

Improving Productivity
Using Formal Analysis by Designers

May 2007 STMicroelectronics – FTM – Central CAD

Eric Faehn Remy Chevallier
eric.faehn@st.com remy.chevallier@st.com
Design Engineer & Customer Support Methodology & Verification Engineer

Abstract

Formal analysis is a very powerful verification technique,
but it has usually been regarded as a method to be used
only by expert verification engineers. Recently, standard
assertion formats, improved technology, and pragmatic
methodologies have all contributed to make formal
analysis very useful for designers as well. At multiple
teams within STMicroelectronics, formal analysis with
Incisive Formal Verifier (IFV) is becoming a mainstream
approach for design and verification engineers alike.

In this paper, we discuss several important aspects of
deploying formal analysis throughout recent projects. We
outline the verification flow prior to the introduction of
formal, and describe the motivation to investigate this
technology. We considered our initial usage quite
successful: IFV found a previously unknown bug in a
complex DRAM refresh controller and verified two
additional blocks in only three days, versus three weeks
for a similar block on a previous project.

The largest section of this paper covers our most recent
experience using IFV to verify a customer design. We
describe how and why we selected particular blocks in
this complex controller for formal analysis and why we
decided against others. We discuss some of the assertions
written by the designers, outline the challenges faced in
properly constraining the design for formal, and give
some examples of the types of design bugs we found.

We also cover the role of assertions in system
verification as well as some specific issues regarding
gated clocks that we had to address. Finally, we
summarize the overall verification results for this project
and the lessons we learned for application on future
projects. Throughout this paper, we focus on the
designer’s role. Strong designer involvement has been a

key for growth in the usage of formal analysis and we are
pleased to be able to report our success in this area.

1. Introduction

The development of embedded DRAM (eDRAM)
systems is performed within ST by a dedicated team
divided into two parts. A first part is dedicated to the
development of the hard macros and the second part
provides the controllers which are driven by the customer
application and by the customer specification. In fact, a
dedicated controller is developed for each project.

Moreover, the complexity of the controller is
increasing: new complex design techniques like multi-
clock are mandatory to achieve customer requests and
hard macro constraints.

Even if many sub-blocks of the design can be reused
in projects, the verification step increases dramatically.
Today, the verification time is a huge part for a project,
and the designers spend more and more time in the
verification effort to be confident about their design.

The eDRAM controller team has therefore to
minimize the verification time in order to increase its
productivity and to enhance the verification process.

A verification method which improves the coverage
of the design and which can be used easily by designers
needed to be evaluated [1]. We decided to do a trial
project using the property checking tool Incisive Formal
Verifier (IFV) provided by Cadence [2] because this tool
uses the same interface as a simulator used in the team,
and because this tool is designer oriented.

This paper is organized as follows. Section 2
describes the verification flow used in this team today.
Section 3 presents the evaluation and the integration of
the new methodology in the flow of the team. Section 4
illustrates the tool usage on a real customer project. At
last, we conclude in section 5.

Improving Productivity Using Formal Analysis By Disigners

Page 2 STMicroelectronics – FTM – Central CAD

2. Today’s flow

The current verification methodology is mainly
based on random simulation on RTL level using an
integrated checker engine. This testbench is developed in
parallel with a system behavioral model. This method
allows ensuring the model compliance toward the
specification. Moreover the exactness of the test vectors
and the accuracy of the integrated checker engine can be
proved.

When the RTL is completely implemented this
random testbench allows a first level of simulation that
enables a general check of the controller behavior. After
correcting the most obvious errors, a code coverage tool
is used in parallel with the testbench in order to identify
the uncovered code. Thanks to these metrics (FSM state
coverage, FSM arc coverage, Toggle coverage,
Expression coverage and Block coverage), more directed
testbenches are implemented based on the random one in
order to achieve the 100% code coverage target without
any errors.

The verification process consists in performing only
a top level verification based on a top level specification
and this implies some essential drawbacks.

Depending on the customer protocol the test vectors
can be very complex and a significant amount of time is
required to develop the initial random testbench.
Moreover the design is considered final when the
verification begins. As a result bugs are found very late
in the design process. They can also be very difficult to
identify and to correct.

In addition the verification is always performed by
the controller designer. This decision allows completing
the verification process more quickly because the
designer has the more precise knowledge of the customer
protocol. However this method increases the occurrence
probability of a missed bug even if a validation plan is
developed by the designer and reviewed by another
engineer before the verification process.

Due to the increasing design complexity, the amount
of time require to perform the verification is becoming
dramatic. The verification currently represents
approximately 70% of the project and this number will
only grow. As a result a new methodology had to be
developed to enhance the productivity. Moreover this
method should also allow the designer to improve the
quality of the controller.

The results and conclusions obtained during the IFV
trial project are presented in the next section.

3. Integration of formal analysis in the flow

The integration of a new tool inside the verification
process is never obvious: it has to improve the quality of
the design and the verification runtime. Moreover, the

tool has to follow the constraints of the team
organization: in our case, the design implementation and
its verification are performed by the same team, so the
tool must be usable by everyone and not only dedicated
to the verification experts.

We decided to start by the assessment of the IFV
tool on designs developed in the team, and, if this was
successful, to define in a second step how the tool will be
included inside the verification flow

3.1 Preliminary study: is this tool usable in our

case?

We decided to split the evaluation into two phases.
The first one focused on the tool capacity. The chosen
test case was an already verified block which was
representative of the complexity of the blocks designed
in the team.

The aim of the second phase was to compare the
performances of our verification methodology used today,
and the verification methodology including IFV. In this
phase, a designed block in a previous technology was
rebuilt from scratch. The verification and the
performances could be compared easily.

Phase one: How the block complexity is handled by
IFV

The block used for this phase was a refresh
controller with a complex eDRAM protocol interface.

The verification of the block with IFV was
performed within four days. At the end, the most
complex part was to model the inputs with constraints
that follow the customer protocol. The specification of
the properties themselves was performed quickly: 19
properties were written in addition to the component used
to define the protocol.

A bug, which could lead to a missed refresh
operation in a corner, was not detected by the classical
flow but was highlighted using these properties. In terms
of performance, all the properties were verified in less
than a minute on a Linux 32-bit workstation with 2 GB
of memory.

Phase two: evaluate the productivity gain with IFV

In this phase the design and the properties were
developed in parallel. The block is an initialization
module and is separated in 2 sub-blocks designed and
verified independently. The duration of the initialization
sequence is defined by parameters.

For each sub-block, the same methodology was used.
A first check was performed on the design by IFV in
order to check the reachability of the states and the
quality of the HDL code. These checks were performed
automatically by the tool. In a second run, the assertions
written by the designers for this sub-block were checked.

Improving Productivity Using Formal Analysis By Disigners

Page 3 STMicroelectronics – FTM – Central CAD

The first block was designed and verified in one day
(25 properties written: 19 assertions, 5 cover and 1
constraint, all run in 41 seconds) and the second one in 2
days (27 properties: 19 assertions, 3 cover and 5
constraints, all run in 34 seconds).

Finally the verification was done at the top level, all
the properties were reused and some constraints were
changed in assertions. These changes concerned the
constraints written on signals that are not primary inputs
of the block but were connected between the sub-blocks.
The runtime at top level was also very short: 85 seconds
to run all the properties. To conclude, the complete
design implementation and its verification took 3 days.
This performance has to be compared to 3 weeks spent
for the design and the verification of the equivalent block
developed with the previous methodology.

3.2 Proposal for improving verification flow

At the end of the evaluation we concluded that IFV
improves greatly the productivity and the verification
coverage. We decided to include this tool inside the
design and the verification flow of the team. Moreover,
the new verification approach being slightly different,
our design methods had to be improved in order to
maximize the benefits generated by IFV.

Instead of verifying the design only at the top level,
the designers would use IFV during the design of each
critical block. The automatic checks and designer
assertions would ensure the correctness of the block.
In this case, bugs and architecture limitations would be
detected much more sooner and this would allow the
designer to correct them earlier in the project.

This methodology seemed very powerful and fruitful
but it required a major change: the top level specification
developed today becomes insufficient. New
specifications, describing the targeted behavior of each
block, must be written.

4. Customer product verified by formal
analysis

4.1 Verification strategy

The product is a low-power cmos090 embedded
DRAM IP which is provided as the association of one
4Mbit embedded DRAM macrocell, one dedicated
32K128 RTL based controller and a single RTL based
programmable built-in self test (BIST) engine used for
the test of the eDRAM macrocell (Fig 1). The controller
has a custom tightly-coupled memory (TCM) interface
derived from the ARM® TCM protocol. The IP is
running at 250MHz.

The formal methodology with IFV was introduced in
the controller verification in order to evaluate its use in a

customer project and to enhance confidence regarding the
IP validation.

Figure 1 : TCM-DRAM IP

The first step was to identify the controller blocks

where the return on investment is the highest. The
selected candidates are the blocks containing the control
logic because they are bug sensitive and the formal
properties are usually highly effective in this case. As the
macrocell behavioral model is not synthesizable the data
path, which is already difficult to check in formal, was
not verified by IFV but by using the classical random
testbenches along with their scoreboards. Following
these criteria, 4 blocks out of 5 were selected for their
whole control logic to be verified in formal. In order to
fully verify the control logic and to allow not only the
designer but also a verification engineer to write some
formal properties, a detailed functional block level
specification describing the behavior of each output was
developed.

The first verification step consisted of writing some
white box properties, which were based on the RTL code,
while implementing the system in order to realize a
design implementation bring up. Moreover the automatic
checks provided by IFV were also launched in order to
identify the biggest implementation bugs and to ensure
reachability of all states. Then black box properties,
which consider block inputs and outputs only, were
written in order to control the general block behavior
toward the detailed specification. In this project protocol
properties were not considered because no constraints
were specified.

4.2 Block verification

While implementing the design all blocks are always
made parameterizable in order to be reused easily in
another similar eDRAM system. A package containing
the system constants (counter maximum value, address
bus width, etc…) is always defined. It was decided to use
the same technique for the properties in order to check
the design quickly with IFV when the block is used in
another project with a different configuration. Some

TCM-DRAM IP

4Mbit

Random
Macrocell

4Mbit TCM-
DRAM

Controller

4Mbit
Programmable

BIST

Test
Interface

TCM
Interface

Improving Productivity Using Formal Analysis By Disigners

Page 4 STMicroelectronics – FTM – Central CAD

parameters are defined based on the package constants
and used while writing the properties in order to describe
the general block behavior without considering the
specific block usage in this project. In addition such a
methodology also allows decreasing easily the design
complexity if some explored results are obtained during a
formal verification run.

Moreover it is also crucial to minimize the number of
written properties to increase productivity. As a result the
properties are implemented not only to be reused in
another project but also in another block of the design.
To be precise the properties verifying the output of a
given block are reused as assumptions for the next
connected block (Fig 2)

Figure 2 : Inner Design Reusable Properties

In the clock gated enable signal generation block 16

assume properties, 33 assertion properties and 8 cover
statements were written along with some auxiliary code.
They allowed identifying one bug that would have been
difficult to catch during dynamic simulations because it
did not affect the memory content but led to a
misalignment toward the specification in a corner case
situation. To be precise the system performance is
divided by three when a particular set of commands is
issued by the customer.

Then the initialization sub-blocks were verified and
in this case inner design reusable properties were used.
Moreover these sub-blocks are essentially sensitive to the
reset. It was mandatory in this case not to consider the
reset as a constant while using IFV and that led to a
property modification: “abort reset” had to be added in
each temporal property. While developing the properties
another issue was encountered and led to a verification

strategy modification. In fact the controller is a low
power system and some gated clock structures are
implemented to switch off the different blocks when they
are unused. As a result some block behavior could not be
tested directly in formal because part of the control logic
is managed by the clock.

Two distinct solutions can be considered to solve this
issue: writing auxiliary code or take the whole system
into account during the formal proof. As writing
additional code is too time-consuming the second
solution was selected and is described in the following
section.

4.3 System verification

Performing the formal verification at system level
allowed writing the remaining properties quickly because
they had to follow exactly the detailed specification. It
was only a matter to translate the properties into PSL [3].
Finally 11 assume properties, 82 assertion properties and
15 cover statements were implemented. This property
implementation phase was performed quickly but
running them with IFV has been more difficult.

Importing the whole design into IFV is actually
increasing the complexity: as the cone of influence of
each property becomes bigger, the run time is highly
increased because the formal proof is following an
exponential complexity that is function of the logic cone.
In order to get the first results quickly the design
parameters have been decreased.

The first results were quite alarming because lots of
properties were failing. After further analysis we noticed
that some properties of the clock gated enable signal
generation block were now failing. Another issue was
introduced by the whole design consideration and this
one was also related to the use of gated clock structures
but also to the non-constrained reset value. In fact due to
the several gated clocks derived from the system input
clock it is mandatory to write directly the sampling event
in each property, @rising_edge (CLKi). In other words
the definition of a default clock is not feasible any more.
As a result each assertion had for instance the following
structure:

Assert_Property_Name: assert always (
(Property_Description) abort (Reset = ‘0’))
@(rising_edge CLKi);

An active reset operation is switching off the clocks

and the above property could not allow IFV checking the
reset value because no sampling event occurs when reset
is low. The property is never aborted when reset is active
and IFV is always finding a counter example. Finally the
sampling event was modified as follows to take the reset
into account:

@((rising_edge CLKi) or (rising_edge Reset)).

Assertions
(Verify outputs behavior)

Second Sub-block

Inputs

Outputs

First Sub-block

Assumptions
(Constraints of inputs)

Inputs

Assumptions
(Constraints of inputs)

Outputs

Assertions
(Verify outputs behavior)

The assumptions for signals from second sub-block which
are outputs of first sub-block are shifted as properties to

Top

Inputs

Improving Productivity Using Formal Analysis By Disigners

Page 5 STMicroelectronics – FTM – Central CAD

After debugging these properties, the remaining
issues are 3 explored results that are still to be resolved.
To achieve passing results, some IFV configuration
parameters had to be set to their optimal value. For
example the effort was set to high (30 minutes maximum
to check each property), the engine was set to axe
(adapted to assertions requiring huge evaluation cycles)
and the halo was set off (efficient when pass is the
expected result because the whole cone of influence is
directly considered). IFV was then run again and all
properties (11 assume properties, 82 assertion properties
and 15 cover statements) passed within 448 seconds on a
Linux 32-bit workstation with 2 GB of memory.

The final step was to set the design parameters to
their real value and run IFV another time to check the
design in its correct configuration. During this step the
engine was set to axe, the halo was set to off and the time
was set to high. This sanity check was performed on the
69K gates design and 104 out of 108 properties passed
within 4 hours and 30 minutes. 4 properties did not pass
due to a tool limitation. In fact the maximum counter
width defined in IFV is 16 bits and these properties
require 18 or 19 bits to perform the complete property
formal evaluation. As a result these properties had to be
removed during the final formal verification and had to
be double checked during dynamic simulations

The controller design logic had now been checked
using formal methods and the target wass to launch the
classical dynamic simulations to verify not only the data
path but also the properties effectiveness and accuracy.

4.4 Reuse of properties during dynamic

simulations

The plan was to check all properties during the
dynamic simulations in order to verify the formal
constraints that have been applied on the design while
running IFV. The option –assert was added in the script
and the tool was launched. The preliminary results were
quite disturbing because almost all the properties were
failing.

A first analysis underlined that the properties that
have to check the initial value of a given signal can not
be used during dynamic simulations because the initial
value is always ‘X’. To solve the issue the formal
property assert (signal_name = initial_value), must be
modified as follows: assert always (active_reset !!!!
(signal_name = initial_value)).

Moreover a further study showed that the gated clock
structures were also producing issues in dynamic
simulation. As the dynamic simulator was performing a
timing based analysis and not a cycle based one like in
formal, the gated clock structures were creating delta
cycle time issues. As a result the falling edge of the clock
was used to modify the input stimuli. In addition the
dynamic simulator was always considering the input
clock as the evaluation event which is why the rising

edge of the reset had to be removed from the properties
evaluation event in order to avoid other delta cycle issues.

Finally, like during the final formal run, 4 properties
required 18 or 19 bits of counter to check them but the
maximum width of the counters defined in NCsim is 16
bits. As a result these properties had also to be removed
during dynamic simulations.

After performing these modifications the results
were in line with IFV. In other words all the assertions
passed. Reusing the formal properties in dynamic was
therefore not straightforward. As debugging these
properties is not an easy task especially when another
engineer is in charge of the dynamic simulations, the
recommendation is to use a generic parameter and to
write directly the properties for both situations. So the
properties will be easy to use during the whole product
life.

5. General conclusion

The usage of IFV underlines one more time that the

property checking methodology generates a big gain in
the functional verification area. In our case, mainly
thanks to a tool that can be easily integrated in our
environment and its ease of use by the designers, the
verification effort decreases dramatically and its use
improves greatly our productivity.

In addition, putting this tool in our flow has other
beneficial impacts on our methodology.

First the block design and the formal verification are
done simultaneously which speeds up design and
verification phases.

Then in order to use property checking methodology
a more accurate specification has to be written. That
allows the designer to describe the behavior of the sub-
blocks more precisely. This step is not only mandatory to
use a property checking tool, but also a way to optimize
the global architecture.

Moreover, all the work done at block level is
reusable at a higher level either during formal or dynamic
verification. In addition these properties could also be
provided to the customer in order to act as an embedded
specification for functional verification.

However the designer has to consider directly the
formal and dynamic requirements while developing the
properties in order not to waste time. Moreover some tool
improvements, like the evaluation counter width, are
mandatory to run the verification with the real parameters.
Indeed without this sanity check the designer can never
be sure that the verification results are correct in the real
design configuration.

Finally, to maximize the gain of this new
methodology, an expert should specify the verification
strategy and the planning.

Improving Productivity Using Formal Analysis By Disigners

Page 6 STMicroelectronics – FTM – Central CAD

6. References

[1] Sami Maisniemi, Jari Kalinainen, "Assertion-Based

Verification with PSL Integrated with an Existing
RTL Verification Environment", PSL/SUGAR
CONSORTIUM MEETING DATE 2004

[2] White paper, "Getting the Most Out of Formal
Analysis":

http://www.cadence.com/whitepapers/formal_analys
is_wp.pdf

[3] Accellera, PSL Language Reference Manual. version
1.1, June 9th 2004:
http://www.eda.org/vfv/docs/PSL-v1.1.pdf

STMicroelectronics
850 rue Jean Monnet
38926 Crolles cedex France
www.st.com

