

Building Transaction-Based Acceleration Regression

Environment using Plan-Driven Verification Approach

Shabtay Matalon, Leonard Drucker, Maya Bar, Michael Stellfox

Cadence Design Systems, Inc
San Jose, CA 95134

shabtay@cadence.com, leonard@cadence.com, maya@cadence.com, stellfox@cadence.com

Abstract – The paper presents flows and
methodologies for using plan-driven verification
testbenches with accelerated verification engines
via transaction oriented interfaces. It describes how
to reuse stimulus generation, coverage analysis,
checking and error handling in reactive and
regression environments while optimizing the
testbench architecture and modeling style for high
performance verification.

I. Introduction
Transaction-Based Acceleration is a technique for taking
an existing advanced simulation-based verification
environment (usually incorporating a coverage-driven
approach) and incorporating a hardware accelerator to
provide the speed to perform system level verification
and hardware/software co-verification. Traditionally,
verification engineers performed the work of creating
system level tests that execute on a hardware accelerator
by writing directed tests (i.e. each test exercises only one
scenario). Furthermore, these engineers typically created
the entire regression environment using adhoc approaches
requiring Make files, perl scripts, shell scripts, etc…
Testbench automation tools like Incisive Specman Elite
have been proven for many years to enable significant
efficiency and quality improvements by enabling
constrained-random, coverage-driven verification for
block- and cluster-level verification. However, applying
these same approaches to system-level verification has
not been practical given the relatively slow speed of
software simulators when simulating large system
designs. With the advent of Transaction-Based
Acceleration techniques, verification engineers can now
take advantage of reusing a Specman simulation-based,
coverage-driven verification environment created to
verify block to cluster to system levels, and run at
significantly higher speeds on a hardware accelerator.
While this will significantly improve efficiency (since the
verification environment can be reused) and can improve
quality (since the generated tests exercise more corner
case scenarios and capture coverage metrics), it does not

guarantee that the system level verification coverage
objectives will be met. These objectives could only be
met by creating an efficient transaction-based
acceleration and simulation regression environment
defined using a Plan-Driven verification approach.

II. What Does Plan-Driven Verification Really Mean?
What is Plan-Driven verification? Why would you want
to implement a Transaction-Based Acceleration
regression environment using Plan-Driven verification
approach?
Plan-Driven verification begins with the creation of a
feature-based verification plan which captures “what”
features need to be verified, independent of “how” the
tests will be created. Once all of the features have been
captured, they are linked to coverage metrics which
observe when a specific feature is executed in the
verification environment. Using a constrained-random
verification environment enables automatically
generating many permutations of test stimulus targeted at
filling the coverage. As the coverage goals are achieved,
this information is annotated back to the feature-based
verification plan so that analysis can be performed to
measure exactly what effort remains to verify all features
defined in the plan.

The following example is taken from [1]:

Verification Plan Feature: The DMA engine in an MP3
SoC is responsible for moving song data from the flash
memory to the SRAMs accessed by the DSP core.

Metrics (which can be observed with coverage): DMA
configuration; Number of DMA transfers; DSP operation;
Source/Destination addresses; etc…

Stimulus Scenarios: Implement the use case of writing
song data from flash memory to SDRAM and have the
DSP process the data. Leverage constrained-random
verification environment to automatically create
interesting stimulus scenarios:
• Configure the DMA engine to one of the 20 modes
• Select different types of song data

• Select different source and destination addresses
• Select different operation modes of the DSP
• Etc…

Constrained-random, coverage-driven verification is very
thorough, because it tests the design in corner case
scenarios which engineers might not typically think of
(like performing a DMA operation with an illegal DMA
configuration), while using coverage metrics to
dynamically observe that all combinations have been
executed. Plan-driven verification extends the coverage-
driven approach with a thorough up front planning
process and the capability to define and link executable
coverage metrics to each feature of the plan to ensure that
each feature is tested. Additional information that needs
to be captured includes how each coverage metric will be
measured (functional coverage, assertion checkers, etc…)
which execution engine will be used (i.e. simulator,
accelerator, formal analysis tool, etc.) and which
operation modes or test flows will be applied. Plan-
Driven verification provides a highly automated and
predictable process for reaching verification closure as
described in [2].

Traditional System-Level Methodology
A traditional System Verification approach would
typically involve hand crafting a series of directed tests
that implement a specific use-case. Reusing the above
example, it might look something like: Use the default
DMA engine configuration, move the song “Let it Be”
from flash memory at address 0x0000 to SRAM at
address 0xff00, start DSP operation in default mode
(which might be a very important, frequently used, use-
case that needs high performance to test in a reasonable
time).

Plan-Driven System-Level Methodology
In a Plan-driven verification methodology, the
engineering team creates a verification plan. The plan
breaks down the design into features. The features have
metrics associated with them, and the means by which
each metric will be measured. This allows reports to be
generated that detail which features have been exercised
as well as which features have not been exercised. The
same approach can be applied for block-level, cluster-
level, and also system-level. The only differences would
be which features are verified at each level, and which
simulation engine to use at each level, where typically a
hardware accelerator using transaction-based acceleration
methodology is most applicable at the system-level. The
benefits of this for Systems Verification engineers are
many:

• Executable plans created by the verification team

for block- and cluster-level verification can be re-
used and extended for the system level verification

• The constrained-random, coverage-driven
verification environment can be reused across
software simulation and hardware acceleration

• Reports are easily generated showing the current
status of the verification effort

• Re-running failed simulations is easy and can
actually be programmed to occur

• Coverage metrics can be used to get a realistic
picture of the verification status against its goals

III. Implementation Strategy
To achieve all possible benefits of a Transaction-Based
acceleration regression environment using an executable
verification plan, the environment needs to be architected
to:

a. Create an executable verification plan that
combines simulation and acceleration
resources in a regression environment

b. Maximize performance of the verification
environment when driving the hardware
accelerator and the entire regression
environment

c. Maximize reuse of the simulation-based
verification environment

a. Bringing Acceleration into the verification plan
Executable verification plans, as described in the
introduction section, can be extended to include features
that will be verified on the hardware accelerator. An
existing executable verification plan would contain
features and associate coverage metrics with those
features (to prove that the features were exercised). To
enhance the plan for TBA acceleration, additional metrics
enabled by TBA acceleration and derived from system
level requirements can be added to those features.
Additional metrics might be: system level assertions;
additional coverage items; additional directed tests
targeted at specific functionality; etc.
Additional attributes would be added to the verification
plan that define which features will be verified on the
acceleration regression engine and which of the test flows
and acceleration operation modes will be used for
different sections of the verification plan. These attributes
include specifying that longer test scenarios should be run
on the acceleration platform, and identifying test scenario
attributes which determine how to extract the maximum
performance by using buffering or pre-generation, and
post analysis flows.

b. Maximizing overall performance
Maximizing overall performance of the regression
environment entails maximizing the performance of the
testbench (running on the host computer) by minimizing
the time spent in the testbench, optimizing the utilization
of the hardware accelerator, and reducing the number of
times that both the host (called SW side) and the

accelerator (called HW side) need to synchronize passing
data back and forth.

The architecture should incorporate the following
principles:

1. The most active part of the testbench
(BFM/monitors) is running on the accelerator at its
peak speed.

2. The BFMs and monitors encapsulate only the
interface protocol specific knowledge and thus can
be reused from project to project

3. The BFMs and monitors are the only testbench
components requiring clocks. When running on the
accelerator, all clocks can be generated inside the
HW side partition avoiding synchronization with
the SW side on every clock edge.

4. BFMs and monitors can provide or gather
“transaction data” over multiple clock cycles.
During these periods the HW side can run w/o
interruption.

5. Interaction between the HW side and SW side is
fully asynchronous. It happens only when the HW
side requests a new transaction or produces a new
transaction.

6. Buffering mode can be used by non-reactive
models and controlled by the user for each
communication channel. It supports batching
multiple transactions into the buffer reducing the
number of HW/SW side synchronizations.

7. HW/SW communication does not take place
during idle periods. The more idle periods that
occur on certain interfaces, the more performance
improves.

8. The testbench residing on the SW side is
abstracted to higher level data items or user
transaction-level API, and thus runs significantly
faster with the BFM and the Monitor relegated to
the HW side.

9. Significant performance can be obtained if the
stimulus could be pre-generated and DUT response
could be provided for post-processing checking.

c. Maximizing Simulation testbench reuse
The simulation verification environment (VE)
development requires significant development effort,
especially when taking into account reuse considerations.
This development effort is most efficient by developing
the environment with the e verification language and the
Incisive Specman Elite tool in combination with the
Incisive Plan-to-Closure Universal Reuse Methodology
(URM). It is also possible to adopt configurable "off-the-
shelf" Universal Verification Components (UVCs) for
standard protocols like AMBA or PCI-Express, for
example, rather than develop them from scratch.
Specman is highly optimized for applying plan-driven
verification methodology. Extending the Specman

simulation VE to an accelerated environment provides the
advantage of a single executable verification plan as well
as reusing most of the constrained-random, coverage-
driven simulation VE. The unique Aspect Oriented and
extensibility features of the e language greatly simplify
the effort to target and configure the same VE to be
reused for both software simulation and hardware
acceleration at user’s control.
The following principles could be applied to maximize

1. Agent architecture
Make sure that interface from the sequence driver to
the BFM is invariant to HW or SW BFM. Same
applies to the data collected from the BFM.
Remove all clocks from the UVC working in
acceleration mode.
2. Data items architecture
Create simplified data structures based on the
required level of verification. Some fields (mainly
control fields) are not required in acceleration mode.
Add configuration control for switching between data
items types.
3. Test writing style
Reduce time waits and context switching to the
extent possible.
Use reactive flows when the simplified data
structures can provide sufficient performance.
Use streaming flow in cases when the simplification
of the data structures is limited or complicated to
implement, In this case most of the data items are
generated in parallel, by a number of concurrent
Specman copies, with reduced reactivity level

The following figure presents a simplified view of
simulation-based e Verification Component (eVC)
architecture.

eVC Agent

Config:
active_passive

Monitor

Checker

Coverage

events

DUT

Active

Sequence
Driver

BFM

sequences

eVC Agent

Config:
active_passive

Monitor

Checker

Coverage

events

DUT

Active

Sequence
Driver

BFM

sequences

The following figure presents a simplified view of the
modifications required to change an existing simulation-
based eVC to a Universal Verification Component (UVC)
which can also support TBA acceleration.

UVC Agent
Config:
active_passive
sim_tba
react_stream

Monitor

Checker

Coverage

events

DUT

Active

Sequence
Driver

sequences

Synth Monitor

TBA Interface
Stimulus

Files
Optional

Synth BFM

TBA Interface

BFM Proxy

UVC Agent
Config:
active_passive
sim_tba
react_stream

Monitor

Checker

Coverage

events

DUT

Active

Sequence
Driver

sequences

Synth Monitor

TBA Interface
Stimulus

Files
Optional

Synth BFM

TBA Interface

BFM Proxy

IV. Case Study
In this case study we will take a look at how our
Transaction-Based Acceleration Regression methodology
can address the issues outlined in the previous sections.

DES case study – We decided to use the Cadence
AMBA High-performance Bus (AHB) e Verification
Component (eVC) that was integrated with a TBA
compliant transactor in conjunction with an open source
decryption/encryption Data Encryption Standard (DES)
blocks that served as the DUT. Multiple DES block
instances were “daisy chained” to establish a DUT with
configurable capacity. On the SW side, the eVC could
produce (at user’s testbench controls) transactions of
variable length (transaction length is defined by the
number of clocks used to assert the transaction). The eVC
applied all transactions back-to-back to DUT meaning,
that a new transaction was provided immediately when
the pervious transaction was consumed.
The DES case study allowed us to run the tests we
defined in our verification plan, each representing a
typical test scenario combined with its corresponding
acceleration data item. These tests allowed us to validate
and refine our Transaction-Based Acceleration
Regression methodology and measure the acceleration
performance obtained by varying certain attributes in our
verification environment.

a. Reuse considerations
SW/HW testbench partitioning -- Partitioning is done
to maximize performance and reuse. It involves creating
two verification sub-components which are separated
from each other and communicate over uni-directional
communication channels. The HW side partition is driven
by clocks while the SW side is transaction-based and less
clock dependent. The SW side could still scarcely use
timed constructs such as waiting on time to allow the SW
side and HW side to synchronize and exchange
transactions.
The following figure presents a simplified view of
SW/HW testbench partitioning.

 Top Hardware

DUV
Clock

Generation

Top Software

Stimuli
Generator

Transactor
PM

Response
Checker

Transactor
BFM

Communication
Channel

Transactor
Logical

Boundary

Defining transactor architecture -- We used the
Cadence Incisive Transaction Based Acceleration (TBA)
Methodology which provides the basic architecture and
guidelines as described in [3] and [4]. TBA presents a
common transaction-based interface for simulation and
acceleration that is fully congruent between the two
modes – meaning that the environment will simulate
exactly the same across both engines. It supports Verilog
and VHDL on the HW side and SystemC/C++ or e
testbenches on the SW side. It handles variable-length
transactions of any practical size set by the transaction
producer at run time.
It supports buffering, yet allows modeling of transactors
such that buffering can be added at the end-user’s control
only when running in acceleration mode for increased
performance. It supports automated accelerator/host
synchronization and generates the synchronization signals
by analyzing the transactors and operation mode settings.
It supports timed testbenches and timed simulation
control. It offers a configuration interface for controlling
batching/reactive operation mode setting on a global or
per-channel basis. And it enables a robust debug flow
including support for transaction recording and analysis.

Communication and resource allocation -- TBA
communication resources contain uni-directional buffered
transaction channels that can move transaction data from
the HW side to the SW side or vice-versa and non
buffered state ports for status and configuration control.
The transactor modeler can choose the number and types
of communication channels used in each transactor.

To achieve maximum speed for a TBA environment on
Cadence Palladium and Xtreme emulators, the transaction
channels can be configured to support two different
operation modes:

Reactive mode - in which the synchronization
between the HW and the SW is done on each
transaction boundary.

Batching mode - in which a batch of transactions can
be driven into the buffers and the synchronization
occurs when the channel buffer is full or empty.

Reactive mode insures that no latency is introduced by
the buffered communication channel. When no reactivity
is required, batching mode can be turned on allowing a
batch of transactions to reside at the buffer at the expense
of introducing latency. The latter will reduce the number
of HW/SW side interactions for non-reactive testbenches
resulting in increased performance.

TBA state ports can be used as status and configuration
channels that allow the BFM to be configured at
synchronization time or the testbench to obtain additional
status data (for example when errors are encountered) for
additional error logging and debugging.

Upon designing the transactor the developer assigns as
many communication resources of each type as needed
for transaction data transfer, configuration and status.

b. Performance considerations
Test Flows -- When driving an accelerated DUT, the
performance requirements of the software side are very
demanding. To achieve significant acceleration speedup
(defined as 50X and above relative to simulation), the SW
testbench execution time should not exceed 2% of the
overall simulation time. The testbench performance
should be analyzed (in simulation), in order to identify
bottlenecks and to predict performance impact of data
structure simplification.

To accomplish this goal, the following test flows were
implemented:

Reactive test flow – Used for tests in which sufficient
performance can be provided via simplification of
transaction-level data structures. Stimulus generation
is simplified and configuration control is added
reducing the testbench execution time on the host to
achieve the performance goal. The constrained-
random generated stimulus is simplified for system
level by turning off some of the sophisticated corner
cases that have been tested in simulation at the block
and cluster levels.

Streaming test flow – The performance is achieved
using stimulus which is pre-generated concurrently
by a number of Specman stand alone sessions. The
pre-generated stimulus is retrieved by a single
Specman session that drives the accelerator, and
obtains the DUT response. The checking and
coverage analysis of the results can be done in
separate concurrent Specman sessions as well. In this
case the level of reactivity is highly reduced.

Hybrid test flow – Combines the above Reactive and
Streaming test flows. Given that stimulus generation
on some interfaces would require reactivity while on
other interfaces it may not, and given that testbench
execution speed on each interface may vary, pre-
generated stimulus and reactive stimulus can be
combined using the hybrid flow. The earlier could be
restored while the latter can be combined on the fly.
Similarly some level of results checking (such as
simple error checking) could be done on the fly while
more extensive results checking (such as coverage
analysis) could use post-run analysis latter.

HW acceleration and SW simulation resource
balancing -- The full verification plan leverages a
common verification environment for both simulation-
based and hardware accelerated verification, where
sophisticated block level stimulus is generated and
typically executed on a software simulator, while longer,
more real-world stimulus scenarios are generated and
executed on to the hardware accelerator. When using the
Streaming test flow or the Hybrid test flow, the Specman
simulator will be used for pre-generation of stimulus and
post-run analysis of system level tests running on the
accelerator.
Optimized resource balancing is obtained when the
simulation resources and acceleration resources are
balanced to complete the regression at the minimal
possible time utilizing the available simulation licenses
and the available acceleration resources. Of particular
importance is avoiding idle time on the accelerator by
assigning sufficient simulation licenses and workstation
resources to constantly produce stimulus and check DUT
responses for multiple tests while the accelerator is
running on other tests.
This methodology could be further refined to randomly
pre-generate individual stimulus sequences, and then
during run-time on the accelerator, a single simulation
license assembles the individual stimulus sequences into
one long test. By optimizing the length of each of the
stimulus sequences and by setting the accelerator
operation into Batching mode, long pre-generated
complex test regressions are executed very quickly on the
accelerator.

The Incisive Enterprise Manager combined with
dispatching tools such as LSF from Platform Computing
allows optimizing HW acceleration and SW simulation
resource balancing by spawning the tests to both targets
types and managing the regression run process. Enterprise
Manager is a complete verification management solution
which not only includes regression management but also
coverage and failure analysis and reporting capabilities.

c. Creating an Executable Plan
An executable verification plan is either created as part of
the overall verification plan, including the earlier
simulation-based effort, or a separate plan is created for
the TBA verification effort. The plan is typically
captured in a word processor such as Microsoft Word or
the Adobe FrameMaker in accordance with the Incisive
Plan to Closure Planning and Management Methodology.
Once the plan is captured, it can be exported to an
executable form by the Incisive Enterprise Manager tool
where it is then used to manage the overall verification
process.

While a verification plan can be structured in many
different ways, our customer interactions have shown that
there are some basic sections that are normally captured.
These sections are:

Functional Requirements-- This section contains
information related to the functional features that can be
verified as a black box (i.e. using the specifications to
determine which features need to be verified. Typically,
no internal information which relates to the specific
design implementation is used). This section is further
decomposed into two sections:

Functional Interfaces – This area defines verification
information relating to external and internal interfaces
that the device has, such as Ethernet, AMB bus, USB,
etc.

Functional Core – This area defines verification
information relating to core features of the design, such
as the example given in the opening section “The DMA
engine is responsible for moving song data …”. This is
a core feature of the DMA block.

Design Requirements -- This section contains
information related to design implementation details,
such as pipelining, fifos, etc.

Verification Views -- This section contains information
on different views of the verification content. Since these
devices are very complex, there usually is different
verification information that is being extracted to review
in each view. For example, you might have milestones
defined. In one milestone you define that the DMA block

and Ethernet block should be 50% verified by the 4th
week of the project. This becomes a verification view.
Another view might be a register view, in which all the
registers in the design are referenced by the verification
view and checked.

Verification Environment - This section contains
information on the creation of the verification
environment. This usually refers to the creation of:
verification checkers, functional coverage models,
verification components (which stimulate and respond to
the design), etc.

To quickly create a verification plan, it is possible to start
with a verification template, which comes standard with
the Incisive Enterprise Manager. Fill in the Functional
Requirements section with the functional information of
the features that you will need to verify and then follow
the Incisive Plan to Closure Planning and Management
Methodology to create the corresponding coverage model
and the rest of the process.

d. Study Performance Results
We initially used a testbench driving pre-generated
stimulus from a file and then used relative simple
stimulus generation and response checking conducted on
the fly using the Reactive test flow. For these test cases,
we saw performance running on the Cadence Palladium
family of emulators and the Xtreme family of emulators
as high as 120x over the Cadence Incisive Unified
Simulator (IUS) simulation for multiple DES design
blocks configured to create a 2M gates DUT.

The following chart illustrates the performance results
obtained for these tests when either written in SystemC or
Specman/e on the 2M gates DES DUT configuration.
TBA operation mode was set to Reactive mode and buffer
depth was assigned to 128, meaning a single transaction
whose length is also 128 can fit exactly into the buffer.

Performance vs. length

0

20

40

60

80

100

120

140

10 16 32 64 128

Tranasction Length

Pe
rfo

rm
an

ce

sc file sc random e file e random e sequence

As can be observed in the chart, the performance obtained
for SystemC and e was comparable for a similar type of

tests. As we slightly increased the testbench complexity
from file-based to a simple random-based test to a simple
sequence-based test, performance slightly decreased.
However, the performance was mostly dominated by the
length of the transactions applied via the TBA transaction
interface as opposed to the type of the test.

As can be observed in the chart, the performance
increased by 3x (from about 40x to about 120x) when the
transaction length increased from 10 to 128 reflecting
about 13x reduction in the number of HW/SW side
synchronizations. This level of performance was
obtained by applying back to back transactions (meaning
no idle time between transactions) while TBA was
running in Reactive mode (and w/o any buffering) on the
Cadence Palladium and Xtreme emulators.

Later we decided to compare the impact of TBA Batching
operating mode at various transaction lengths. First we
ran only the SystemC random test case in Batching mode
at various transaction lengths. Then we ran a mixed
Specman/e and SystemC configuration. While the HW
and SW side was configured to run in TBA Batching
mode, Specman/e and SystemC maintained reactive
communication semantics (meaning exchanging context
on transaction boundary). Last we configured TBA to run
in Reactive mode while still maintaining the same
reactive communication between SystemC and e.

The following chart illustrates the results. Batching mode
for the SystemC test case provided steady performance
for all transactions lengths as the number of
synchronizations was kept constant in this mode. Given
that the testbench automatically throttled the messages
into the TBA channel buffer (given its Batching mode
setting), the number of HW/SW side synchronizations
was only determined by the buffer depth set to 128.

Batching transactions (buffer depth 128)

0

20

40

60

80

100

120

10 16 32 64 128

Transaction length

Pe
rfo

rm
an

ce

SC random (batching) e/SC random (batching) e/SC random (reactive)

For the mixed e/SystemC configuration running in
Batching mode, performance was impacted by the
reactive context switching between SystemC and e on
transaction boundaries. However TBA Batching mode
kept the HW/SW side synchronization constant providing
better performance over the last test case running in TBA
Reactive mode using purely reactive semantics across all
interface boundaries.

One observation that can be made is that using Batching
mode increased performance only when multiple
transactions could fill TBA channel buffer. The
performance for the mixed SC/e test case matched in
Batching and Reactive modes for transaction length of
128 as only a single 128 length transaction resided in the
buffer for both test cases.

The TBA methodology was also applied to a complex
testbench driving the DES design via the AHB eVC. The
eVC Agent was modified to conform to the UVC Agent
architecture by making some modeling changes that
simplified generation complexity and by introducing
configurability that traded-off some of the UVC
functionality in acceleration mode in lieu of performance.
The sequence driver in the agent was enhanced to
perform stimulus save and restore to support the
streaming flow use model.

For some of the test cases that required reactivity, we
used the reactive flow subject to configuration control
setting that simplified the complexity of the test in
acceleration mode. In this case we obtained performance
in the range of 60X over simulation.

For the complex AHB test cases that did not require
reactivity we used the streaming flow which provided run
time performance equivalent to a file-base pre-generated
stimulus.

Using the streaming flow with good load balancing of
Specman on seven workstations and a single Cadence
emulator, stimulus generation with segmentation each of
the of test sequences into individual files (to allow
concurrent run of all resources in the environment) and
result checking, we saw overall improvement of 3X
(using on 6 -7 Specman licenses) over what it would take
to run the same test conducting generation on the fly
using the reactive flow.

The TBA regression methodology promotes pre-
compilation of the environment before the tests are
applied. Unless changes were introduced to the design or
to the UVCs, multiple tests can be applied w/o requiring
recompilation of the DUT and or the UVCs.

V. Conclusions
Increased productivity and predictability
A common verification environment has been used for
both software simulation and hardware acceleration.
Significant performance improvement, in particular for
system level verification, was obtained with a good,
configurable testbench architecture and management of
the TBA regression environment that maximized the
testbench performance driving the hardware accelerator
while maximizing simulation testbench reuse.
A single executable verification plan addressed both
simulation and acceleration targets, using the results for
coverage and closure analysis reports. The testbench
generation tool, Specman, was proven to support plan
driven methodology with adequate performance for
driving hardware accelerated designs on the Palladium
and Xtreme families of emulators.

References:
[1] Chip Design article “What's Your Verification Game
"Plan?” by Hamilton Carter,
http://www.chipdesignmag.com/display.php?articleId=58
7
[2] Cadence Incisive Plan-to-closure Methodology white
paper “Reducing block, chip, and system design risk with
a “plan-to-closure” verification approach”.
http://www.cadence.com/whitepapers/reducing_block.pdf

[3] Cadence Incisive functional verification newsletter
article “Leading-Edge Transaction-Based Acceleration
Methodology” by Kevin Donovan of Cadence Design
Systems.
http://www.cadence.com/newsletters/new_pdf/incisive_m
ar05.pdf
[4] Cadence Incisive functional verification newsletter
article “SystemC-Based Virtual SOC – An Integrated
System-Level and Block Level Verification Approach,
From Simulation to Co-Emulation” by Laurent Ducousso,
Frank Ghennassia and Joseph Bulone of
STMicroelectronics, and Neyaz Kahn and Ascension
Vizinho-Coutry of Cadence Design Systems.
http://www.cadence.com/newsletters/new_pdf/incisive_m
ar05.pdf

