
Recommendations for Developing an Assertion
Based Protocol VIP for Formal Analysis

 Amit Gurung Vikas Roy
 Cadence Design Systems, India Cadence Design Systems, India
 agurung@cadence.com vikasr@cadence.com

Abstract
The paper discusses the issues of under constraining,
over constraining and cul-de-sac which surfaces during
the development of protocol based verification IP for
formal analysis. The paper provides recommendations
for the developer of the assertion IP, which would help in
improving the overall quality.

1. Introduction

The process of developing assertions to validate a Design
Under Verification (DUV) using formal analysis has
been prevalent in the industry for a long time now.
However the process of developing Formal Verification
IP (FVIP) as a full fledged product is a relatively new
development, and hence offers many unexpected
challenges. These challenges, if not addressed, may
adversely affect the quality and effectiveness of the
FVIP.

This paper discusses a number of such challenges and
offers solutions to overcome them. The proposed
solutions in this paper have emerged from our
experiences in developing assertion based VIP for formal
analysis. Though the issues discussed in this paper are
known in the model checking research world, but it is
observed that engineers applying this technology are not
fully cognizant of the property modeling styles which
causes these issues. The paper attempts to describe these
issues in a very simple manner by sighting real life
examples and providing their solutions.

This paper would appeal to people interested in formal
analysis in general and developers and users of assertion
based components in particular. The paper would help in
appreciating the complexity involved in developing
FVIP and how using the proposed solutions make the
FVIP robust and comprehensive.

Section 2 describes FVIP development flow, Section 3
explains under constraining and causes. Section 4 discuss
over constraining. Importance of Coverage is discussed
in section 5.

2. FVIP Development Flow

The task of developing a FVIP begins with converting
the rules described in the specification document to a set
of properties which specify temporal relationship
between signals on the interface. The protocol
specification describes the behavior of each device

connected to the interface and hence the property set can
be classified according to the expectations of the device
on the interface. For example, the protocol AMBA AXI
has a master slave topology and hence the properties in
the FVIP can be classified into master properties and
slave properties. A master or slave properties describes
the behavior of an ideal master or a slave device, and are
prefixed with master_ or slave_ respectively.

Figure 1 describes a typical formal analysis environment
for the verification of a slave design. The signals m1,m2
…mN are inputs to the slave design and signals s1,s2..sN
are outputs. In verification of a slave design, the master
properties in the assertion IP are used as constraints.
These constraints are capable of generating all legal
protocol sequences on the inputs. The slave properties in
the assertion IP are used as assertions and they are
proved under the assumptions of the constraints.

Fig 1

A similar environment is used for verification of a master
design where the constraints and assertion reverse their
roles.

3. Incomplete Specification or Under
Constraining

Despite converting every rule specified in a standard
specification to a property in the VIP, it is seen that the
property set is not complete to describe the entire scope
of the protocol. This usually occurs in protocol scenarios
where the specification is silent about the design
implementation.

.

.

.

.

.

.

m1
m2

mN Slave
 Design

master properties
constrains inputs

slave properties
checks outputs

s1
s2

sN

For example in AMBA AXI protocol, the specification
does not state when (or within what limits) should the
slave accept a request (by asserting AxREADY) when
offered by the master (by asserting AxVALID).

In such a case, an additional property (which is not
specified in the standard protocol specification
document) should be included, which mandates that
AxREADY should eventually be asserted when
AxVALID is asserted.

In the absence of the above mentioned property, formal
analysis of a master DUT could result in many failures in
transaction level checks due to AxREADY never being
asserted, as the formal analysis tool was free to exercise
any value of AxREADY in order to fail an assertion.

The above mentioned scenario is a case of incomplete
specification or under constraining. Under constraining
results in generation of illegal sequences by the formal
tool.

Recommendation 1:

All protocol scenarios (especially relating to latency)
where the specification is silent about design
implementation, should be judiciously included in the
property set.

4. Over Constraining

During an analysis of a design, an assertion on the output
is proved for a given set of constraints written on the
inputs. Constraints describe the legal set of sequences
which can be applied on the inputs. Over constraining
refers to reducing the state space which the formal tool
explores, to a reduced subset of the legal permissible set.

Every protocol specification constrains the state space of
formal analysis to an optimal set. Any further additional
constraining leads to an over constrained set. In such
cases, though the constraints generate legal sequences of
inputs, they are not capable of generating all legal
sequences as described in the specification.

Since the formal analysis tool has no knowledge of the
entire legal state space specified by the specification, it is
not possible for the tool to detect an over constrained
environment. Hence it is imperative that adequate steps
are taken to detect an over constrained environment.

4.1 Indirect Constraining

It is common to make use of auxiliary HDL code to
simplify a property implementation. In some cases the
combination of HDL logic and constraints leads to
constraining of primary inputs, even if no direct
constraints are applied on them. This type of constraining
might be unintended and may lead to over constraining
of the primary inputs.

The following example of a combinational circuit, is
used to demonstrates this effect. We want to check that
the output port out2 does not take a value 3’d4 as
specified by the assertion A1. Since we want to check
this for all values of inputs, we have not written any
direct constraints on them. Now assume that there is a
wrongly placed constraint as specified by C1.

module (
input [1:0] in1,
input [1:0] in2,
.
.
input [1:0] inN
output [2:0] out1,
output [2:0] out2
.
.
output [2:0] outN
);

assign out1 = in1 + in2;
assign out2 = ~out1;

// assignment of other outputs with different
// implementation logic
..
endmodule

// psl A1 : assert never(out2 == 3’d4);
// psl C1 : assume never(out1 == 3’d3);

If all values of inputs were exercised on the design, the
assertion A1 should fail, but with the inclusion of a
wrong constraint C1 in the formal environment, the
assertion results in a pass. Hence the constraint C1 over
constraints the formal environment such that those values
of in1 and in2 are not exercised which results in out1
attaining a values of 3. Moreover all the other assertions
written on other output ports are also proved in this
reduced state space.

Hence as demonstrated by the above example, the results
of a formal run are as good as its constraints. Over
constraining may lead to erroneous results being
reported. Though the above example is very simple to
understand, complex circuits may have very complex
relationship between constraints and often it is extremely
difficult to detect over constraining.

Recommendation 2: Be cautious when selecting
constraints for analysis. Avoid writing constraints on the
output of a design.

In general, it is a good practice to write constraints on the
inputs of a circuit only. It can be observed that the above
constraint which causes indirect constraining of the
primary inputs was written on the output of the circuit.

4.2 Cul-de-sac

Assertions can be of the form such that it has an enabling
condition and a fulfilling condition. During formal
analysis if such an assertion passes with its enabling
condition also getting covered, one normally assumes
that the fulfilling condition is bound to happen when the
enabling condition occurs. However, there are cases
when this assumption does not hold true. There can be
finite paths in the design which prevents the tool from
exploring new states while proving a property. This
would result in the fulfilling condition not getting
covered during the analysis. This condition is referred to
as cul-de-sac or dead end.

Consider the same example with slight modification. The
circuit is sequential in nature with clock and reset.

module (

input clk;
input resetn;
input [1:0] in1,
input [1:0] in2,
output [2:0] out1,
);

always @(posedge clk or negedge resetn)
 if (~resetn)
 out1 <= 3’d0;
 else
 out1 <= in1 + in2;

..
endmodule
// psl default clock = posedge clk;
// psl C2 : assume never(out1 == 3’d3);
// psl A2 : assert always {in1==1 & in2==2}
// |=> {out1 == 3’d6};
// psl A3 : assert always {in1==0; in2==1;
// in1==0 & in2==3 } |=> {1’b0};

In the above example C2 is a wrongly placed constraint.
The constraint states that out1 can never take a value 3.
Since there are no constraints on inputs, a state is
possible in which in1 and in2 has values such that their
present sum is 3. The enabling condition (also called
trigger check) gets covered in a formal run. However the
design logic is such that out1 would have a value 3 in the
next clock. Hence we see that the design implementation
conflicts with a constraint in the future. This introduces a
finite path in the design which truncates with in1 and in2
taking values such that their sum is 3.

If an assertion is written similar to A2 and A3, such that
the last state of the enabling condition is the last state on
a finite path then the analysis would always report the
assertion as a pass, no matter what is written as the
fulfilling conditions. In the above example assertions A2
and A3 results in a pass. Results of analysis of a formal
environment having finite paths are normally not
intuitive and mostly misleading.

Recommendation 3: Always write a corresponding cover
check for all assertions

We propose a solution here to detect erroneous passes
which were a result of cul-de-sac issues.

For a property of the form

// psl P : assert always {SERE1} |=> {SERE2};

write a cover check of the form

// psl P_cover : cover {SERE1;SERE2};

To ensure a valid pass of an assertion (i.e. when an
enabling condition occurs, only the fulfilling condition
can and does occurs), the assertion should pass and the
cover should also have a witness. Hence it is
recommended that every assertion should be checked for
validity by writing a corresponding cover check.

The above recommendation applies to properties which
are selected as to work as constraints as well. Writing a
corresponding cover check for constraint ensures that the
constraint is not redundant in the formal setup. If the
cover check of a constraint fails, it indicates an over
constrained environment. This usually helps in
debugging the cause of over constraining.

4.3 Context of a property

Though the earlier section lays great emphasis on
refraining from writing constraints on outputs of a
design, there are cases such that in order to model
complex part of the protocol specification constraints
involve both the inputs and outputs. In a bus based
design a lot of transaction information has be latched
when a transfer occurs. A transfer normally occurs when
a master device places some request on the bus and the
slave accepts them. Hence it is seen that constraints
involving information latched from a transfer would
inadvertently involve both the master and slave signals.

Recommendation 4: For properties involving signals
from both the inputs and outputs of a design, always get
the context of the property right. Context of a property
implies knowing whether a property is a slave property
or a master property.

The following case describes an incorrect property
modeling style which causes ambiguity in the context of
property.

In AMBA AXI protocol, a write request transfer occurs
when both AWVALID (a master output signal) and
AWREADY (a slave output signal) are asserted.
Similarly a write response transfer occurs when both
BVALID (a slave output signal) and BREADY (a master
signal) are asserted. The protocol mandates that every
write request should be returned with a response. Now
consider a coarse implementation of the same

// This wire implies a write transfer
wire write_request_transfer= AWVALID & AWREADY;

// This wire implies a write response transfer
wire write_response_transfer = BVALID & BREADY;

// psl resp_for_every_req : assert always (
// write_request_transfer ->
// eventually! (write_response_transfer));

The context of the property “resp_for_every_req” is not
correct as it does not clearly describe whether the
fulfilling condition is the responsibility of a master
device or a slave device. It is not clear that for
verification of a slave design, whether this property is to
be picked as constraints or as an assertion and the same
logic applies to verification of a master device too.
Having an incorrect context of a property may lead to
over constraining or cul-de-sac issues discussed earlier.

The property can be implemented with the correct
context when responsibilities are distributed for
individual devices. For example the same protocol
scenarios when expressed as follows set the expectation
of the devices correctly.

// mandate the slave to provide a response by
// asserting BVALID when a write request
// transfer occurs
// psl slave_resp_for_every_req : assert always
// (write_request_transfer ->
// eventually! (BVALID));

// mandate the master to eventually accept all
// write responses
// psl master_eventally_accept_write_response :
// assert always (BVALID ->
// eventually! (BREADY));

The above mentioned master property also falls under
the ambit of recommendation1.

4.4 Over constraining due to design
implementation

Assertion IP developers devote huge amount of time and
effort in ensuring that the bundled property set is the
most optimal set to describe the full scope of the protocol
specification. Comprehensive testing strategies are used
to prove that is no over constraining introduced by the
assertion themselves. But it is not true that the same set
of properties would not be over constrained when
applied onto different designs.

Consider the following example. The inputs in1 and in2
are not directly constrained as we want to check all
assertions for all possible combinations of the inputs.
Design1 and Design2 have different implementation of
the output port out1. Constraint C1 states that in a cycle
where in1 and out1 are 1, in2 should be 1.

module master (
 input in1;
 input in2;
 output out1;

assign out1 = in1 & in2; //Design1
assign out1 = in1 | in2; //Design2

endmodule

// psl C1 : assume always ((in1 & out1) ->
in2);

Now let us analyze the combination of values possible on
the ports in1, in2 and out1 for both the designs

For design1

in1 in2 out1
--- ---- ------
0 0 0
0 1 0
1 0 0
1 1 1

For design2

in1 in2 out1
--- ---- ------
0 0 0
0 1 1
1 0 1 � conflicts with C1
1 1 1

A formal analysis tool always abides to the constraint of
the environment while proving an assertion. In Design1,
the tool exercises all combination of in1 and in2 for the
analysis. In Design2, since the design implementation is
such that if the tool were to apply values in1 == 1 and
in2 == 0, the output would be 1 which would conflict
with the constraint C1. Hence in order to obey the
constraint, the tool never exercises these values while
proving all the assertions in the design. This results in
over constraining of the primary inputs even though no
direct constraints were applied on them.

Recommendation 5: Be aware that certain design
implementations may reduce the input state space, hence
always rely on coverage before accepting the results of
an analysis.

5. Coverage

Coverage analysis of a formal environment is an
important part of a formal analysis. As described in
earlier sections of this paper, there are myriad reasons for
over constraining or under constraining in a formal
environment. Coverage metric can provide meaningful
and sometimes startling information about the quality of
the analysis. It is imperative that coverage information be
reviewed before accepting the results of formal analysis.
Coverage statistics on the output of a design provides
information about the subset of the protocol the design
has implemented. Coverage statistics of the inputs
provides information of the quality of the test sequences
exercised on the design.

A formal VIP should provide the following type of
coverage.

Sanity covers: These checks are very basic in nature but
are extremely effectively in detecting over constrained
environment. They check whether a port can ever have a
value 0 or 1 and whether the value on the port can ever
rise or ever fall.

Value covers: These covers checks whether a multibit
port can take all possible values

Positive covers: These covers checks whether specific
legal protocol sequences occur on the interface. Failure
of these covers on the inputs of a design indicates an
over constrained environment.

Negative covers: These cover checks whether specific
illegal protocol sequences do not occur on the interface.
A witness of these covers on the inputs of a design
indicates an under constrained environment.

Cross covers: These covers checks whether specific
combinations of values can occur on the interface.

6. Conclusions

The paper explains the causes of under-constraining,
over-constraining and cul-de-sac during the development
of Formal VIP. The recommendations for eradicating
these problems have also been discussed. The paper also
touches upon the importance of coverage in formal
analysis.

7. Acknowledgments

The authors wish to acknowledge the assistance provided
by the members of formal analysis tool development
team in explaining the tool behavior in these complex
cases.

8. References

1. AMBA AXI 1.0 Specification

2. FAQs : Incisive Formal Verifier

