Recommendations for Developing an Assertion
Based Protocol VIP for Formal Analysis

Amit Gurung
Cadence Design Systems, India
agurung@cadence.com

Abstract

The paper discusses the issues of under consgainin
over constraining and cul-de-sac which surfacesndur
the development of protocol based verification &? f
formal analysis. The paper provides recommendstion
for the developer of the assertion 1P, which wduwtp in
improving the overall quality.

1. Introduction

The process of developing assertions to validd@esign
Under Verification (DUV) using formal analysis has
been prevalent in the industry for a long time now.
However the process of developing Formal Verifmati

IP (FVIP) as a full fledged product is a relativelgw
development, and hence offers many unexpected
challenges. These challenges, if not addressed, may
adversely affect the quality and effectiveness o t
FVIP.

This paper discusses a number of such challenggs an
offers solutions to overcome them. The proposed
solutions in this paper have emerged from our
experiences in developing assertion based VIPoiondl
analysis. Though the issues discussed in this pajger
known in the model checking research world, bus it
observed that engineers applying this technologynat
fully cognizant of the property modeling styles aHi
causes these issues. The paper attempts to detueie
issues in a very simple manner by sighting rea lif
examples and providing their solutions.

This paper would appeal to people interested imé&br
analysis in general and developers and users eftess
based components in particular. The paper woulpl imel
appreciating the complexity involved in developing
FVIP and how using the proposed solutions make the
FVIP robust and comprehensive.

Section 2 describes FVIP development flow, Sec8on
explains under constraining and causes. Sectiasciss
over constraining. Importance of Coverage is diseds
in section 5.

2. FVIP Development Flow

The task of developing a FVIP begins with convertin
the rules described in the specification documerat set
of properties which specify temporal relationship
between signals on the interface. The protocol
specification describes the behavior of each device

Vikas Roy
Cadence Design Systems, India
vikasr @cadence.com

connected to the interface and hence the propettgam
be classified according to the expectations ofdbeice
on the interface. For example, the protocol AMBA IAX
has a master slave topology and hence the propéntie
the FVIP can be classified into master propertied a
slave properties. A master or slave properties riesc
the behavior of an ideal master or a slave dewnd,are
prefixed with master_ or slave_ respectively.

Figure 1 describes a typical formal analysis emuinent

for the verification of a slave design. The signalk,m2
...mN are inputs to the slave design and signal2s&lé

are outputs. In verification of a slave design, thaster
properties in the assertion IP are used as contdrai
These constraints are capable of generating ahl leg
protocol sequences on the inputs. The slave piiepért

the assertion IP are used as assertions and they ar
proved under the assumptions of the constraints.

Fig 1
g
—>» ml
master properties 2 —>» m2
constrains inputs .
~ —» mN Slave
< 51 Design
<4+— Ss2
slave properties < .
checks outputs .
<4+—— sN

A similar environment is used for verification of@ster
design where the constraints and assertion revbese
roles.

3. Incomplete Specification or Under
Constraining

Despite converting every rule specified in a stadda
specification to a property in the VIP, it is sdbat the
property set is not complete to describe the estiape

of the protocol. This usually occurs in protocotisarios
where the specification is silent about the design
implementation.



For example in AMBA AXI protocol, the specification
does not state when (or within what limits) shothe
slave accept a request (by asserting AXREADY) when
offered by the master (by asserting AXVALID).

In such a case, an additional property (which i$ no
specified in the standard protocol specification
document) should be included, which mandates that
AXREADY should eventually be asserted when
AXVALID is asserted.

In the absence of the above mentioned propertymdbr
analysis of a master DUT could result in many faituin
transaction level checks due to AXREADY never being
asserted, as the formal analysis tool was freexéocese
any value of AXREADY in order to fail an assertion.

The above mentioned scenario is a case of incomplet
specification or under constraining. Under constrej
results in generation of illegal sequences by trenél
tool.

Recommendation 1:

All protocol scenarios (especially relating to fatg)
where the specification is silent about design
implementation, should be judiciously included het
property set.

4. Over Constraining

During an analysis of a design, an assertion omtitgut
is proved for a given set of constraints written the
inputs. Constraints describe the legal set of secpse
which can be applied on the inputs. Over constngini
refers to reducing the state space which the fotowl
explores, to a reduced subset of the legal perhésset.

Every protocol specification constrains the stgi@ce of
formal analysis to an optimal set. Any further aidaial
constraining leads to an over constrained set.uths
cases, though the constraints generate legal seegief
inputs, they are not capable of generating all llega
sequences as described in the specification.

Since the formal analysis tool has no knowledgéehef
entire legal state space specified by the spetiificait is
not possible for the tool to detect an over coisd
environment. Hence it is imperative that adequétess
are taken to detect an over constrained environment

4.1 Indirect Constraining

It is common to make use of auxiliary HDL code to
simplify a property implementation. In some cades t
combination of HDL logic and constraints leads to
constraining of primary inputs, even if no direct
constraints are applied on them. This type of gairshg
might be unintended and may lead to over constrgini
of the primary inputs.

The following example of a combinational circuif i
used to demonstrates this effect. We want to clieak
the output port out2 does not take a value 3'd4 as
specified by the assertion Al. Since we want tockhe
this for all values of inputs, we have not writtany
direct constraints on them. Now assume that thera i
wrongly placed constraint as specified by C1.

module (
input [1:0] in1,
input [1:0] in2,

input [1:0] inN
output [2:0] outl,
output [2:0] out2

6utput [2:0] outN
)

assign outl =inl +in2;
assign out2 = ~outl,;

/I assignment of other outputs with different
/I implementation logic

endmodule

/I psl Al : assert never(out2 == 3'd4);
/I psl C1 : assume never(outl == 3'd3);

If all values of inputs were exercised on the destpe
assertion Al should fail, but with the inclusion af
wrong constraint C1 in the formal environment, the
assertion results in a pass. Hence the consttdimtver
constraints the formal environment such that th@dees

of inl and in2 are not exercised which results ihlo
attaining a values of 3. Moreover all the otheseaons
written on other output ports are also proved iis th
reduced state space.

Hence as demonstrated by the above example, thksres
of a formal run are as good as its constraints.rOve
constraining may lead to erroneous results being
reported. Though the above example is very simple t
understand, complex circuits may have very complex
relationship between constraints and often it iseawely
difficult to detect over constraining.

Recommendation 2: Be cautious when selecting
constraints for analysis. Avoid writing constraints the
output of a design.

In general, it is a good practice to write consttson the
inputs of a circuit only. It can be observed tle above
constraint which causes indirect constraining oé th
primary inputs was written on the output of thesait.

4.2 Cul-de-sac

Assertions can be of the form such that it hasreiokng
condition and a fulfilling condition. During formal
analysis if such an assertion passes with its emabl
condition also getting covered, one normally assime
that the fulfilling condition is bound to happen evhthe
enabling condition occurs. However, there are cases
when this assumption does not hold true. Therebesan
finite paths in the design which prevents the tivom
exploring new states while proving a property. This
would result in the fulfilling condition not gettin
covered during the analysis. This condition is nef@ to

as cul-de-sac or dead end.

Consider the same example with slight modificatibime
circuit is sequential in nature with clock and tese

module (



input clk;

input resetn;
input [1:0] in1,
input [1:0] in2,
output [2:0] outl,
)

always @(posedge clk or negedge resetn)
if (~resetn)
outl <= 3'd0;
else
outl <=inl +in2;

endmodule

/I psl default clock = posedge clk;

/I psl C2 : assume never(outl == 3'd3);

/I psl A2 : assert always {in1==1 & in2==2}
/I |=> {outl == 3'd6};

/I psl A3 : assert always {in1==0; in2==1,
//in1==0 & in2==3 } |=> {1'bO};

In the above example C2 is a wrongly placed coimtra
The constraint states that outl can never takdue \&a
Since there are no constraints on inputs, a state i
possible in which in1 and in2 has values such tiair
present sum is 3. The enabling condition (alsoedall
trigger check) gets covered in a formal run. Howehe
design logic is such that outl would have a valietBe
next clock. Hence we see that the design implertienta
conflicts with a constraint in the future. Thisrioduces a
finite path in the design which truncates with arid in2
taking values such that their sum is 3.

If an assertion is written similar to A2 and A3chuhat
the last state of the enabling condition is thé $&ste on

a finite path then the analysis would always repbet
assertion as a pass, no matter what is writtenhas t
fulfilling conditions. In the above example assans A2
and A3 results in a pass. Results of analysis fofaal
environment having finite paths are normally not
intuitive and mostly misleading.

Recommendation 3: Always write a corresponding cover
check for all assertions

We propose a solution here to detect erroneousepass
which were a result of cul-de-sac issues.

For a property of the form

I psl P : assert always {SERE1} |=> {SEREZ2};
write a cover check of the form

/I psl P_cover : cover {SERE1;SERE2};

To ensure a valid pass of an assertion (i.e. when a
enabling condition occurs, only the fulfilling cdtidn
can and does occurs), the assertion should pasthand
cover should also have a withess. Hence it is
recommended that every assertion should be chdoked
validity by writing a corresponding cover check.

The above recommendation applies to properties twhic
are selected as to work as constraints as welltingra
corresponding cover check for constraint ensuratsttte
constraint is not redundant in the formal setupthié
cover check of a constraint fails, it indicates @rer
constrained environment. This usually helps in
debugging the cause of over constraining.

4.3 Context of a property

Though the earlier section lays great emphasis on
refraining from writing constraints on outputs of a
design, there are cases such that in order to model
complex part of the protocol specification constisi
involve both the inputs and outputs. In a bus based
design a lot of transaction information has be Hatt
when a transfer occurs. A transfer normally oceungn

a master device places some request on the buthand
slave accepts them. Hence it is seen that conttrain
involving information latched from a transfer would
inadvertently involve both the master and slaveat

Recommendation 4: For properties involving signals
from both the inputs and outputs of a design, aigst
the context of the property right. Context of apeay
implies knowing whether a property is a slave prgpe
or a master property.

The following case describes an incorrect property
modeling style which causes ambiguity in the contex

property.

In AMBA AXI protocol, a write request transfer oagsu
when both AWVALID (a master output signal) and
AWREADY (a slave output signal) are asserted.
Similarly a write response transfer occurs whenhbot
BVALID (a slave output signal) and BREADY (a master
signal) are asserted. The protocol mandates thettyev
write request should be returned with a respongav N
consider a coarse implementation of the same

/I This wire implies a write transfer
wire write_request_transfer= AWVALID & AWREADY;

/I This wire implies a write response transfer
wire write_response_transfer = BVALID & BREADY;

/I psl resp_for_every_req : assert always (
I/l write_request_transfer ->
/I eventually! (write_response_transfer) );

The context of the property “resp_for_every reqha
correct as it does not clearly describe whether the
fulfilling condition is the responsibility of a mizs
device or a slave device. It is not clear that for
verification of a slave design, whether this propés to

be picked as constraints or as an assertion andatine
logic applies to verification of a master devicen.to
Having an incorrect context of a property may l¢ad
over constraining or cul-de-sac issues discussdigrea

The property can be implemented with the correct
context when responsibilities are distributed for
individual devices. For example the same protocol
scenarios when expressed as follows set the exjmecta
of the devices correctly.

/I mandate the slave to provide a response by
I/l asserting BVALID when a write request

/I transfer occurs

/I psl slave_resp_for_every_req : assert always
/I (write_request_transfer ->

/I eventually! (BVALID) );

/I mandate the master to eventually accept all

Il write responses

/I psl master_eventally_accept_write_response :
I/l assert always (BVALID ->

/l eventually! (BREADY) );



The above mentioned master property also falls unde
the ambit of recommendation1.

4.4 Over constraining due to design
implementation

Assertion IP developers devote huge amount of &nk
effort in ensuring that the bundled property seths
most optimal set to describe the full scope ofptatocol
specification. Comprehensive testing strategiesuaesl

to prove that is no over constraining introducedtty
assertion themselves. But it is not true that #maes set

of properties would not be over constrained when
applied onto different designs.

Consider the following example. The inputs in1 am2i
are not directly constrained as we want to chedk al
assertions for all possible combinations of theutap
Designl and Design2 have different implementatibn o
the output port outl. Constraint C1 states that gycle
where inl and outl are 1, in2 should be 1.

module master (

input inl;
input in2;
output outl;

assign outl =inl1 & in2; //Designl
assign outl =inl|in2; //Design2

endmodule

/I psl C1 : assume always ((in1 & outl) ->
in2);

Now let us analyze the combination of values pdssh
the ports inl, in2 and outl for both the designs

For designl
inl in2 outl

For design2
inl in2 outl

< conflicts with C1

A formal analysis tool always abides to the corstraf
the environment while proving an assertion. In De%ij
the tool exercises all combination of in1 and io2 the
analysis. In Design2, since the design implementas
such that if the tool were to apply values in1 =ard
in2 == 0, the output would be 1 which would coriflic
with the constraint C1. Hence in order to obey the
constraint, the tool never exercises these valuleiew
proving all the assertions in the design. Thisultesin
over constraining of the primary inputs even though
direct constraints were applied on them.

Recommendation 5. Be aware that certain design
implementations may reduce the input state spaa®;eh
always rely on coverage before accepting the resflt
an analysis.

5. Coverage

Coverage analysis of a formal environment is an
important part of a formal analysis. As described i
earlier sections of this paper, there are myriadoas for
over constraining or under constraining in a formal
environment. Coverage metric can provide meaningful
and sometimes startling information about the dqualf

the analysis. It is imperative that coverage infation be
reviewed before accepting the results of formalysis
Coverage statistics on the output of a design pesvi
information about the subset of the protocol theigie
has implemented. Coverage statistics of the inputs
provides information of the quality of the test segces
exercised on the design.

A formal VIP should provide the following type of
coverage.

Sanity covers: These checks are very basic in nature but
are extremely effectively in detecting over coristd
environment. They check whether a port can evee lzav
value 0 or 1 and whether the value on the portenaar
rise or ever fall.

Value covers. These covers checks whether a multibit
port can take all possible values

Positive covers: These covers checks whether specific
legal protocol sequences occur on the interfacaura
of these covers on the inputs of a design indicates
over constrained environment.

Negative covers. These cover checks whether specific
illegal protocol sequences do not occur on therfite.

A witness of these covers on the inputs of a design
indicates an under constrained environment.

Cross covers: These covers checks whether specific
combinations of values can occur on the interface.

6. Conclusions

The paper explains the causes of under-constraining
over-constraining and cul-de-sac during the devakaut

of Formal VIP. The recommendations for eradicating
these problems have also been discussed. The glaper
touches upon the importance of coverage in formal
analysis.

7. Acknowledgments

The authors wish to acknowledge the assistanceédadv
by the members of formal analysis tool development
team in explaining the tool behavior in these campl
cases.

8. References
1. AMBA AXI 1.0 Specification
2. FAQs: Incisive Formal Verifier



