMULATION

The first step is to compile and elaborate the monitor and test fixture. Figure 2 shows the command used to compile the
monitor and test fixture, and the text output that is sent to the terminal. (Note: all design files and simulation messages are
not shown.) The ncveril og +assert directs the compiler to enable assertion processing. Without this compiler option,
all assertions are ignored. If there are assertions in the design, and the +assert compile option was specified, then the
design hierarchy will show the number of assertions. The simulation is run in command line mode so there are no
breakpoints and the simulator runs to the finish. In the GUI mode, the default is to break on assertion failures, which makes
the debug easier because you can query current signal values at the time of failure. Assertion errors are printed both to the
terminal and to the log file. Assertions can also be directed to their own log file.

10 PLATFORM APPLICATION NOTE

~| Terminal

Window Edit Options Help

Bev: ncverilod +assert cess+rwe —f viog_files. f =

ncwverilog: 04, 20 =] ight 1985-2002 Cadence Design Systems, Inc.

Recompiling. .. reason: file °./ahb jance.v’ 15 newer than expected.

expected: Thu Jan 30 18:44:42 20
. qctuaT: Mon Feb 3 12:39:59 2003

file: e e workT b madn:y UGS Use +assert to enable compilation of

errors: 0, warhings: 0 PSL/Sugar assertions.

file: ahbabvMonitor. v
module worklib. ahbabvMonitor:v (up-to-datel
errors: O, warnings: 0©
file: ahbCompliance.w
module worklib. ahbCompliance: v (up-to-date)
errors: O, warnings: O

Caching Tibrary “worklib® Done
Elaborating the design hierarchy: . .
Building instance overlay tables: .| Note thatthe Design hierarchy summary
Loading native compiled code: .| shows the number of assertions.
Building instance specific data str

Design hierarchy summary:

Instances nigque
Modules: 1 10
Registers: 1 431
Scalar wires: 39 -
Vectored wires: 51 - ; ; i
ATways bl ocks . . The assertion failure message is
Trdeded B edks: 42 42 printed to the console and the log
Cont. assignmenys: 30 34 file. The name of the assertion
Pseudo assigoments: 3 g and the time of failure are
assertions: 32 32 ided
Simulation timescale: 100ps proviaea.
Writing initial simulation snapshot: worklib.ma
Loading snapshot worklib.omainey o000 00 0 oo Do

ncsime: source .. SBIN/LDV42 /tools/inca/files/nesimre
NCsime> Fun

nesim: *EL,ASRTST O /ahbCompliance.w, 203 (fTime 80 NS) Assertion main.ahbMonitor_aABY.
ahb_comp] WritebataMustBeConstantiWhens]avelotReadysndbataBeingTransferred has failed
nesim: *ELASRTST O fahbCompliance. v, 203 {time 88 NS) Assertion main.ahbMonitor_aBY.
ahb_compl WriteDataMustBEeConstantWhenslaveNotReadyandDataBeingTransterred has failed

Simulation complete via $Finish{1} at time 13376 NS + 1
SAmain. w313 Ffinish;
ncsim: exit

Figure 2. Running a Verilog Simulation with Assertions

11 PLATFORM APPLICATION NOTE

6.2 DEBUGGING ASSERTION FAILURES

In general, for debug, you want to use +access+w c to elaborate the design so you can see all signals. Figure 3 shows the
waveform that is generated when the test case is run. All input signals were probed and all the assertions were probed to
one event counter. Notice that this event counter has a red x anytime a failure of any of the assertions occurs. You can
determine which assertion failed by selecting the probe name, then placing the curser on the x and choosing the Explore—
GoTo—Cause menu command. This will open the source browser with a pointer to the location of the assertion definition, as
shown in Figure 4. Placing your curser over a signal or variable name will show the current value of that signal or variable. If
multiple assertions fail, use the View—Expand Sequence menu command to select only one assertion at a time.

— SimVision: Waveform 1 B iJ

File Edit Wiew Exglore Format Simulation Windows Help
Floolrme x| pis|# 8-+ BEEYEHE
Search Names: [Signal »|[[@&, @ [Search Times: Marker »| [<[%)

[Tmes + < [a5(2) ~|[ns | fi [o B [DR S 5 | simuation Time: 6 [Time Range: IW @n @5 @f},@,

Baseline = 0

|
i Cursor-Baseline = 88ns

ahbAddr_i

ahbBur:

ahbProt_i
ahhRData_i

B 5R assert_fail probe 1

N =] “- 1000 4000 5000

|@| 1 ohject selected |

Figure 3 Simulation Waveform Shown with all Assertions Probed to One Event Counter.

12 PLATFORM APPLICATION NOTE

Assertion Browser icon
File Edit Wiew Select Format Simulation Windows

F | = W% -raERBYEE
n3|TimeAJ =|EiIZI|{2]| jlns R Bl I . [Search Times:| Marker = | | il r‘ r.,

DR S 5 0 | @8 | Simulation Time: 36ns + 1
v b'% Scope: |main.ahannitnr_.-‘-‘«Bv.ahb_cnmpl x| EE Files: |fh|:|mefpipen’.ﬂ\EIWathnmpIianu:e.u A g|

100 N
200

201 #+* Behawior: if ready 1s 0 and the previous transfer type was SEQ or NONSED,
202 then on the next cycle the write data is the same as the previovs write data
203 (default clock) (This assertion is designed to faillll) +/
op 204 /f sugar property WriteDataMustBeConstantWhenSlaveNotReadyandhataBeingTransferred = alwar

Simvision: Source Browser 1 [/home/pip

205 /S (shbReady_i == 0) &% (shbWrite i == 1) &

206 /S {(prev_ahbTrans == SEQ) || (prev shbTrans == NOMSEQ)) -» next

207 /S {ahbWhata i == prev_shbWhata))

208 /1 ghort (ahbResetn i == 0);

209

o970 simulatar:main.ahbronitor_&BY . ahb_complahbResetn_i = 5t1

211 #+* Behawior: if transfer type 1s BUSY then address does not change .J

212 (defavlt clock) */

213 fF sugar property AddrHeldWhenMasterBusy = always (

214 /S (ahhTrans i == BUSY) -> mnext (ahbaddr i == prev _shbaddc));
215

21k

217 f* Behawior: if transfer is in progress, then 1K boundary is not exceeded
218 (default clock) =*/

219/ sugar property PagedddressMNeverExceedslkEoundary = always

220047 ((ahbTrans i == SEQ) || (ohbTrsns i == BUSY)) -3

291/ {ahbadde 1[31:10] == prev ahbadde[31:10]) }:

222

223 £
H [

| 0 objects selected
Figure 4 Source Browser Points to the Definition of the Failing Assertion

To debug your assertions in the GUI without using waveforms invoke the assertion browser by selecting the button with the
assertion browser icon or through the menu: Windows -> New -> Assertion Browser. The assertion browser shows a listing
of all assertions in the design. The colors reflect the Current State. When an assertion fails, it is easy to identify by the color
red. Another way to locate an assertion is to use the filtering at the bottom. Assertions can also be sorted by clicking on any
column heading.

Cadence’s implementation of assertion-based verification defines four states: begun, fi ni shed, i nactive, and

f ai | ed. The assertion is begun when the first sequence of the enabling condition is satisfied, and remains begun until the
assertion goes inactive, finishes or fails. The f ai | ed state indicates that the fulfilling condition for an assertion has
evaluated to false. The f i ni shed state indicates that the fulfilling condition for an assertion has evaluated to true. The

i nact i ve state is when the assertion has not begun, and did not fail or finish during the currect clock cycle. The assertion
statistics provide some feel for what the simulation vectors have exercised, but interpretation can be tricky due to
overlapping conditions. A summary of statistics is provided for all assertions at the top, and for those displayed (filtered) at
the bottom of the window.

You can double click on any assertion in the Assertion Browser and it will take you to the assertion definition in the source
browser. To debug a failed assertion, double click on the failed assertion to view the source. The source browser shows the
definition of the failed assertion, exactly as shown in Figure 4 above. When you run in GUI mode and use the default break
on assertion failure, you can place the cursor over the terms of the fulfilling condition of the assertion definition to determine
what fired the assertion. This provides the current values only. You will not be able to see sequence values from previous
simulation time steps.

13 PLATFORM APPLICATION NOTE

= SimVision: Assertion Browser 1 =]
File Edit Miew ‘Windows Help

AN % ~QBEDYEED

Total: 32] £
Azzertion Mame Lourrent| Bagun | Finished | Failad X
State | Count | Count | Count
AddressMotalignedToTransferSize begun 1 0 0
ReadytdustBeZeroDuringFirstfot OkayRespanse begun 1 0 0
ErrorResponsehdustPersistTwoCycles begun 1 g n
SplitResponsebustPersistTwaCycles begun 1 Z 0
RetryResponsetdustPersistTwoCycles begun 1 g n
WriteDatabustBeConstantiwhenSlaverotReady AndDataBeingTransferred | failad 1 Z 4
BurstlsMotTooLong finished 0 B 0
BusyandsegheverFollowionseqOnsingleTranster finished 1 G 0
ControlkdustBeConstant'WhenslaveMotReady finished 1 B 0
CorrectAddressDuringPageSize1024Burst'y rap inactive 0 0 0
CorrectaddressDuringPageSizedBurstWrap inactive n 0 n
ControltustBeConstantDuringABurst inactive 0 0 (1
P~ .=
Displayed: 32 [nactive: 23 (713%5) Begun: 5 (15%] Finished: 3 {
Filters
Mame Filter: |* =| Module Fitter: | =| Instance Filter: | =

Display assertions with value: W Inactive [Begun [Finished W Failed

_|@| |1 object selacted ||

Figure 5 Assertion Browser shows Assertion Statistics

7 SUMMARY

Assertions within a design simplify the detection and diagnosis of errors by making internal test points visible when an error
is detected. Assertions document the designer’s assumptions and expected behavior in a standardized way that is tested
and travels with the design, which is invaluable to any designer who must maintain or extend the code in the future.

This document has provided an overview of the Incisive verification platform’s implementation of assertion based
verification, including the language supported, example assertions, and the Verilog simulation use model. Additional
information is available in the Simulation-Based Assertion Checking Guide in Cadence documentation.

8 REFERENCES

1. Simulation-Based Assertions Verification Tutorial — Cadence Documentation

2. Simulation-Based Assertion Checking Guide — Cadence Documentation

3. Sugar 2.0 Definition, March 20, 2002. http://www.haifa.il.ibm.com/projects/verification/sugar/literature.html

4. Accellera Property Specification Language Reference Manual. January 31, 2003. http://www.eda.org/vfv/docs/psl_Irm-

1.0.pdf
5. AMBA AHB specification: www.arm.com/armtech/AMBA Spec?OpenDocument

14 PLATFORM APPLICATION NOTE

