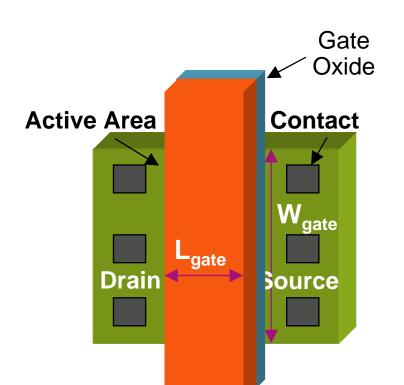
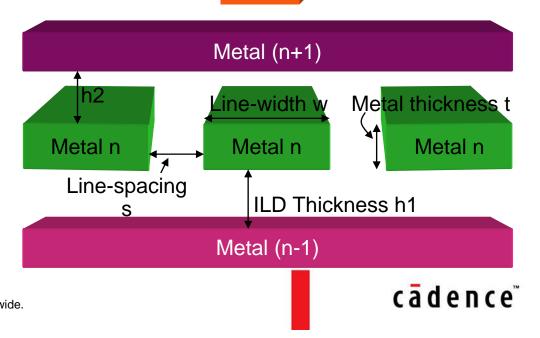
cādence[~]

Session 4.1: A new Methodology to Detect Small Delay Defects in 65-nm Devices

Thomas Jackson Product Marketing Director Cadence Design Systems

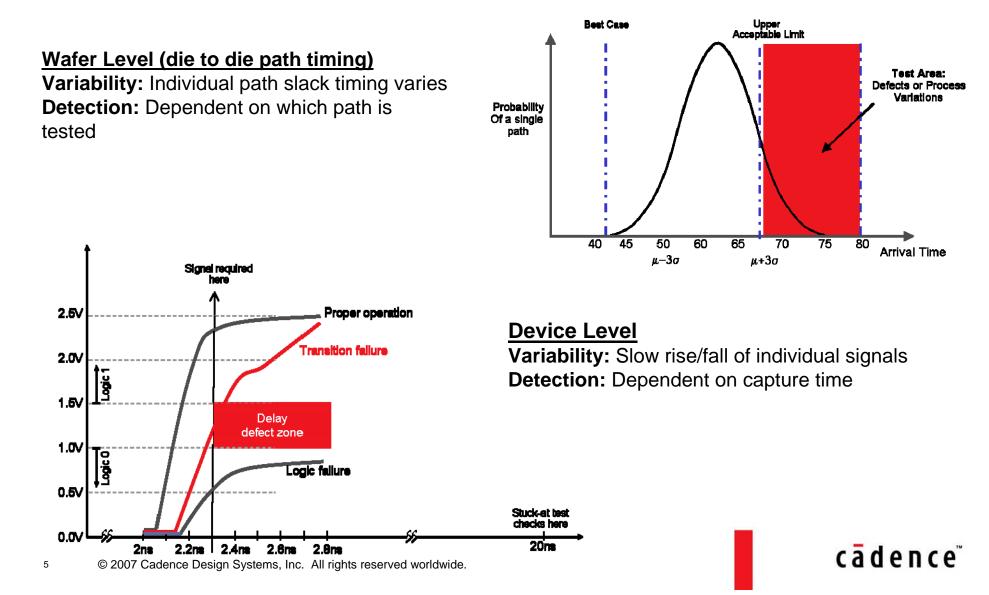

- 65-nm challenges
 - Defects
 - Current detection methods
- Timing-Aware ATPG
 - Overview
 - Prerequisites
- Published results of applications using timing-aware ATPG
- Implementation methodology example:
 - Low Power Design
- Summary

Sources of Variation Cause Delay Defects


• Device parameters:

- L_{gate} channel length
- $-V_T$ threshold voltage
- T_{ox} oxide thickness
- W_{gate} Channel Width

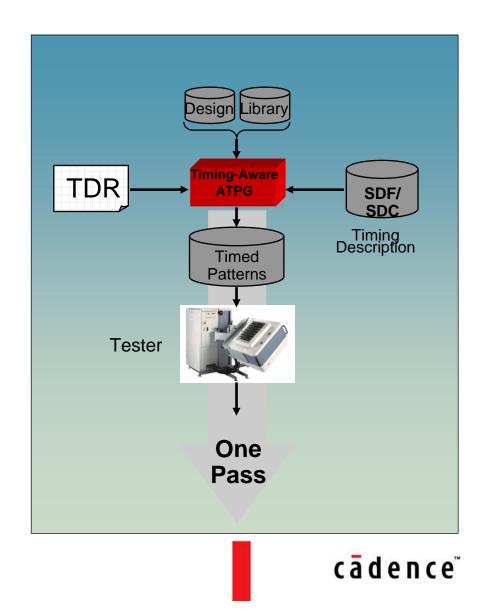
Interconnect Parameters

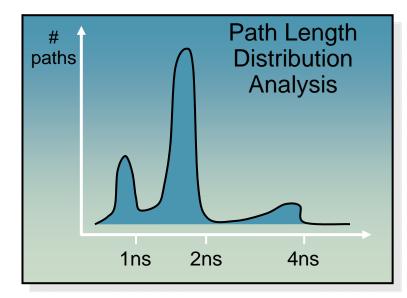

- Metal thickness t
- Dielectric thickness h_1 , h_2
- Metal line width (or line spacing) w or s

Current Detection Methods Often Fall Short Complex Defects are Common at 65-nm

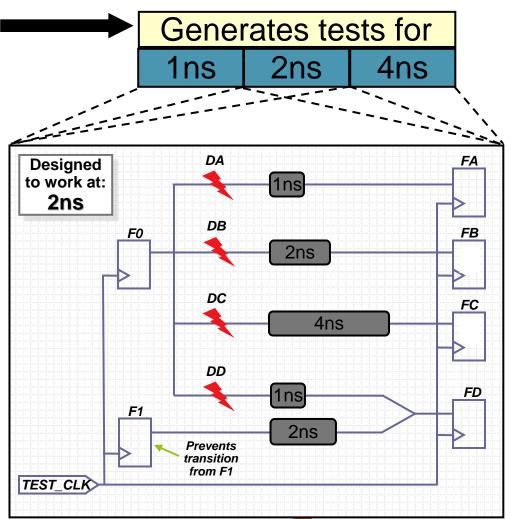
- Inline inspection & measurements
 - Signal-to-noise ratio capabilities of inspection equipment are being challenged
 - CD measurements where to look?
 - Finding real defects among a large number of false defects is difficult
- Parametric testing
 - Delineating actual defects from parametric process variation is expensive and sometime prohibitive
- Standard electrical testing
 - Stuck-at fault models cannot readily detect delay defects
 - iDDQ testing is less effective due to high leakage currents
 - Functional testing is expensive and non-deterministic
 - Fixed cycle transition testing can miss small defects
 - ATPG cannot always excite the longest path

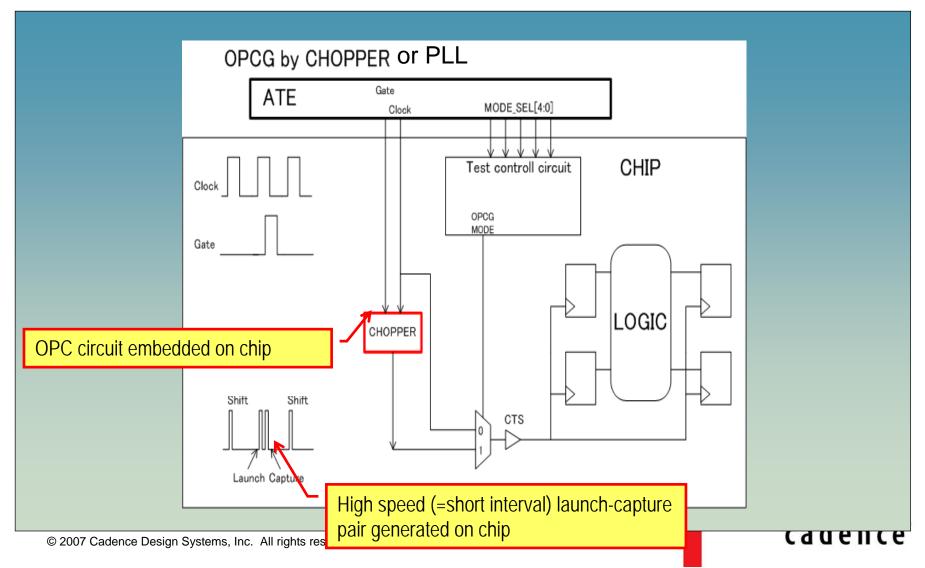
Impact of Variations Require the Use of Timing-Aware ATPG




- 65-nm challenges
 - Defects
 - Currents detection methods
- Timing-Aware ATPG
 - Overview
 - Prerequisites
- Published results of applications using timing-aware ATPG
- Implementation methodology example:
 - Low Power Design
- Summary

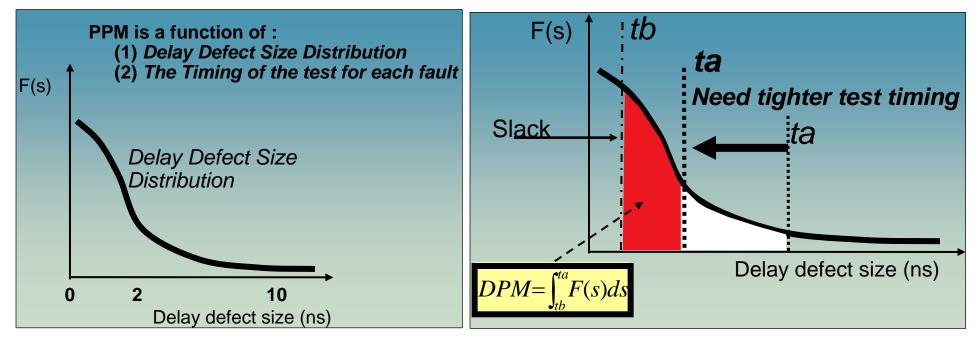
Supplementary Timing Data


- Standard Delay Format (SDF)
 - Is a standard output from almost all static timing tools
 - SDC defines constraints
 - Includes best, nominal, and worst case timings, as well as setup and hold timing checks
 - Generated for test voltage, temp and other conditions
- Tester Description Rule (TDR)
 - Number of clocks and timing sequences
 - Frequency limits, phase and frequency accuracy
 - Edge placement accuracy for switching signals and pulsing clocks

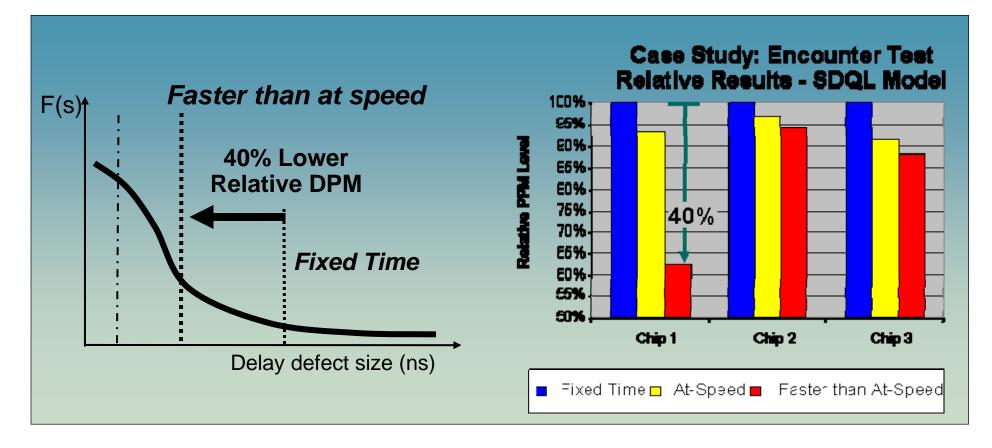

Timing-Aware ATPG: Test for Delay Defects

- Actual delay timings (clock distribution, IO pads) used to determine domain timings
- Separate test can be generated for each domain timing
- Test for shortest domain generated first
- FF's capture long path marked capturing X
- Long and short paths to same flop can be tested independently (to improve coverage)

On-Product Clock Generation – OPC Required for Faster Than At-Speed Testing

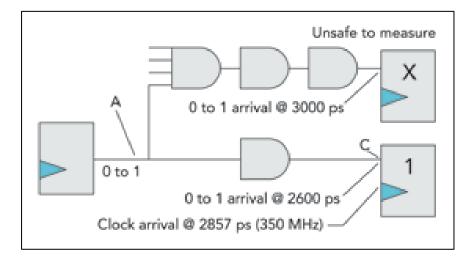


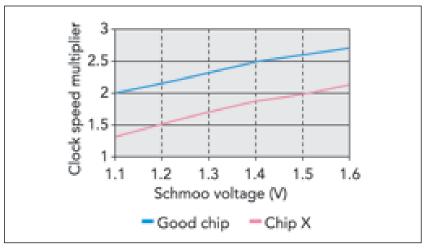
- 65-nm challenges
 - Defects
 - Currents detection methods
- Timing-Aware ATPG
 - Overview
 - Prerequisites
- Published results of applications using timing-aware ATPG
- Implementation methodology example:
 - Low Power Design
- Summary


PPM Prediction Model for Delay Test Statistical Delay Quality Model

- Objective: quantify the effectiveness of a given delay test method
 - Defects Per Million (DPM) is a measure of test escapes (aka SDQL, PPM, Defect Level)
 - Test A %cov = Test B %Cov BUT Test A DPM < Test B DPM
 - Model is from STARC consortium co-founded by eleven major Japanese semiconductor companies

Model Source: STARC - a consortium co-founded by eleven major Japanese semiconductor companies; Sato et al, ASP-DAC05


Example Quality Level with Faster Than At-Speed Testing Case Study Results with STARC Model


Model Source: STARC - a consortium co-founded by eleven major Japanese semiconductor companies; Sato et al, ASP-DAC05

12 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

Example Finding Test Escapes with Faster than At-Speed

Figure 2. Faster-than-at-speed testing removes slack along the path from A to C and permits detection of a fault at A. For this testing to succeed, however, flip-flops on longer paths must be masked.

Figure 4. A delay defect on chip X caused it to begin exhibiting failures at 1.7X the clock frequency at its 1.33-V nominal operating voltage. A good chip tolerated a 2X clock even at 1.1 V.

Source: Beyond at-speed Martin Amodeo, Cadence Design Systems, and Bruce Cory, nVidia -- Test & Measurement World, 11/1/2005

cādence

13 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

Testing the Chip by Domains Improves Quality

Circuit A (Logic Size 3.3Mgate, Max Freq. 300MHz)		
Clock Domain (Frequency)	Pattern length (MBytes)	
	Domain by domain ATPG	ATPG for entire chip
CLK1 (300MHz)	1.20 (FC: 13.89%)	18.90 (FC: 88.86%)
CLK2 (150MHz)	1.10 (Accumulated FC: 65.19%)	
Others	12.00 (Accumulated FC: 88.86%)	
Total	14.30 (Overall FC: 88.86%)	

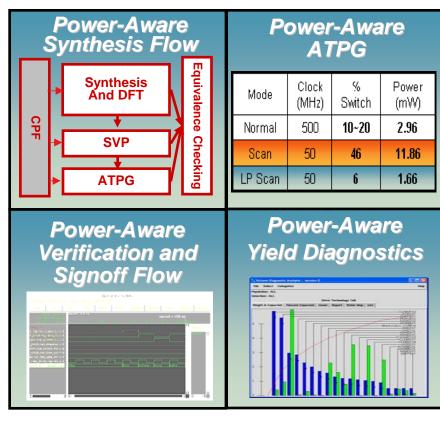
Low Cost Delay Testing of Nanometer SoCs Using On-Chip Clocking and Test Compression

ITC 2004: Hiroyuki Nakamura Akio Shirokane Yoshihito Nishizaki Kawasaki Micor; Brion Keler, Anis Uzzaman et al Cadence Design

14 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

- 65-nm challenges
 - Defects
 - Currents detection methods
- Timing-Aware ATPG
 - Overview
 - Prerequisites
- Published results of applications using timing-aware ATPG
- Implementation methodology example:
 - Low Power Design
- Summary

New DFT Methods are Required for 65-nm Low Power adds additional complexity


- Reduction in iteration times across design verification, power, test, physical
 - Early DFT insertion and verification reducing tail-end loops
 - Power considerations (manufacturing test) moved to early design phase
 - Physical considerations for scan chain optimization and reordering after PD
 - XOR or MISR compression to reduce pattern count
- Reduction in overall front-end schedule
 - Continuous rule RTL checking and strong links to verification
- ATE consideration during test generation
 - Use ATE specs to generate tests that run on ATE

Design with Test Instead of Design For Test

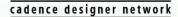
- Metrics Driven
 - Coverage or PPM, cost, scan memory depth, ATE pin accuracy, power intent.....
- Synthesis with DFT
 - Single pass for scan, compression 1149.1 Memory BIST...
- Compression
 - Multi-architecture (XOR or MISR)
- Timing Aware ATPG
 - Uses actual slack times and ATE constraints
- For Low Power
 - Automatic Insertion of Low power DFT and test modes
 - Resource sharing: memory BIST
 - Power aware ATPG to limit switching

Design with Test Example Power-Aware DFT, Test Generation, Diagnostics and Signoff

- Single pass scan flow
- Advanced DFT in synthesis flow
- Synthesis of power control structures using CPF
- ATPG validation and signoff
- Power control verification
- Equivalence checking of pre-post DFT

- Encounter Test Model has test modes that reflects power modes
- Power domains verified for isolation and scan integrity
- Reduced power during test
- Volume mode to identify yield limiters per power domain
- Precision mode to locate root cause of defects
- Model complex defects
 using Pattern Fault Model

- 65-nm challenges
 - Defects
 - Currents detection methods
- Timing-Aware ATPG
 - Overview
 - Prerequisites
- Published results of applications using timing-aware ATPG


cādence

- Implementation methodology example:
 - Low Power Design

• Summary

- 65-nm test challenges are different
 - Small delay defects are common
 - Current methods do not adequate address defects
- Timing driven ATPG is required
 - Use actual circuit timing for accuracy and efficiency
 - Bin paths and test each at optimal frequency
- Design with Test
 - Metrics driven, RTL rule checking
 - Single pass DFT insertion (Scan compression, 1500, memory BIST...)
 - Power aware flow
- Higher quality and predictability

CONNECT: IDEAS

cādence™

CDNLive! 2007 Silicon Valley