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Abstract 
 
Formal analysis is a very powerful verification technique, 
but it has usually been regarded as a method to be used 
only by expert verification engineers. Recently, standard 
assertion formats, improved technology, and pragmatic 
methodologies have all contributed to make formal 
analysis very useful for designers as well. At multiple 
teams within STMicroelectronics, formal analysis with 
Incisive Formal Verifier (IFV) is becoming a mainstream 
approach for design and verification engineers alike. 
 
In this paper, we discuss several important aspects of 
deploying formal analysis throughout recent projects. We 
outline the verification flow prior to the introduction of 
formal, and describe the motivation to investigate this 
technology. We considered our initial usage quite 
successful: IFV found a previously unknown bug in a 
complex DRAM refresh controller and verified two 
additional blocks in only three days, versus three weeks 
for a similar block on a previous project. 
 
The largest section of this paper covers our most recent 
experience using IFV to verify a customer design. We 
describe how and why we selected particular blocks in 
this complex controller for formal analysis and why we 
decided against others. We discuss some of the assertions 
written by the designers, outline the challenges faced in 
properly constraining the design for formal, and give 
some examples of the types of design bugs we found. 
 
We also cover the role of assertions in system 
verification as well as some specific issues regarding 
gated clocks that we had to address. Finally, we 
summarize the overall verification results for this project 
and the lessons we learned for application on future 
projects. Throughout this paper, we focus on the 
designer’s role. Strong designer involvement has been a 

key for growth in the usage of formal analysis and we are 
pleased to be able to report our success in this area. 

1. Introduction 
 

The development of embedded DRAM (eDRAM) 
systems is performed within ST by a dedicated team 
divided into two parts. A first part is dedicated to the 
development of the hard macros and the second part 
provides the controllers which are driven by the customer 
application and by the customer specification. In fact, a 
dedicated controller is developed for each project. 

Moreover, the complexity of the controller is 
increasing: new complex design techniques like multi-
clock are mandatory to achieve customer requests and 
hard macro constraints. 

Even if many sub-blocks of the design can be reused 
in projects, the verification step increases dramatically. 
Today, the verification time is a huge part for a project, 
and the designers spend more and more time in the 
verification effort to be confident about their design. 

The eDRAM controller team has therefore to 
minimize the verification time in order to increase its 
productivity and to enhance the verification process. 

A verification method which improves the coverage 
of the design and which can be used easily by designers 
needed to be evaluated [1]. We decided to do a trial 
project using the property checking tool Incisive Formal 
Verifier (IFV) provided by Cadence [2] because this tool 
uses the same interface as a simulator used in the team, 
and because this tool is designer oriented. 

This paper is organized as follows. Section 2 
describes the verification flow used in this team today. 
Section 3 presents the evaluation and the integration of 
the new methodology in the flow of the team. Section 4 
illustrates the tool usage on a real customer project. At 
last, we conclude in section 5. 
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2. Today’s flow 
 

The current verification methodology is mainly 
based on random simulation on RTL level using an 
integrated checker engine. This testbench is developed in 
parallel with a system behavioral model. This method 
allows ensuring the model compliance toward the 
specification. Moreover the exactness of the test vectors 
and the accuracy of the integrated checker engine can be 
proved. 

When the RTL is completely implemented this 
random testbench allows a first level of simulation that 
enables a general check of the controller behavior. After 
correcting the most obvious errors, a code coverage tool 
is used in parallel with the testbench in order to identify 
the uncovered code. Thanks to these metrics (FSM state 
coverage, FSM arc coverage, Toggle coverage, 
Expression coverage and Block coverage), more directed 
testbenches are implemented based on the random one in 
order to achieve the 100% code coverage target without 
any errors.  

The verification process consists in performing only 
a top level verification based on a top level specification 
and this implies some essential drawbacks.  

Depending on the customer protocol the test vectors 
can be very complex and a significant amount of time is 
required to develop the initial random testbench. 
Moreover the design is considered final when the 
verification begins. As a result bugs are found very late 
in the design process. They can also be very difficult to 
identify and to correct. 

In addition the verification is always performed by 
the controller designer. This decision allows completing 
the verification process more quickly because the 
designer has the more precise knowledge of the customer 
protocol. However this method increases the occurrence 
probability of a missed bug even if a validation plan is 
developed by the designer and reviewed by another 
engineer before the verification process. 

Due to the increasing design complexity, the amount 
of time require to perform the verification is becoming 
dramatic. The verification currently represents 
approximately 70% of the project and this number will 
only grow. As a result a new methodology had to be 
developed to enhance the productivity. Moreover this 
method should also allow the designer to improve the 
quality of the controller. 

The results and conclusions obtained during the IFV 
trial project are presented in the next section. 

 

3. Integration of formal analysis in the flow 
 

The integration of a new tool inside the verification 
process is never obvious: it has to improve the quality of 
the design and the verification runtime. Moreover, the 

tool has to follow the constraints of the team 
organization: in our case, the design implementation and 
its verification are performed by the same team, so the 
tool must be usable by everyone and not only dedicated 
to the verification experts. 

We decided to start by the assessment of the IFV 
tool on designs developed in the team, and, if this was 
successful, to define in a second step how the tool will be 
included inside the verification flow 
 
3.1 Preliminary study: is this tool usable in our 

case? 
 

We decided to split the evaluation into two phases. 
The first one focused on the tool capacity. The chosen 
test case was an already verified block which was 
representative of the complexity of the blocks designed 
in the team. 

The aim of the second phase was to compare the 
performances of our verification methodology used today, 
and the verification methodology including IFV. In this 
phase, a designed block in a previous technology was 
rebuilt from scratch. The verification and the 
performances could be compared easily. 
 
Phase one: How the block complexity is handled by 
IFV 
 

The block used for this phase was a refresh 
controller with a complex eDRAM protocol interface. 

The verification of the block with IFV was 
performed within four days. At the end, the most 
complex part was to model the inputs with constraints 
that follow the customer protocol. The specification of 
the properties themselves was performed quickly: 19 
properties were written in addition to the component used 
to define the protocol. 

A bug, which could lead to a missed refresh 
operation in a corner, was not detected by the classical 
flow but was highlighted using these properties. In terms 
of performance, all the properties were verified in less 
than a minute on a Linux 32-bit workstation with 2 GB 
of memory. 
 
Phase two: evaluate the productivity gain with IFV 
 

In this phase the design and the properties were 
developed in parallel. The block is an initialization 
module and is separated in 2 sub-blocks designed and 
verified independently. The duration of the initialization 
sequence is defined by parameters.  

For each sub-block, the same methodology was used. 
A first check was performed on the design by IFV in 
order to check the reachability of the states and the 
quality of the HDL code. These checks were performed 
automatically by the tool. In a second run, the assertions 
written by the designers for this sub-block were checked. 
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The first block was designed and verified in one day 
(25 properties written: 19 assertions, 5 cover and 1 
constraint, all run in 41 seconds) and the second one in 2 
days (27 properties: 19 assertions, 3 cover and 5 
constraints, all run in 34 seconds). 

Finally the verification was done at the top level, all 
the properties were reused and some constraints were 
changed in assertions. These changes concerned the 
constraints written on signals that are not primary inputs 
of the block but were connected between the sub-blocks. 
The runtime at top level was also very short: 85 seconds 
to run all the properties. To conclude, the complete 
design implementation and its verification took 3 days. 
This performance has to be compared to 3 weeks spent 
for the design and the verification of the equivalent block 
developed with the previous methodology. 
 
3.2 Proposal for improving verification flow 
 

At the end of the evaluation we concluded that IFV 
improves greatly the productivity and the verification 
coverage. We decided to include this tool inside the 
design and the verification flow of the team. Moreover, 
the new verification approach being slightly different, 
our design methods had to be improved in order to 
maximize the benefits generated by IFV. 

Instead of verifying the design only at the top level, 
the designers would use IFV during the design of each 
critical block. The automatic checks and designer 
assertions would ensure the correctness of the block. 
In this case, bugs and architecture limitations would be 
detected much more sooner and this would allow the 
designer to correct them earlier in the project. 

This methodology seemed very powerful and fruitful 
but it required a major change: the top level specification 
developed today becomes insufficient. New 
specifications, describing the targeted behavior of each 
block, must be written. 

 

4. Customer product verified by formal 
analysis 

 
4.1 Verification strategy 
 

The product is a low-power cmos090 embedded 
DRAM IP which is provided as the association of one 
4Mbit embedded DRAM macrocell, one dedicated 
32K128 RTL based controller and a single RTL based 
programmable built-in self test (BIST) engine used for 
the test of the eDRAM macrocell (Fig 1). The controller 
has a custom tightly-coupled memory (TCM) interface 
derived from the ARM® TCM protocol. The IP is 
running at 250MHz. 

The formal methodology with IFV was introduced in 
the controller verification in order to evaluate its use in a 

customer project and to enhance confidence regarding the 
IP validation.  

 

Figure 1 : TCM-DRAM IP 
 
The first step was to identify the controller blocks 

where the return on investment is the highest. The 
selected candidates are the blocks containing the control 
logic because they are bug sensitive and the formal 
properties are usually highly effective in this case. As the 
macrocell behavioral model is not synthesizable the data 
path, which is already difficult to check in formal, was 
not verified by IFV but by using the classical random 
testbenches along with their scoreboards. Following 
these criteria, 4 blocks out of 5 were selected for their 
whole control logic to be verified in formal. In order to 
fully verify the control logic and to allow not only the 
designer but also a verification engineer to write some 
formal properties, a detailed functional block level 
specification describing the behavior of each output was 
developed.  

The first verification step consisted of writing some 
white box properties, which were based on the RTL code, 
while implementing the system in order to realize a 
design implementation bring up. Moreover the automatic 
checks provided by IFV were also launched in order to 
identify the biggest implementation bugs and to ensure 
reachability of all states. Then black box properties, 
which consider block inputs and outputs only, were 
written in order to control the general block behavior 
toward the detailed specification. In this project protocol 
properties were not considered because no constraints 
were specified. 
 
4.2 Block verification 
 

While implementing the design all blocks are always 
made parameterizable in order to be reused easily in 
another similar eDRAM system. A package containing 
the system constants (counter maximum value, address 
bus width, etc…) is always defined. It was decided to use 
the same technique for the properties in order to check 
the design quickly with IFV when the block is used in 
another project with a different configuration. Some 
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parameters are defined based on the package constants 
and used while writing the properties in order to describe 
the general block behavior without considering the 
specific block usage in this project. In addition such a 
methodology also allows decreasing easily the design 
complexity if some explored results are obtained during a 
formal verification run. 

Moreover it is also crucial to minimize the number of 
written properties to increase productivity. As a result the 
properties are implemented not only to be reused in 
another project but also in another block of the design. 
To be precise the properties verifying the output of a 
given block are reused as assumptions for the next 
connected block (Fig 2) 

 

 
Figure 2 : Inner Design Reusable Properties 

 
In the clock gated enable signal generation block 16 

assume properties, 33 assertion properties and 8 cover 
statements were written along with some auxiliary code. 
They allowed identifying one bug that would have been 
difficult to catch during dynamic simulations because it 
did not affect the memory content but led to a 
misalignment toward the specification in a corner case 
situation. To be precise the system performance is 
divided by three when a particular set of commands is 
issued by the customer.  

Then the initialization sub-blocks were verified and 
in this case inner design reusable properties were used. 
Moreover these sub-blocks are essentially sensitive to the 
reset. It was mandatory in this case not to consider the 
reset as a constant while using IFV and that led to a 
property modification: “abort reset” had to be added in 
each temporal property. While developing the properties 
another issue was encountered and led to a verification 

strategy modification. In fact the controller is a low 
power system and some gated clock structures are 
implemented to switch off the different blocks when they 
are unused. As a result some block behavior could not be 
tested directly in formal because part of the control logic 
is managed by the clock.  

Two distinct solutions can be considered to solve this 
issue: writing auxiliary code or take the whole system 
into account during the formal proof. As writing 
additional code is too time-consuming the second 
solution was selected and is described in the following 
section. 

 
4.3 System verification 
 

Performing the formal verification at system level 
allowed writing the remaining properties quickly because 
they had to follow exactly the detailed specification. It 
was only a matter to translate the properties into PSL [3]. 
Finally 11 assume properties, 82 assertion properties and 
15 cover statements were implemented. This property 
implementation phase was performed quickly but 
running them with IFV has been more difficult.  

Importing the whole design into IFV is actually 
increasing the complexity: as the cone of influence of 
each property becomes bigger, the run time is highly 
increased because the formal proof is following an 
exponential complexity that is function of the logic cone. 
In order to get the first results quickly the design 
parameters have been decreased. 

The first results were quite alarming because lots of 
properties were failing. After further analysis we noticed 
that some properties of the clock gated enable signal 
generation block were now failing. Another issue was 
introduced by the whole design consideration and this 
one was also related to the use of gated clock structures 
but also to the non-constrained reset value. In fact due to 
the several gated clocks derived from the system input 
clock it is mandatory to write directly the sampling event 
in each property, @rising_edge (CLKi). In other words 
the definition of a default clock is not feasible any more. 
As a result each assertion had for instance the following 
structure: 

 
Assert_Property_Name: assert always ( 
(Property_Description) abort (Reset = ‘0’) ) 
@(rising_edge CLKi); 
 
An active reset operation is switching off the clocks 

and the above property could not allow IFV checking the 
reset value because no sampling event occurs when reset 
is low. The property is never aborted when reset is active 
and IFV is always finding a counter example. Finally the 
sampling event was modified as follows to take the reset 
into account: 

 
@((rising_edge CLKi) or (rising_edge Reset)). 
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(Verify outputs behavior) 
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After debugging these properties, the remaining 
issues are 3 explored results that are still to be resolved. 
To achieve passing results, some IFV configuration 
parameters had to be set to their optimal value. For 
example the effort was set to high (30 minutes maximum 
to check each property), the engine was set to axe 
(adapted to assertions requiring huge evaluation cycles) 
and the halo was set off (efficient when pass is the 
expected result because the whole cone of influence is 
directly considered). IFV was then run again and all 
properties (11 assume properties, 82 assertion properties 
and 15 cover statements) passed within 448 seconds on a 
Linux 32-bit workstation with 2 GB of memory. 

The final step was to set the design parameters to 
their real value and run IFV another time to check the 
design in its correct configuration. During this step the 
engine was set to axe, the halo was set to off and the time 
was set to high. This sanity check was performed on the 
69K gates design and 104 out of 108 properties passed 
within 4 hours and 30 minutes. 4 properties did not pass 
due to a tool limitation. In fact the maximum counter 
width defined in IFV is 16 bits and these properties 
require 18 or 19 bits to perform the complete property 
formal evaluation. As a result these properties had to be 
removed during the final formal verification and had to 
be double checked during dynamic simulations 

The controller design logic had now been checked 
using formal methods and the target wass to launch the 
classical dynamic simulations to verify not only the data 
path but also the properties effectiveness and accuracy. 

 
4.4 Reuse of properties during dynamic 

simulations 
 

The plan was to check all properties during the 
dynamic simulations in order to verify the formal 
constraints that have been applied on the design while 
running IFV. The option –assert was added in the script 
and the tool was launched. The preliminary results were 
quite disturbing because almost all the properties were 
failing. 

A first analysis underlined that the properties that 
have to check the initial value of a given signal can not 
be used during dynamic simulations because the initial 
value is always ‘X’. To solve the issue the formal 
property assert (signal_name = initial_value), must be 
modified as follows: assert always ( active_reset !!!! 
(signal_name = initial_value) ). 

Moreover a further study showed that the gated clock 
structures were also producing issues in dynamic 
simulation. As the dynamic simulator was performing a 
timing based analysis and not a cycle based one like in 
formal, the gated clock structures were creating delta 
cycle time issues. As a result the falling edge of the clock 
was used to modify the input stimuli. In addition the 
dynamic simulator was always considering the input 
clock as the evaluation event which is why the rising 

edge of the reset had to be removed from the properties 
evaluation event in order to avoid other delta cycle issues. 

Finally, like during the final formal run, 4 properties 
required 18 or 19 bits of counter to check them but the 
maximum width of the counters defined in NCsim is 16 
bits. As a result these properties had also to be removed 
during dynamic simulations. 

After performing these modifications the results 
were in line with IFV. In other words all the assertions 
passed. Reusing the formal properties in dynamic was 
therefore not straightforward. As debugging these 
properties is not an easy task especially when another 
engineer is in charge of the dynamic simulations, the 
recommendation is to use a generic parameter and to 
write directly the properties for both situations. So the 
properties will be easy to use during the whole product 
life. 

 

5. General conclusion 
 
The usage of IFV underlines one more time that the 

property checking methodology generates a big gain in 
the functional verification area. In our case, mainly 
thanks to a tool that can be easily integrated in our 
environment and its ease of use by the designers, the 
verification effort decreases dramatically and its use 
improves greatly our productivity. 

In addition, putting this tool in our flow has other 
beneficial impacts on our methodology. 

First the block design and the formal verification are 
done simultaneously which speeds up design and 
verification phases. 

Then in order to use property checking methodology 
a more accurate specification has to be written. That 
allows the designer to describe the behavior of the sub-
blocks more precisely. This step is not only mandatory to 
use a property checking tool, but also a way to optimize 
the global architecture. 

Moreover, all the work done at block level is 
reusable at a higher level either during formal or dynamic 
verification. In addition these properties could also be 
provided to the customer in order to act as an embedded 
specification for functional verification. 

However the designer has to consider directly the 
formal and dynamic requirements while developing the 
properties in order not to waste time. Moreover some tool 
improvements, like the evaluation counter width, are 
mandatory to run the verification with the real parameters. 
Indeed without this sanity check the designer can never 
be sure that the verification results are correct in the real 
design configuration. 

Finally, to maximize the gain of this new 
methodology, an expert should specify the verification 
strategy and the planning. 
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