
Functional ECO with

Conformal

Technology

Itai Yarom

Senior CAD Engineer

Design & Verification Specialist

Intel Israel

Presented by

Michael Chang

Vice President of R&D

Cadence

What is an ECO?

An ECO is a modification made to an automatically-

derived representation of a design. This change is

made outside of the normal tool flow.

““As for other EDA vendors, although some inAs for other EDA vendors, although some in--

house ECO tools have been developed none are house ECO tools have been developed none are

currently available on the open market. If there currently available on the open market. If there

are no logic synthesis tools to help, we must are no logic synthesis tools to help, we must

implement our ECOs using the manual implement our ECOs using the manual

methodology outlined methodology outlined —— which makes us The which makes us The

Human ECO Compiler.Human ECO Compiler.””

The Human ECO Compiler, by Steve The Human ECO Compiler, by Steve GolsonGolson ((TrilobyteTrilobyte Systems), Systems),

Best Paper SNUG BostonBest Paper SNUG Boston’’0404

ECO Challenges

� The focus of this presentation is functional ECO’s for
pre and post TO designs.
� Non functional ECO’s include timing fixes, hold fixes, max
capacitance violations, max transition violations and
crosstalk problems.

� Functional ECO’s are done twice:
� On the RTL for verification of the ECO correctness.

� On the netlist, for adding the change in the middle of the
implementation model.

� This task is tedious and requires a lot of designer
effort.

Why do we need ECO’s?
From Steve Golson presentation @ SNUG Boston’04

…plus 3,600 gates repairing 8 functional

bugs

This respin is just for timing

fixes to improve yield �

We’ve taped out the base layers,

and we’re still adding metal-only ECOs

We’ve taped out the chip �

…and these three ECOs won’t affect it at allTiming closure is done �

We’re still running incremental placement

on a few ECO cells

Placement is done �

We’re not about to run synthesis again,

but we’re still making changes to the netlist

Synthesis is done �

… but there are a few small bugsRTL Frozen �

How Formal Equivalence

Checking is related to ECO?

1. To compare old RTL to old NL (netlist).

2. To compare new RTL to old NL.

3. To compare new RTL to new NL.

4. To compare old RTL to new RTL.

Logic Equivalence Logic Equivalence

Checking uses formal, Checking uses formal,

static techniques to static techniques to

determine if two determine if two

versions of a design are versions of a design are

functionally equivalent. functionally equivalent.

LEC verify large designs LEC verify large designs

quickly and completely quickly and completely

without the use of test without the use of test

vectors. vectors.

What are we doing today?

What is the challenge?

� Functional ECO has 3 steps:

� Explore the ECO change in the RTL

� Perform the ECO on the netlist

� Manually or using Novas Verdi/nECO

� Fix all the ECO effects in the implementation tools

� What is the challenge in this flow?

� How long it takes to perform each step?

� Performing the ECO on the netlist can take from

several hours to several days (for complex ECO)

ECO

Example

� We use for

example an ECO

that was done

in one of our

10 Gigabit Ethernet Controller projects.

� The ECO challenges:

� Effort: Couple of days, including RTL and Netlist changes, passing LEC

and APR fixes due to the ECO.

� No. of cells: 2394, when the ECO used 367 spare cells.

� 9 PO’s were added and 360 logic cones were effected.

� Other: Require the most experience engineer to perform the ECO.

Can it be done differently?

� Provide a complete,
automated, and user-
friendly Functional ECO
environment
� Identify where/what to fix

� Automatically generate the fix

� Re-use free gates and spare
gates to optimize the fix

� Support post-mask flow to
maximize cost saving through
metal layer changes

Significantly reduce designer effort and time
spent on functional ECO changes

Encounter ECO

New Gate

New RTL w/ ECOOld Gate/DEF

Cadence Conformal ECO

� The Conformal ECO solution offers an

automated method to implement functional

ECOs.

� The flow has the following steps:

� Compare pre-ECO to post-ECO files.

� Create ECO patch

� Map the ECO patch

� Write out the ECO netlist

� Check the ECO results using LEC.

CDS Conformal ECO Flow

Min Logic

Change
ECO’ed

G1

Post-mask

Delta

Conformal GXL

EC Map

ECO Reports

New RTL

(R2)

Synthesis

Old RTL

(R1)

G1 DEF1

P&R Im
p
le
m
en
ta
ti
o
n

F
lo
w

CDS Backup flow –

Netlist to Netlist (NL2NL)

New RTL

(R2)

Synthesis

G2

Min Logic

Change
ECO’ed

G1

Post-mask

Delta

Conformal GXL

EC Map

ECO Reports

Synthesis

Old RTL

(R1)

G1 DEF1

P&R Im
p
le
m
en
ta
ti
o
n

F
lo
w

Conformal ECO Report
//

// Conformal-LEC: Version 06.20-d226 (06-Apr-2007)

//

===

PATCH MODULE STATISTICS

===

library cell : 359

DFF : 0

DLAT : 0

primitive : 66

module instance : 0

===

FREED AFTER PATCH

===

library cell : 450

DFF : 0

DLAT : 0

primitive : 0

module instance : 0

===

RECYCLED

===

library cell : 9

===

NET STATISTICS

===

added net : 84

changed net : 3

deleted net : 119

Pros & Cons

� Pros:

� Automation of a painful process.

� Enable to perform more ECO in the same

time/resources.

� Possibility to estimate the ECO effect with a ‘pusg of a

button’.

� Perform the ECO efficiently.

� Cons (& Risks):

� The tool is on a beta phase

� We can use the manual ECO flow, in the worse case.

� The reporting mechanism can be improved.

Summary

� The manual ECO flow that we use today is

far from being perfect.

� The conformal ECO provide us a ‘push

button’ flow that replace the manual flow.

� The ECO is guarantied to be correct by construct.

� In the worse case we can always go back to the

manual flow.

� Will the conformal ECO solution will reduce

or will it increase the usage of ECO’s?

Thank You !

ECO example:

ECO no. 494132 @ Oplin

� Bug Description

(2078272):

� Buses

fuse_ult_par_out[51:0]

and

fuse_mem_par_out[299:0]

degenerated to one bit

because usage of wrong

"logic and" operator

instead of "bitwise and"

Existing logic

Should be

ECO example:

ECO no. 494132 @ Oplin

� ECO challenge:

� Effort: Couple of days, including RTL and Netlist changes, passing

LEC and APR fixes due to the ECO.

� No. of cells: 2394, when the ECO used 365 spare cells.

� Other: Require the most experience engineer to perform the ECO.

ECO no. 494132

Details:

Justification:

(why the ECO is needed, what does it fix) :

bug2077284 - atlas_raw_clk is not connected to probe mode bus in core_misc. This signal is not necessary
for probe, so RTL will be fixed due to netlist (tie to 1'b0).

bug2077372 - DAT mode - data out [34] not connected to output bin. Data out dft_prod_dat_dout[34] should
be connected to port .dat_mode_in_data of pad FLSH_CE_N and pad will be output in dat mode.

bug2077735 - Probe mode select wrong default value for BI. Defoult value of PROBE_SEL CSR should be
output from BurnIn counters - 18'b00_0000_1010_1000_0110

bug2077739 - Wrong direction of 8 i/f pads in scan mode - pads SDP1[2] and SPARE[6:0] should be outputs
in scan mode.

bug2078272 - fuse_*_par_out degenerated bus. Misuse of "logic and" instead of "bitwise and" in
dft_prod_ult_wrapper cause to fuse_mem_par_out[299:0] and fuse_ult_par_out[51:0] to be degenerated
in dft_prod_csr and dft_prod_ult_wrapper. All logic should be repaired. Huge ECO - about 700 cells!!!

bug2078243 - Bits [71:68] of redundency_bus_rx_pb_0 are undriven. 4 MSB were tied to 1'b0 because of
wrong assignment width. Demands connectivity fixes.

ECO no. 494132

Details:

================

Detailed description:

================

RTL changes:

(how is it fixed in RTL, Provide clear explanation of the code change before and after):

Fubs changed:

bug2077284 - core_misc.v

bug2077372 - periphery_mux.v

bug2077735 - dft_prod_csr.v

bug2077739 - periphery_mux.v

bug2078272 - dft_prod_ult_wrap.v

bug2078243 - dft_prod.v

Full path of new RTL:

/nfs/site/proj/oplin/oplin/LBDB/rel_oplin/latest/units/dft_prod/logic/src/

/nfs/site/proj/oplin/oplin/LBDB/rel_oplin/latest/units/core_misc/logic/src/

/nfs/site/proj/oplin/oplin/LBDB/rel_oplin/latest/units/periphery/logic/src/

Diff:

See attachment rtl.diff

ECO no. 494132

Details:

================

Netlist changes (how is it fixed in verilog netlist/sch)

Files changed:

bug2077284 - NA

bug2077372 - periphery_mux

io_control_block_pfr104

bug2077735 - dft_prod_csr_dft0

bug2077739 - io_control_block_pfr14

io_control_block_pfr15

io_control_block_pfr16

io_control_block_pfr17

io_control_block_pfr18

io_control_block_pfr19

io_control_block_pfr20

io_control_block_pfr75

bug2078272 - dft_prod

dft_prod_command_decoder_dft0

dft_prod_csr_dft0

dft_prod_ult_wrap_dft0

bug2078243 - dft_prod.v

dft_prod_command_decoder_dft0

dft_prod_csr_dft0

oplin_top

Diff:

See attachment netlist.diff

