

Agenda

► Introduction:

- Freescale
- MSC8144
- dal_4exec test case
- ► Timing/Area closure problem
- ► Solutions:
 - Encounter flow
 - Timing improvement methods
 - placeDesign flow

► Summary

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007.

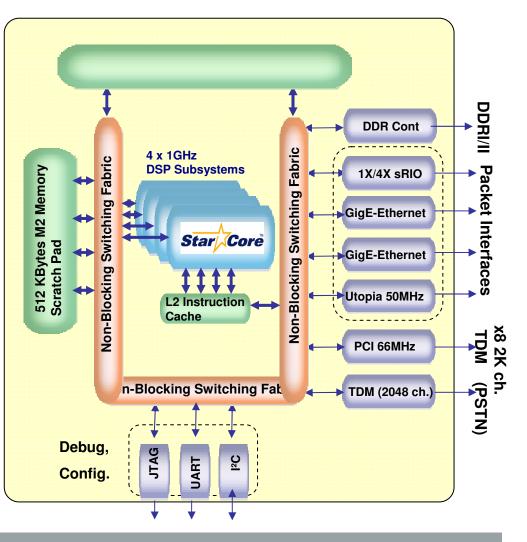
1

Introduction to Freescale

► About Freescale Semiconductor

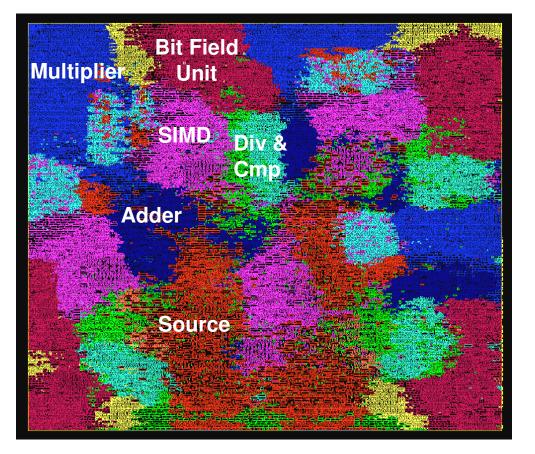
- Freescale Semiconductor is a global leader in the design and manufacture of embedded semiconductors for the automotive, consumer, industrial, networking and wireless markets.
- Freescale is one of the world's largest semiconductor companies with 2006 sales of \$6.4 billion (USD). www.freescale.com

► Freescale Semiconductor Israel (FIL)


- There are 2 design centers in Israel. Main center in Hertzelia and second center in Omer.
- "Diversity is the keyword"
 - FIL is a unique design center with groups developing solutions for networking, DSP cores & platforms, cellular & base stations.
 - Design groups deal with <u>all</u> design aspects, starting from product definitions, going through design, verification & implementation stages, and ending with Silicon testing.

Introduction MSC8144

- ► Multicore Starcore[™] based programmable DSP at 4 x 1GHz (16GMACs), industry's highest performance and at lowest power/channel
- ► 3rd Generation of market leadership in Multicore DSPs, with proven, eminent and robust architecture
- ► Industry's largest embedded memory, enable to eliminate the need for external memories, reducing total system cost, board space and power dissipation
- ► Supporting next generation and legacy interfaces including Dual Gig Ethernet, Serial Rapid IO, Utopia, PCI, DDR2, TDM
- Accelerate 'Time-to-Market' with Freescale software libraries, Framework and Codecs, 'Best-in-Class' Multicore IDE, SmartDSP OS or Commercial RTOS


Introduction dal_4exec

► Data arithmetic logic unit.

- Performs 4 operations per cycle.
- Highly optimized RTL

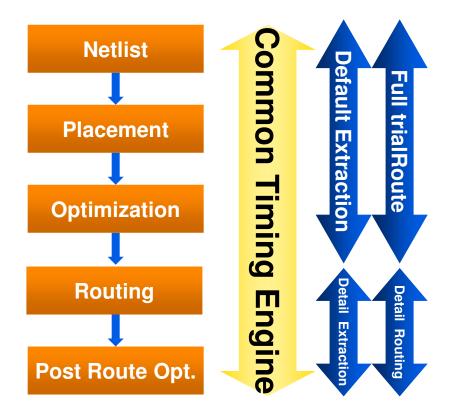
► Design Details:

- Design Name: dal_4exec
- Technology: 90nm soi
- Max clock Freq: 1 GHz
 - Custom clock tree
- No. of Inst: approx 100K
 - No Macros
- Mostly data path
- Total Modes: 1

Timing/Area closure problem

► Timing

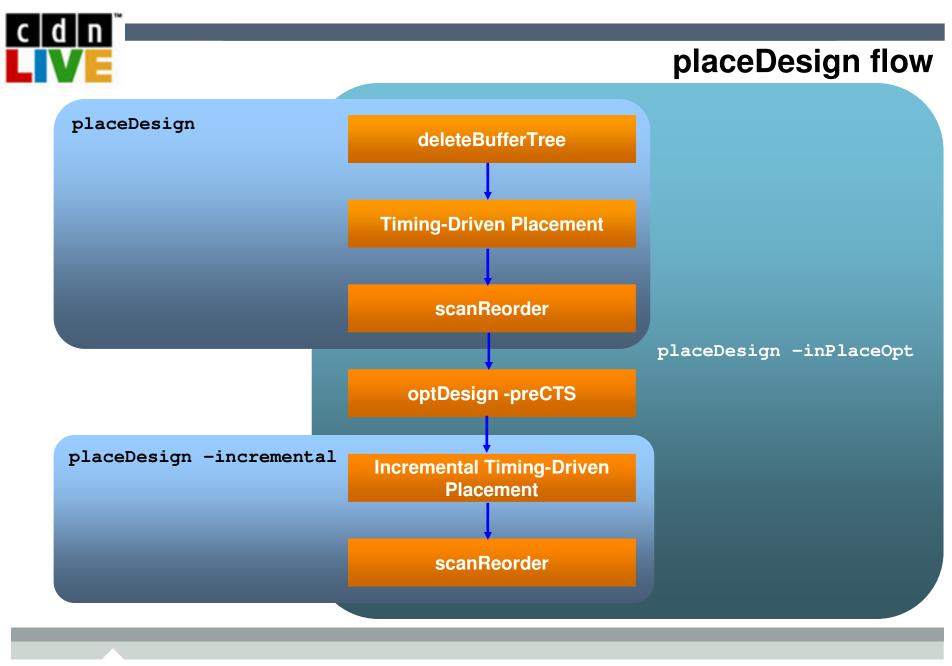
- Total paths in the design: 2600.
- 40% failing paths with slacks less than -60ps.
- Design can achieve a WNS of -60ps easily. Getting the WNS/TNS down further is the problem.
- Design very sensitive from placement point of view.
- Fighting for Pico seconds, still 60ps is 6% of the freq target!


► Area

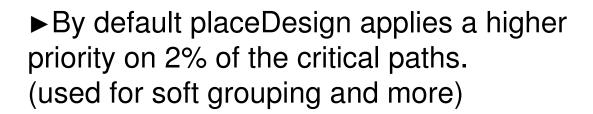
- Design needed to be timing closed with max possible density, Taking into account addition of:
 - Custom clock tree
 - Hold fixing
 - SI closure
- Extra effort on timing caused the area to increase significantly.

Encounter Flow

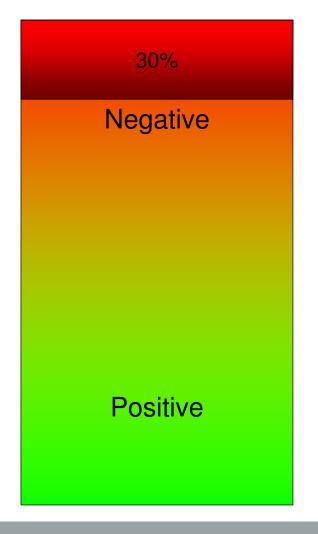
Timing improvement methods


► RTL compiler:

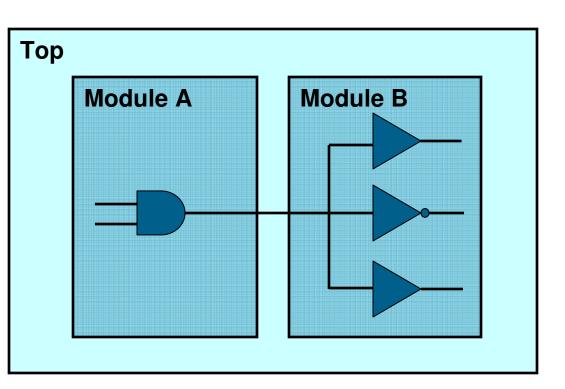
- Smart ungrouping during synthesis.
- Path adjust flow. Work harder on critical paths in RC.
- Clock gating cells instead of mux to retain seq cell state. Reduces the logic in the "data" path.


Encounter:

- RCfactor=1. Although Ostrich reported a 1.13 default Vs. detailed C factor, We stayed with factor 1 & fixed bad cap cases in post-route optimizations.
- Placement with "inPlace Optimization".
- Increasing the critical paths to 30% (default is 2%) during placement.
- "setOptMode –noPreserveModuleFunction"



- ► A special variable (beta) was provided by R&D to increase the number of paths with priority to 30%.
- Note: Slack distribution in dal_4exec is very symmetric. Applying higher priority on other designs will create over congestion.



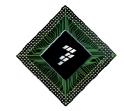
setOptMode -noPreserveModuleFunction

► Determines whether to preserve logical functions at hierarchical output ports. Using this feature will enable the Encounter software to share logic across hierarchical boundaries.

Default: -preserveModuleFunction

► Results:

- Timing target was met. Able to achieve 1GHz!
- Area was much lower (20%) after implementing all methods, compared to the starting point.


► Summary notes:

- The dal_4exec is a unique block, containing a large number of symmetrical timing critical data paths. Solutions used in this block will not necessarily be useful in more general blocks.
- In order to close timing on this block, it was required to bring together very good knowledge of the design along with expert in-dept knowledge of the tools.

cādence"

