Full-chip mixed-signal verification using high precision digital-analog interface element

Sameer Dabadghav & Atul Lele

Texas Instruments India Pvt. Ltd.

October 18, 2007

🐺 Texas Instruments

INNOVATE. CREATE. MAKE THE DIFFERENCE.™

Organization of Presentation

- Drawbacks of the current methodology.
 - Digital simulations using behavioural models.
 - Inaccurate transition time at each input of analog module.
 - Inaccurate interface elements between analog and digital modules.
- How the problem is solved?

Organization of Presentation

- Scope Case study of Timer modules in a lowpower microcontroller.
 - Block Diagram.
 - Design Database Details.
 - Interface element (Connect Module).
 - Effect of default interface element.
 - Effect of high precision interface element.
- Results.
- Conclusions.

Drawbacks of the current methodology

- Digital simulations using behavioural models.
 - Behavioural models are typically used for the analog modules to be verified in the full-chip context.
 - Typically no internal timing information of analog modules is available during the gate level netlist simulations.
 - Typically timing information for the interconnects between analog and digital modules is not available.
 - If an analog module has to be verified for its functional and timing correctness, there may be a need for standalone testbench to verify the analog-digital interface and requirement for new or modified test vectors.

October 18, 2007

4

Drawbacks of the current methodology

- Inaccurate transition time at each input of analog module
 - Current methodology cannot calculate the input transitions for every input port.
 - This may lead to functional failures in Silicon.

TEXAS INSTRUMENTS

INNOVATE. CREATE. MAKE THE DIFFERENCE.™

Drawbacks of the current methodology

- Inaccurate interface elements between analog and digital modules.
 - No control on input delay at the input ports of analog module.
 - No control on transition time at the input ports of analog module.

Texas Instruments INNOVATE. CREATE. MAKE THE DIFFERENCE.[™]

System On Chip (SOC)

- Transistor level netlist is used for analog modules instead of behavioral models.
 - Accurate transistor models are used in the netlist available for analog module.
 - Accuracy is same as running SPICE simulations.
- For all the other modules in System On Chip (SOC), gate level netlists and timing information in Standard Delay Format (SDF) is used.

- Existing full-chip digital testbench and functional test vectors can be re-used.
 - Can be easily extended to other analog modules in SOC like IOs, oscillators etc.
 - One or more analog modules can be simulated together depending on run-time, complexity of simulation vectors etc.

• Accurate transition time calculation.

- Primetime is used to calculate the accurate transition times at each input of the analog module.
- lib is created with the input capacitances characterized for these analog modules. RC extracted spice netlist is used for the same.

October 18, 2007

9

- Accurate transition time calculation.
 - These are read into primetime and the slews and delays are dumped out for all the input pins.
 - For outputs of the timer modules, 20% and 80% rise and fall thresholds are used for analog to digital conversion respectively because the digital library delays are characterized at the same thresholds.
 - Automated setup can read this primetime file and dump out the high precision interface element module which can be simulated.

• High precision Interface Element used.

- Default interface element is not accurate with respect to the transition times of input signals to the analog block.
- High precision interface element has complete control on transition time and absolute delay of all input signals of analog block.

INNOVATE. CREATE. MAKE THE DIFFERENCE.™

October 18, 2007

TEXAS INSTRUMENTS

- These timers are used in a low-power microcontroller device.
- Timer modules' correct functionality and accurate timing is extremely critical for the application software. These are used for capturing external events and generating PWM (pulse width modulated waveform) outputs.

- Proposed flow executed on one Timer with 3 capture and compare channels and second Timer with 7 capture and compare channels.
 - Both the modules mentioned above are Analog Modules with the logic in the transistor level netlist form (No standard cells from the timing characterized libraries are used).

• Verify functionality and timing for the above mentioned modules in the system level context.

October 18, 2007

INNOVATE. CREATE. MAKE THE DIFFERENCE.™

• Design Database Details

- All the digital modules in the form of gate level netlists with the timing information available in Standard Delay Format (SDF) file.
 - All the modules in SOC are instantiated at Design Under Verification (DUV) level called "duv". This is top level Verilog Netlist.
- Other non-critical analog modules in behavioural form.
- Both Timer's in transistor level netlist (SPECTRE format).
- Timer modules' input port capacitance values dumped by running Spice simulations (negligible runtime overhead).

October 18, 2007

Texas Instruments

INNOVATE. CREATE. MAKE THE DIFFERENCE.™

• Design Database Details.

- There are a few test-benches around the SOC to cater to the verification of other modules.
 - E.g. Clock generation, Memory loaders, Serial peripheral controllers etc.
- This whole system is simulated using the simulator Nc-SIM (From Cadence) which in-turn invokes AMS-Ultra (Simulator from Cadence) for simulating Timers.

October 18, 2007 TEXAS INSTRUMENTS INNOVATE. CREATE. MAKE THE DIFFERENCE.[™]

Interface Element (Connect Module)

Default Interface Element:

- Apply same transition time to all ports of analog module.
- Same value for rise and fall transition which adds to inaccuracy.
- Timer interrupts asserted correctly in mixed-signal simulation, but Silicon showed functional failure where interrupts were lost (refer Figure 1).
- Accurate design fix is not possible since the failure could not be simulated.

Interface Element (Connect Module)

- High Precision Interface Element:
 - Highly accurate rise and fall transition time for all input ports of analog module.
 - Highly accurate rise and fall delay for all input ports of analog module.
 - Timer interrupts NOT asserted in simulation and behaviour was correlating with failure results seen on Silicon (refer Figure 2).
 - Accurate fix of design database was possible since failure could be simulated and fix could be qualified.

Effect of Default Interface element

Effect of High Precision Interface element

Simulation output in simulation

TEXAS INSTRUMENTS

INNOVATE. CREATE. MAKE THE DIFFERENCE.™

21

Simulation output in simvision

October 18, 2007

UTEXAS INSTRUMENTS

INNOVATE. CREATE. MAKE THE DIFFERENCE.™

22

Results

- All the existing tests for both Timers are verified using the high precision interface element.
- Timer interrupt issue seen on first silicon fixed in design database and qualified successfully on latest Silicon.
- All tests are passing in the new verification flow proposed in this paper.

Conclusions

- This flow can be easily ported across other designs using Cadence's simulation environment.
- Including more analog modules in transistor format for simulations easily possible (at the expense of increased runtimes).
- Since these modules must be used in all the future devices as is, this methodology guarantees the correct module behaviour in Silicon.

Future scope

- Signal transition in high precision interface element is assumed to be linear. There may also be non-linear. Analysis should be done to check the effects of nonlinearity.
- 0-20% rise and 100-80% fall transition could not be made as a step transition. Different way has to be thought about correcting this.

INNOVATE. CREATE. MAKE THE DIFFERENCE.™

October 18, 2007

TEXAS INSTRUMENTS