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Abstract – The paper presents flows and 
methodologies for using plan-driven verification 
testbenches with accelerated verification engines 
via transaction oriented interfaces. It describes how 
to reuse stimulus generation, coverage analysis, 
checking and error handling in reactive and 
regression environments while optimizing the 
testbench architecture and modeling style for high 
performance verification. 
 

 
I. Introduction 
Transaction-Based Acceleration is a technique for taking 
an existing advanced simulation-based verification 
environment (usually incorporating a coverage-driven 
approach) and incorporating a hardware accelerator to 
provide the speed to perform system level verification 
and hardware/software co-verification. Traditionally, 
verification engineers performed the work of creating 
system level tests that execute on a hardware accelerator 
by writing directed tests (i.e. each test exercises only one 
scenario).  Furthermore, these engineers typically created 
the entire regression environment using adhoc approaches 
requiring Make files, perl scripts, shell scripts, etc…  
Testbench automation tools like Incisive Specman Elite 
have been proven for many years to enable significant 
efficiency and quality improvements by enabling 
constrained-random, coverage-driven verification for 
block- and cluster-level verification.  However, applying 
these same approaches to system-level verification has 
not been practical given the relatively slow speed of 
software simulators when simulating large system 
designs.   With the advent of Transaction-Based 
Acceleration techniques, verification engineers can now 
take advantage of reusing a Specman simulation-based, 
coverage-driven verification environment created to 
verify block to cluster to system levels, and run at 
significantly higher speeds on a hardware accelerator. 
While this will significantly improve efficiency (since the 
verification environment can be reused) and can improve 
quality (since the generated tests exercise more corner 
case scenarios and capture coverage metrics), it does not 

guarantee that the system level verification coverage 
objectives will be met. These objectives could only be 
met by creating an efficient transaction-based 
acceleration and simulation regression environment 
defined using a Plan-Driven verification approach. 
 
II. What Does Plan-Driven Verification Really Mean? 
What is Plan-Driven verification? Why would you want 
to implement a Transaction-Based Acceleration 
regression environment using Plan-Driven verification 
approach? 
Plan-Driven verification begins with the creation of a 
feature-based verification plan which captures “what” 
features need to be verified, independent of “how” the 
tests will be created.  Once all of the features have been 
captured, they are linked to coverage metrics which 
observe when a specific feature is executed in the 
verification environment. Using a constrained-random 
verification environment enables automatically 
generating many permutations of test stimulus targeted at 
filling the coverage.  As the coverage goals are achieved, 
this information is annotated back to the feature-based 
verification plan so that analysis can be performed to 
measure exactly what effort remains to verify all features 
defined in the plan.   
 
The following example is taken from [1]: 
 
Verification Plan Feature: The DMA engine in an MP3 
SoC is responsible for moving song data from the flash 
memory to the SRAMs accessed by the DSP core. 
 
Metrics (which can be observed with coverage): DMA 
configuration; Number of DMA transfers; DSP operation; 
Source/Destination addresses; etc… 
 
Stimulus Scenarios:  Implement the use case of writing 
song data from flash memory to SDRAM and have the 
DSP process the data.  Leverage constrained-random 
verification environment to automatically create 
interesting stimulus scenarios: 
• Configure the DMA engine to one of the 20 modes 
• Select different types of song data 



• Select different source and destination addresses 
• Select different operation modes of the DSP 
• Etc… 

 
Constrained-random, coverage-driven verification is very 
thorough, because it tests the design in corner case 
scenarios which engineers might not typically think of 
(like performing a DMA operation with an illegal DMA 
configuration), while using coverage metrics to 
dynamically observe that all combinations have been 
executed.  Plan-driven verification extends the coverage-
driven approach with a thorough up front planning 
process and the capability to define and link executable 
coverage metrics to each feature of the plan to ensure that 
each feature is tested. Additional information that needs 
to be captured includes how each coverage metric will be 
measured (functional coverage, assertion checkers, etc…) 
which execution engine will be used (i.e. simulator, 
accelerator, formal analysis tool, etc.) and which 
operation modes or test flows will be applied. Plan-
Driven verification provides a highly automated and 
predictable process for reaching verification closure as 
described in [2]. 
 
Traditional System-Level Methodology 
A traditional System Verification approach would 
typically involve hand crafting a series of directed tests 
that implement a specific use-case. Reusing the above 
example, it might look something like: Use the default 
DMA engine configuration, move the song “Let it Be” 
from flash memory at address 0x0000 to SRAM at 
address 0xff00, start DSP operation in default mode 
(which might be a very important, frequently used, use-
case that needs high performance to test in a reasonable 
time).   
 
Plan-Driven System-Level Methodology 
In a Plan-driven verification methodology, the 
engineering team creates a verification plan. The plan 
breaks down the design into features. The features have 
metrics associated with them, and the means by which 
each metric will be measured. This allows reports to be 
generated that detail which features have been exercised 
as well as which features have not been exercised.  The 
same approach can be applied for block-level, cluster-
level, and also system-level.  The only differences would 
be which features are verified at each level, and which 
simulation engine to use at each level, where typically a 
hardware accelerator using transaction-based acceleration 
methodology is most applicable at the system-level.  The 
benefits of this for Systems Verification engineers are 
many: 
 
• Executable plans created by the verification team 

for block- and cluster-level verification can be re-
used and extended for the system level verification 

• The constrained-random, coverage-driven 
verification environment can be reused across 
software simulation and hardware acceleration 

• Reports are easily generated showing the current 
status of the verification effort 

• Re-running failed simulations is easy and can 
actually be programmed to occur 

• Coverage metrics can be used to get a realistic 
picture of the verification status against its goals 

 
III. Implementation Strategy 
To achieve all possible benefits of a Transaction-Based 
acceleration regression environment using an executable 
verification plan, the environment needs to be architected 
to: 

a. Create an executable verification plan that 
combines simulation and acceleration 
resources in a regression environment 

b. Maximize performance of the verification 
environment when driving the hardware 
accelerator and the entire regression 
environment 

c. Maximize reuse of the simulation-based 
verification environment 

 
a. Bringing Acceleration into the verification plan 
Executable verification plans, as described in the 
introduction section, can be extended to include features 
that will be verified on the hardware accelerator. An 
existing executable verification plan would contain 
features and associate coverage metrics with those 
features (to prove that the features were exercised). To 
enhance the plan for TBA acceleration, additional metrics 
enabled by TBA acceleration and derived from system 
level requirements can be added to those features. 
Additional metrics might be: system level assertions; 
additional coverage items; additional directed tests 
targeted at specific functionality; etc.   
Additional attributes would be added to the verification 
plan that define which features will be verified on the 
acceleration regression engine and which of the test flows 
and acceleration operation modes will be used for 
different sections of the verification plan. These attributes 
include specifying that longer test scenarios should be run 
on the acceleration platform, and identifying test scenario 
attributes which determine how to extract the maximum 
performance by using buffering or pre-generation, and 
post analysis flows.  
 
b. Maximizing overall performance 
Maximizing overall performance of the regression 
environment entails maximizing the performance of the 
testbench (running on the host computer) by minimizing 
the time spent in the testbench, optimizing the utilization 
of the hardware accelerator, and reducing the number of 
times that both the host (called SW side) and the 



accelerator (called HW side) need to synchronize passing 
data back and forth.  
 
The architecture should incorporate the following 
principles: 

1. The most active part of the testbench 
(BFM/monitors) is running on the accelerator at its 
peak speed.  

2. The BFMs and monitors encapsulate only the 
interface protocol specific knowledge and thus can 
be reused from project to project 

3. The BFMs and monitors are the only testbench 
components requiring clocks. When running on the 
accelerator, all clocks can be generated inside the 
HW side partition avoiding synchronization with 
the SW side on every clock edge. 

4. BFMs and monitors can provide or gather 
“transaction data” over multiple clock cycles. 
During these periods the HW side can run w/o 
interruption. 

5. Interaction between the HW side and SW side is 
fully asynchronous. It happens only when the HW 
side requests a new transaction or produces a new 
transaction.  

6. Buffering mode can be used by non-reactive 
models and controlled by the user for each 
communication channel. It supports batching 
multiple transactions into the buffer reducing the 
number of HW/SW side synchronizations. 

7. HW/SW communication does not take place 
during idle periods. The more idle periods that 
occur on certain interfaces, the more performance 
improves.   

8. The testbench residing on the SW side is 
abstracted to higher level data items or user 
transaction-level API, and thus runs significantly 
faster with the BFM and the Monitor relegated to 
the HW side.  

9. Significant performance can be obtained if the 
stimulus could be pre-generated and DUT response 
could be provided for post-processing checking. 

 
c. Maximizing Simulation testbench reuse 
The simulation verification environment (VE) 
development requires significant development effort, 
especially when taking into account reuse considerations.  
This development effort is most efficient by developing 
the environment with the e verification language and the 
Incisive Specman Elite tool in combination with the 
Incisive Plan-to-Closure Universal Reuse Methodology 
(URM).  It is also possible to adopt configurable "off-the-
shelf" Universal Verification Components (UVCs) for 
standard protocols like AMBA or PCI-Express, for 
example, rather than develop them from scratch.  
Specman is highly optimized for applying plan-driven 
verification methodology.  Extending the Specman 

simulation VE to an accelerated environment provides the 
advantage of a single executable verification plan as well 
as reusing most of the constrained-random, coverage-
driven simulation VE.   The unique Aspect Oriented and 
extensibility features of the e language greatly simplify 
the effort to target and configure the same VE to be 
reused for both software simulation and hardware 
acceleration at user’s control. 
The following principles could be applied to maximize  

1. Agent architecture 
Make sure that interface from the sequence driver to 
the BFM is invariant to HW or SW BFM. Same 
applies to the data collected from the BFM. 
Remove all clocks from the UVC working in 
acceleration mode. 
2. Data items architecture 
Create simplified data structures based on the 
required level of verification. Some fields (mainly 
control fields) are not required in acceleration mode. 
Add configuration control for switching between data 
items types.  
3. Test writing style 
Reduce time waits and context switching to the 
extent possible. 
Use reactive flows when the simplified data 
structures can provide sufficient performance. 
Use streaming flow in cases when the simplification 
of the data structures is limited or complicated to 
implement, In this case most of the data items are 
generated in parallel, by a number of concurrent 
Specman copies, with reduced reactivity level 
 

The following figure presents a simplified view of 
simulation-based e Verification Component (eVC) 
architecture. 
 

 

eVC Agent

Config:
active_passive

Monitor

Checker

Coverage

events

DUT

Active

Sequence
Driver

BFM

sequences

eVC Agent

Config:
active_passive

Monitor

Checker

Coverage

events

DUT

Active

Sequence
Driver

BFM

sequences

 
 



The following figure presents a simplified view of the 
modifications required to change an existing simulation-
based eVC to a Universal Verification Component (UVC) 
which can also support TBA acceleration. 
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IV. Case Study 
In this case study we will take a look at how our 
Transaction-Based Acceleration Regression methodology 
can address the issues outlined in the previous sections.  
 
DES case study – We decided to use the Cadence 
AMBA High-performance Bus (AHB) e Verification 
Component (eVC) that was integrated with a TBA 
compliant transactor in conjunction with an open source 
decryption/encryption Data Encryption Standard (DES) 
blocks that served as the DUT. Multiple DES block 
instances were “daisy chained” to establish a DUT with 
configurable capacity. On the SW side, the eVC could 
produce (at user’s testbench controls) transactions of 
variable length (transaction length is defined by the 
number of clocks used to assert the transaction). The eVC 
applied all transactions back-to-back to DUT meaning, 
that a new transaction was provided immediately when 
the pervious transaction was consumed.  
The DES case study allowed us to run the tests we 
defined in our verification plan, each representing a 
typical test scenario combined with its corresponding 
acceleration data item. These tests allowed us to validate 
and refine our Transaction-Based Acceleration 
Regression methodology and measure the acceleration 
performance obtained by varying certain attributes in our 
verification environment.    
 

a. Reuse considerations  
SW/HW testbench partitioning -- Partitioning is done 
to maximize performance and reuse. It involves creating 
two verification sub-components which are separated 
from each other and communicate over uni-directional 
communication channels. The HW side partition is driven 
by clocks while the SW side is transaction-based and less 
clock dependent. The SW side could still scarcely use 
timed constructs such as waiting on time to allow the SW 
side and HW side to synchronize and exchange 
transactions.  
The following figure presents a simplified view of 
SW/HW testbench partitioning. 
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Defining transactor architecture -- We used the 
Cadence Incisive Transaction Based Acceleration (TBA) 
Methodology which provides the basic architecture and 
guidelines as described in [3] and [4]. TBA presents a 
common transaction-based interface for simulation and 
acceleration that is fully congruent between the two 
modes – meaning that the environment will simulate 
exactly the same across both engines.  It supports Verilog 
and VHDL on the HW side and SystemC/C++ or e 
testbenches on the SW side. It handles variable-length 
transactions of any practical size set by the transaction 
producer at run time.  
It supports buffering, yet allows modeling of transactors 
such that buffering can be added at the end-user’s control 
only when running in acceleration mode for increased 
performance. It supports automated accelerator/host 
synchronization and generates the synchronization signals 
by analyzing the transactors and operation mode settings. 
It supports timed testbenches and timed simulation 
control. It offers a configuration interface for controlling 
batching/reactive operation mode setting on a global or 
per-channel basis. And it enables a robust debug flow 
including support for transaction recording and analysis. 
 
Communication and resource allocation -- TBA 
communication resources contain uni-directional buffered 
transaction channels that can move transaction data from 
the HW side to the SW side or vice-versa and non 
buffered state ports for status and configuration control. 
The transactor modeler can choose the number and types 
of communication channels used in each transactor.  
 



To achieve maximum speed for a TBA environment on 
Cadence Palladium and Xtreme emulators, the transaction 
channels can be configured to support two different 
operation modes: 
 

Reactive mode - in which the synchronization 
between the HW and the SW is done on each 
transaction boundary. 
 
Batching mode - in which a batch of transactions can 
be driven into the buffers and the synchronization 
occurs when the channel buffer is full or empty. 

 
Reactive mode insures that no latency is introduced by 
the buffered communication channel. When no reactivity 
is required, batching mode can be turned on allowing a 
batch of transactions to reside at the buffer at the expense 
of introducing latency. The latter will reduce the number 
of HW/SW side interactions for non-reactive testbenches 
resulting in increased performance. 
 
TBA state ports can be used as status and configuration 
channels that allow the BFM to be configured at 
synchronization time or the testbench to obtain additional 
status data (for example when errors are encountered) for 
additional error logging and debugging.  
 
Upon designing the transactor the developer assigns as 
many communication resources of each type as needed 
for transaction data transfer, configuration and status.  
 
b. Performance considerations  
Test Flows -- When driving an accelerated DUT, the 
performance requirements of the software side are very 
demanding. To achieve significant acceleration speedup 
(defined as 50X and above relative to simulation), the SW 
testbench execution time should not exceed 2% of the 
overall simulation time. The testbench performance 
should be analyzed (in simulation), in order to identify 
bottlenecks and to predict performance impact of data 
structure simplification.   
 
To accomplish this goal, the following test flows were 
implemented: 
 

Reactive test flow – Used for tests in which sufficient 
performance can be provided via simplification of 
transaction-level data structures. Stimulus generation 
is simplified and configuration control is added 
reducing the testbench execution time on the host to 
achieve the performance goal. The constrained-
random generated stimulus is simplified for system 
level by turning off some of the sophisticated corner 
cases that have been tested in simulation at the block 
and cluster levels. 
 

Streaming test flow – The performance is achieved 
using stimulus which is pre-generated concurrently 
by a number of Specman stand alone sessions. The 
pre-generated stimulus is retrieved by a single 
Specman session that drives the accelerator, and 
obtains the DUT response. The checking and 
coverage analysis of the results can be done in 
separate concurrent Specman sessions as well. In this 
case the level of reactivity is highly reduced. 
 
Hybrid test flow – Combines the above Reactive and 
Streaming test flows. Given that stimulus generation 
on some interfaces would require reactivity while on 
other interfaces it may not, and given that testbench 
execution speed on each interface may vary, pre-
generated stimulus and reactive stimulus can be 
combined using the hybrid flow. The earlier could be 
restored while the latter can be combined on the fly. 
Similarly some level of results checking (such as 
simple error checking) could be done on the fly while 
more extensive results checking (such as coverage 
analysis) could use post-run analysis latter. 
 

HW acceleration and SW simulation resource 
balancing  -- The full verification plan leverages a 
common verification environment for both simulation-
based and hardware accelerated verification,  where 
sophisticated block level stimulus is generated and 
typically executed on a software simulator, while longer, 
more real-world stimulus scenarios are generated and 
executed on to the hardware accelerator. When using the 
Streaming test flow or the Hybrid test flow, the Specman 
simulator will be used for pre-generation of stimulus and 
post-run analysis of system level tests running on the 
accelerator. 
Optimized resource balancing is obtained when the 
simulation resources and acceleration resources are 
balanced to complete the regression at the minimal 
possible time utilizing the available simulation licenses 
and the available acceleration resources. Of particular 
importance is avoiding idle time on the accelerator by 
assigning sufficient simulation licenses and workstation 
resources to constantly produce stimulus and check DUT 
responses for multiple tests while the accelerator is 
running on other tests. 
This methodology could be further refined to randomly 
pre-generate individual stimulus sequences, and then 
during run-time on the accelerator, a single simulation 
license assembles the individual stimulus sequences into 
one long test. By optimizing the length of each of the 
stimulus sequences and by setting the accelerator 
operation into Batching mode, long pre-generated 
complex test regressions are executed very quickly on the 
accelerator. 
 



The Incisive Enterprise Manager combined with 
dispatching tools such as LSF from Platform Computing 
allows optimizing HW acceleration and SW simulation 
resource balancing by spawning the tests to both targets 
types and managing the regression run process. Enterprise 
Manager is a complete verification management solution 
which not only includes regression management but also 
coverage and failure analysis and reporting capabilities. 

 
c. Creating an Executable Plan 
An executable verification plan is either created as part of 
the overall verification plan, including the earlier 
simulation-based effort, or a separate plan is created for 
the TBA verification effort.  The plan is typically 
captured in a word processor such as Microsoft Word or 
the Adobe FrameMaker in accordance with the Incisive 
Plan to Closure Planning and Management Methodology. 
Once the plan is captured, it can be exported to an 
executable form by the Incisive Enterprise Manager tool 
where it is then used to manage the overall verification 
process. 
 
While a verification plan can be structured in many 
different ways, our customer interactions have shown that 
there are some basic sections that are normally captured. 
These sections are: 
 
Functional Requirements-- This section contains 
information related to the functional features that can be 
verified as a black box (i.e. using the specifications to 
determine which features need to be verified. Typically, 
no internal information which relates to the specific 
design implementation is used). This section is further 
decomposed into two sections: 
 

Functional Interfaces –   This area defines verification 
information relating to external and internal interfaces 
that the device has, such as Ethernet, AMB bus, USB, 
etc. 
 
Functional Core – This area defines verification 
information relating to core features of the design, such 
as the example given in the opening section “The DMA 
engine is responsible for moving song data …”.  This is 
a core feature of the DMA block. 

 
Design Requirements -- This section contains 
information related to design implementation details, 
such as pipelining, fifos, etc. 
 
Verification Views -- This section contains information 
on different views of the verification content. Since these 
devices are very complex, there usually is different 
verification information that is being extracted to review 
in each view. For example, you might have milestones 
defined. In one milestone you define that the DMA block 

and Ethernet block should be 50% verified by the 4th 
week of the project. This becomes a verification view. 
Another view might be a register view, in which all the 
registers in the design are referenced by the verification 
view and checked. 
 
Verification Environment - This section contains 
information on the creation of the verification 
environment. This usually refers to the creation of: 
verification checkers, functional coverage models, 
verification components (which stimulate and respond to 
the design), etc. 
 
To quickly create a verification plan, it is possible to start 
with a verification template, which comes standard with 
the Incisive Enterprise Manager. Fill in the Functional 
Requirements section with the functional information of 
the features that you will need to verify and then follow 
the Incisive Plan to Closure Planning and Management 
Methodology to create the corresponding coverage model 
and the rest of the process. 
 
d. Study Performance Results 
We initially used a testbench driving pre-generated 
stimulus from a file and then used relative simple 
stimulus generation and response checking conducted on 
the fly using the Reactive test flow. For these test cases, 
we saw performance running on the Cadence Palladium 
family of emulators and the Xtreme family of emulators 
as high as 120x over the Cadence Incisive Unified 
Simulator (IUS) simulation for multiple DES design 
blocks configured to create a 2M gates DUT. 
 
The following chart illustrates the performance results 
obtained for these tests when either written in SystemC or 
Specman/e on the 2M gates DES DUT configuration. 
TBA operation mode was set to Reactive mode and buffer 
depth was assigned to 128, meaning a single transaction 
whose length is also 128 can fit exactly into the buffer. 
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As can be observed in the chart, the performance obtained 
for SystemC and e was comparable for a similar type of 



tests. As we slightly increased the testbench complexity 
from file-based to a simple random-based test to a simple 
sequence-based test, performance slightly decreased. 
However, the performance was mostly dominated by the 
length of the transactions applied via the TBA transaction 
interface as opposed to the type of the test.  
 
As can be observed in the chart, the performance 
increased by 3x (from about 40x to about 120x) when the 
transaction length increased from 10 to 128 reflecting 
about 13x reduction in the number of HW/SW side 
synchronizations.  This level of performance was 
obtained by applying back to back transactions (meaning 
no idle time between transactions) while TBA was 
running in Reactive mode (and w/o any buffering) on the 
Cadence Palladium and Xtreme emulators. 
 
Later we decided to compare the impact of TBA Batching 
operating mode at various transaction lengths. First we 
ran only the SystemC random test case in Batching mode 
at various transaction lengths. Then we ran a mixed 
Specman/e and SystemC configuration. While the HW 
and SW side was configured to run in TBA Batching 
mode, Specman/e and SystemC maintained reactive 
communication semantics (meaning exchanging context 
on transaction boundary). Last we configured TBA to run 
in Reactive mode while still maintaining the same 
reactive communication between SystemC and e.   
 
The following chart illustrates the results. Batching mode 
for the SystemC test case provided steady performance 
for all transactions lengths as the number of 
synchronizations was kept constant in this mode. Given 
that the testbench automatically throttled the messages 
into the TBA channel buffer (given its Batching mode 
setting), the number of HW/SW side synchronizations 
was only determined by the buffer depth set to 128. 
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For the mixed e/SystemC configuration running in 
Batching mode, performance was impacted by the 
reactive context switching between SystemC and e on 
transaction boundaries.  However TBA Batching mode 
kept the HW/SW side synchronization constant providing 
better performance over the last test case running in TBA 
Reactive mode using purely reactive semantics across all 
interface boundaries.  
 
One observation that can be made is that using Batching 
mode increased performance only when multiple 
transactions could fill TBA channel buffer. The 
performance for the mixed SC/e test case matched in 
Batching and Reactive modes for transaction length of 
128 as only a single 128 length transaction resided in the 
buffer for both test cases. 
 
The TBA methodology was also applied to a complex 
testbench driving the DES design via the AHB eVC. The 
eVC Agent was modified to conform to the UVC Agent 
architecture by making some modeling changes that 
simplified generation complexity and by introducing 
configurability that traded-off some of the UVC 
functionality in acceleration mode in lieu of performance. 
The sequence driver in the agent was enhanced to 
perform stimulus save and restore to support the 
streaming flow use model.  
 
For some of the test cases that required reactivity, we 
used the reactive flow subject to configuration control 
setting that simplified the complexity of the test in 
acceleration mode. In this case we obtained performance 
in the range of 60X over simulation.  
 
For the complex AHB test cases that did not require 
reactivity we used the streaming flow which provided run 
time performance equivalent to a file-base pre-generated 
stimulus.  
 
Using the streaming flow with good load balancing of 
Specman on seven workstations and a single Cadence 
emulator, stimulus generation with segmentation each of 
the of test sequences into individual files (to allow 
concurrent run of all resources in the environment) and 
result checking, we saw overall improvement of 3X 
(using on 6 -7 Specman licenses) over what it would take 
to run the same test conducting generation on the fly 
using the reactive flow.   
 
The TBA regression methodology promotes pre-
compilation of the environment before the tests are 
applied. Unless changes were introduced to the design or 
to the UVCs, multiple tests can be applied w/o requiring 
recompilation of the DUT and or the UVCs.  
 
 



V.  Conclusions 
Increased productivity and predictability  
A common verification environment has been used for 
both software simulation and hardware acceleration.   
Significant performance improvement, in particular for 
system level verification, was obtained with a good, 
configurable testbench architecture and management of 
the TBA regression environment that maximized the 
testbench performance driving the hardware accelerator 
while maximizing simulation testbench reuse.  
A single executable verification plan addressed both 
simulation and acceleration targets, using the results for 
coverage and closure analysis reports. The testbench 
generation tool, Specman, was proven to support plan 
driven methodology with adequate performance for 
driving hardware accelerated designs on the Palladium 
and Xtreme families of emulators. 
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