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Abstract 
The paper discusses the issues of under constraining, 
over constraining and cul-de-sac which surfaces during 
the development of protocol based verification IP for 
formal analysis.  The paper provides recommendations 
for the developer of the assertion IP, which would help in 
improving the overall quality. 

1.    Introduction 

The process of developing assertions to validate a Design 
Under Verification (DUV) using formal analysis has 
been prevalent in the industry for a long time now. 
However the process of developing Formal Verification 
IP (FVIP) as a full fledged product is a relatively new 
development, and hence offers many unexpected 
challenges. These challenges, if not addressed, may 
adversely affect the quality and effectiveness of the 
FVIP.  

This paper discusses a number of such challenges and 
offers solutions to overcome them. The proposed 
solutions in this paper have emerged from our 
experiences in developing assertion based VIP for formal 
analysis. Though the issues discussed in this paper are 
known in the model checking research world, but it is 
observed that engineers applying this technology are not 
fully cognizant of the property modeling styles which 
causes these issues.  The paper attempts to describe these 
issues in a very simple manner by sighting real life 
examples and providing their solutions.  

This paper would appeal to people interested in formal 
analysis in general and developers and users of assertion 
based components in particular. The paper would help in 
appreciating the complexity involved in developing 
FVIP and how using the proposed solutions make the 
FVIP robust and comprehensive. 

Section 2 describes FVIP development flow, Section 3 
explains under constraining and causes. Section 4 discuss 
over constraining. Importance of Coverage is discussed 
in section 5. 

2.    FVIP Development Flow 

The task of developing a FVIP begins with converting 
the rules described in the specification document to a set 
of properties which specify temporal relationship 
between signals on the interface. The protocol 
specification describes the behavior of each device 

connected to the interface and hence the property set can 
be classified according to the expectations of the device 
on the interface. For example, the protocol AMBA AXI 
has a master slave topology and hence the properties in 
the FVIP can be classified into master properties and 
slave properties. A master or slave properties describes 
the behavior of an ideal master or a slave device, and are 
prefixed with master_ or slave_ respectively. 

Figure 1 describes a typical formal analysis environment 
for the verification of a slave design. The signals m1,m2 
…mN are inputs to the slave design and signals s1,s2..sN 
are outputs. In verification of a slave design, the master 
properties in the assertion IP are used as constraints. 
These constraints are capable of generating all legal 
protocol sequences on the inputs. The slave properties in 
the assertion IP are used as assertions and they are 
proved under the assumptions of the constraints. 
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A similar environment is used for verification of a master 
design where the constraints and assertion reverse their 
roles. 

3.    Incomplete Specification or Under 
Constraining 

Despite converting every rule specified in a standard 
specification to a property in the VIP, it is seen that the 
property set is not complete to describe the entire scope 
of the protocol. This usually occurs in protocol scenarios 
where the specification is silent about the design 
implementation.  
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For example in AMBA AXI protocol, the specification 
does not state when (or within what limits) should the 
slave accept a request (by asserting AxREADY) when 
offered by the master (by asserting AxVALID).  

In such a case, an additional property (which is not 
specified in the standard protocol specification 
document) should be included, which mandates that 
AxREADY should eventually be asserted when 
AxVALID is asserted.  

In the absence of the above mentioned property, formal 
analysis of a master DUT could result in many failures in 
transaction level checks due to AxREADY never being 
asserted, as the formal analysis tool was free to exercise 
any value of AxREADY in order to fail an assertion. 

The above mentioned scenario is a case of incomplete 
specification or under constraining. Under constraining 
results in generation of illegal sequences by the formal 
tool.  

Recommendation 1: 

All protocol scenarios (especially relating to latency) 
where the specification is silent about design 
implementation, should be judiciously included in the 
property set. 

4.    Over Constraining 

During an analysis of a design, an assertion on the output 
is proved for a given set of constraints written on the 
inputs. Constraints describe the legal set of sequences 
which can be applied on the inputs. Over constraining 
refers to reducing the state space which the formal tool 
explores, to a reduced subset of the legal permissible set.  

Every protocol specification constrains the state space of 
formal analysis to an optimal set. Any further additional 
constraining leads to an over constrained set. In such 
cases, though the constraints generate legal sequences of 
inputs, they are not capable of generating all legal 
sequences as described in the specification. 

Since the formal analysis tool has no knowledge of the 
entire legal state space specified by the specification, it is 
not possible for the tool to detect an over constrained 
environment. Hence it is imperative that adequate steps 
are taken to detect an over constrained environment. 

4.1    Indirect Constraining 

It is common to make use of auxiliary HDL code to 
simplify a property implementation. In some cases the 
combination of HDL logic and constraints leads to 
constraining of primary inputs, even if no direct 
constraints are applied on them. This type of constraining 
might be unintended and may lead to over constraining 
of the primary inputs.  

The following example of a combinational circuit, is 
used to demonstrates this effect. We want to check that 
the output port out2 does not take a value 3’d4 as 
specified by the assertion A1. Since we want to check 
this for all values of inputs, we have not written any 
direct constraints on them. Now assume that there is a 
wrongly placed constraint as specified by C1. 

 

module ( 
input [1:0] in1, 
input [1:0] in2, 
. 
. 
input [1:0] inN 
output [2:0] out1, 
output [2:0] out2 
. 
. 
output [2:0] outN 
); 
 
assign out1 = in1 + in2; 
assign out2 = ~out1; 
 
// assignment of other outputs with different  
// implementation logic  
.. 
endmodule 
 
// psl A1 : assert never(out2 == 3’d4); 
// psl C1 : assume never(out1 == 3’d3); 
 

If all values of inputs were exercised on the design, the 
assertion A1 should fail, but with the inclusion of a 
wrong constraint C1 in the formal environment, the 
assertion results in a pass.   Hence the constraint C1 over 
constraints the formal environment such that those values 
of in1 and in2 are not exercised which results in out1 
attaining a values of 3.  Moreover all the other assertions 
written on other output ports are also proved in this 
reduced state space.  

Hence as demonstrated by the above example, the results 
of a formal run are as good as its constraints. Over 
constraining may lead to erroneous results being 
reported. Though the above example is very simple to 
understand, complex circuits may have very complex 
relationship between constraints and often it is extremely 
difficult to detect over constraining.  

Recommendation 2: Be cautious when selecting 
constraints for analysis. Avoid writing constraints on the 
output of a design. 

In general, it is a good practice to write constraints on the 
inputs of a circuit only. It can be observed that the above 
constraint which causes indirect constraining of the 
primary inputs was written on the output of the circuit. 

4.2    Cul-de-sac 

Assertions can be of the form such that it has an enabling 
condition and a fulfilling condition. During formal 
analysis if such an assertion passes with its enabling 
condition also getting covered, one normally assumes 
that the fulfilling condition is bound to happen when the 
enabling condition occurs. However, there are cases 
when this assumption does not hold true. There can be 
finite paths in the design which prevents the tool from 
exploring new states while proving a property. This 
would result in the fulfilling condition not getting 
covered during the analysis. This condition is referred to 
as cul-de-sac or dead end.   

Consider the same example with slight modification. The 
circuit is sequential in nature with clock and reset. 

module ( 



input clk; 
input resetn; 
input [1:0] in1, 
input [1:0] in2, 
output [2:0] out1, 
); 
 
always @(posedge clk or negedge resetn) 
   if (~resetn) 
      out1 <= 3’d0; 
   else  
     out1 <= in1 + in2; 
 
.. 
endmodule 
// psl default clock = posedge clk; 
// psl C2 : assume never(out1 == 3’d3); 
// psl A2 : assert always {in1==1 & in2==2} 
// |=> {out1 == 3’d6}; 
// psl A3 : assert always {in1==0; in2==1;  
// in1==0 & in2==3 } |=> {1’b0}; 
 

In the above example C2 is a wrongly placed constraint. 
The constraint states that out1 can never take a value 3. 
Since there are no constraints on inputs, a state is 
possible in which in1 and in2 has values such that their 
present sum is 3. The enabling condition (also called 
trigger check) gets covered in a formal run. However the 
design logic is such that out1 would have a value 3 in the 
next clock. Hence we see that the design implementation 
conflicts with a constraint in the future. This introduces a 
finite path in the design which truncates with in1 and in2 
taking values such that their sum is 3.  

If an assertion is written similar to A2 and A3, such that 
the last state of the enabling condition is the last state on 
a finite path then the analysis would always report the 
assertion as a pass, no matter what is written as the 
fulfilling conditions. In the above example assertions A2 
and A3 results in a pass. Results of analysis of a formal 
environment having finite paths are normally not 
intuitive and mostly misleading.  

Recommendation 3: Always write a corresponding cover 
check for all assertions 

We propose a solution here to detect erroneous passes 
which were a result of cul-de-sac issues.  

For a property of the form  

// psl P : assert always {SERE1} |=> {SERE2}; 

write a  cover check of the form  

// psl P_cover : cover {SERE1;SERE2}; 

To ensure a valid pass of an assertion (i.e. when an 
enabling condition occurs, only the fulfilling condition 
can and does occurs), the assertion should pass and the 
cover should also have a witness. Hence it is 
recommended that every assertion should be checked for 
validity by writing a corresponding cover check. 

The above recommendation applies to properties which 
are selected as to work as constraints as well. Writing a 
corresponding cover check for constraint ensures that the 
constraint is not redundant in the formal setup. If the 
cover check of a constraint fails, it indicates an over 
constrained environment. This usually helps in 
debugging the cause of over constraining. 

4.3    Context of a property 

Though the earlier section lays great emphasis on 
refraining from writing constraints on outputs of a 
design, there are cases such that in order to model 
complex part of the protocol specification constraints 
involve both the inputs and outputs. In a bus based 
design a lot of transaction information has be latched 
when a transfer occurs. A transfer normally occurs when 
a master device places some request on the bus and the 
slave accepts them. Hence it is seen that constraints 
involving information latched from a transfer would 
inadvertently involve both the master and slave signals.  

Recommendation 4: For properties involving signals 
from both the inputs and outputs of a design, always get 
the context of the property right. Context of a property 
implies knowing whether a property is a slave property 
or a master property. 

The following case describes an incorrect property 
modeling style which causes ambiguity in the context of 
property. 

In AMBA AXI protocol, a write request transfer occurs 
when both AWVALID (a master output signal) and 
AWREADY (a slave output signal) are asserted. 
Similarly a write response transfer occurs when both 
BVALID (a slave output signal) and BREADY (a master 
signal) are asserted. The protocol mandates that every 
write request should be returned with a response. Now 
consider a coarse implementation of the same 

// This wire implies a write transfer 
wire write_request_transfer= AWVALID & AWREADY; 
 
// This wire implies a write response transfer  
wire write_response_transfer = BVALID & BREADY; 
 
// psl resp_for_every_req : assert always ( 
// write_request_transfer ->  
// eventually! (write_response_transfer) ); 

The context of the property “resp_for_every_req” is not 
correct as it does not clearly describe whether the 
fulfilling condition is the responsibility of a master 
device or a slave device. It is not clear that for 
verification of a slave design, whether this property is to 
be picked as constraints or as an assertion and the same 
logic applies to verification of a master device too. 
Having an incorrect context of a property may lead to 
over constraining or cul-de-sac issues discussed earlier. 

The property can be implemented with the correct 
context when responsibilities are distributed for 
individual devices. For example the same protocol 
scenarios when expressed as follows set the expectation 
of the devices correctly.  

// mandate the slave to provide a response by  
// asserting BVALID when a write request 
// transfer occurs  
// psl slave_resp_for_every_req : assert always  
// ( write_request_transfer ->  
// eventually! (BVALID) ); 
 
// mandate the master to eventually accept all 
// write responses 
// psl master_eventally_accept_write_response :  
// assert always (BVALID ->  
// eventually! (BREADY) ); 



The above mentioned master property also falls under 
the ambit of recommendation1. 

4.4    Over constraining due to design 
implementation 

Assertion IP developers devote huge amount of time and 
effort in ensuring that the bundled property set is the 
most optimal set to describe the full scope of the protocol 
specification. Comprehensive testing strategies are used 
to prove that is no over constraining introduced by the 
assertion themselves. But it is not true that the same set 
of properties would not be over constrained when 
applied onto different designs.  

Consider the following example. The inputs in1 and in2 
are not directly constrained as we want to check all 
assertions for all possible combinations of the inputs. 
Design1 and Design2 have different implementation of 
the output port out1. Constraint C1 states that in a cycle 
where in1 and out1 are 1, in2 should be 1. 

 
module master ( 
    input                 in1; 
    input                 in2; 
    output                out1; 
 
assign out1 = in1 & in2;   //Design1 
assign out1 = in1 | in2;   //Design2 
 
endmodule 
 
// psl C1 : assume always ((in1 & out1) -> 
in2); 
 

Now let us analyze the combination of values possible on 
the ports in1, in2 and out1 for both the designs 

For design1  

in1  in2  out1       
--- ---- ------     
0    0    0         
0    1    0 
1    0    0 
1    1    1 

For design2  

in1  in2  out1       
--- ---- ------     
0    0    0         
0    1    1 
1    0    1  � conflicts with C1 
1    1    1 

 

A formal analysis tool always abides to the constraint of 
the environment while proving an assertion. In Design1, 
the tool exercises all combination of in1 and in2 for the 
analysis. In Design2, since the design implementation is 
such that if the tool were to apply values in1 == 1 and 
in2 == 0, the output would be 1 which would conflict 
with the constraint C1. Hence in order to obey the 
constraint, the tool never exercises these values while 
proving all the assertions in the design.  This results in 
over constraining of the primary inputs even though no 
direct constraints were applied on them. 

Recommendation 5: Be aware that certain design 
implementations may reduce the input state space, hence 
always rely on coverage before accepting the results of 
an analysis. 

5.    Coverage 

Coverage analysis of a formal environment is an 
important part of a formal analysis. As described in 
earlier sections of this paper, there are myriad reasons for 
over constraining or under constraining in a formal 
environment. Coverage metric can provide meaningful 
and sometimes startling information about the quality of 
the analysis. It is imperative that coverage information be 
reviewed before accepting the results of formal analysis. 
Coverage statistics on the output of a design provides 
information about the subset of the protocol the design 
has implemented. Coverage statistics of the inputs 
provides information of the quality of the test sequences 
exercised on the design. 

A formal VIP should provide the following type of 
coverage. 

Sanity covers: These checks are very basic in nature but 
are extremely effectively in detecting over constrained 
environment. They check whether a port can ever have a 
value 0 or 1 and whether the value on the port can ever 
rise or ever fall. 

Value covers: These covers checks whether a multibit 
port can take all possible values  

Positive covers: These covers checks whether specific 
legal protocol sequences occur on the interface. Failure 
of these covers on the inputs of a design indicates an 
over constrained environment.   

Negative covers: These cover checks whether specific 
illegal protocol sequences do not occur on the interface. 
A witness of these covers on the inputs of a design 
indicates an under constrained environment.   

Cross covers: These covers checks whether specific 
combinations of values can occur on the interface. 

6.    Conclusions 

The paper explains the causes of under-constraining, 
over-constraining and cul-de-sac during the development 
of Formal VIP. The recommendations for eradicating 
these problems have also been discussed. The paper also 
touches upon the importance of coverage in formal 
analysis.  
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