# Mixed Signal Verification Methodology Using AMS-Ultra

Sandeep Asija Email: sandeep.asija@freescale.com

Ritesh Jain Email: ritesh@freescale.com







#### **High Speed & Compact Design**

Nanometer technology

#### C65 Low Power Design

- Dynamic Voltage Frequency Scaling
- Power Gating (SRPG/S&R PG)
- Various Voltage Islands

#### **Reduced Time to Market, Production Cost**

- First pass Functional Silicon
- High yield results

#### Impact

- Interface between Analog and Digital design becomes critical
- > Interface between various voltage Islands are most critical
- Interfacing between Global power controller and power gating switches





# Agenda

- Traditional Verification Flow
- AMS-Ultra Verification Flow
- Objective of AMS-Ultra flow
- Results
- Methods Adopted to speed-up simulation
- Design flaws detected with AMS-Ultra
- Bugs Reported in AMS-Ultra
- Enhancements required in AMS-Ultra
- Conclusion
- Acknowledgement





#### **Traditional Verification Flow**



#### **AMS-ULTRA Verification Flow**



#### **AMS-ULTRA Co-sim**



- Multi-voltage domain on SoC
- Power Gating
  - SRPG (State Retention Power Gating)
  - Partial SRPG
- Dynamic Voltage and Frequency Scaling





- Power-On Sequence Verification because of multiple Voltage Regulator
- Power-On-Reset Verification
- Proper Clock Sequence from Clock Generator Module and proper first instruction fetch by CORE
- Timing and Functionality closure between analog and digital signal interfaces
- Memory Verification, ROM





# Multi-Voltage Domain On SoC









## Multi-Voltage Domain On SoC



•Estimation of number of DVFS switches

•IR drop analysis across DVFS switch

•Substrate connectivity of the DVFS switches.







#### How to Estimate Number of Switches:

- Current drawn wavefrom for SOG and COREs calculated from the PowerTheater feedback to DVFS switch spice as current sync for the estimation of the DVFS switches.
- Distributed value of Resistance, for the SOG and CORE Power Grid was used for the estimation of the IR drop across DVFS switches.





## **Power Gating**



# SRPG



# **Partial SRPG**



14

•Spice model for all the SPRG flops and always on cells have been taken in the AMS-Ultra flow.

•Verilog behavioral model was used for remaining logic.

•SOC level testbench was used.

•Stimulus was applied to verify power down and power up the block.





#### Challenge

Verify Deep Sleep Mode for Proper Frequency of clock and also check respective clocks are stopped



#### Challenge

- Multiple Power Domains
  - Digital Voltage Level: 0.9 1.2v
  - Analog Voltage Level: 1.875 2.75v
- Proper Power up Sequence of Chip

#### Blocks

- Analog : Voltage Regulator, Band Gap, Power-On-Reset, Level Shifters
- Digital : Rest of the chip





- Challenge
  - Proper Power on Reset Generation due to involvement of Digital and Analog Blocks
  - Verify functionality of POR module after Power On Reset generation
  - Reset Stretch logic
- Blocks
  - Analog : Voltage Regulator, Band Gap, Power-On-Reset, Level Shifters
  - Digital: Rest of the chip







#### **Results**

#### **Power On Reset sequence**







# Clock Sequence from Clock Generator Module and proper first instruction fetch by CORES

#### Challenge

- Non Resetable flops causing X in Nc-verilog Simulation
- Clocks getting X

#### Blocks

- Digital Spice Blocks : Clock Controller Blocks
- Digital Extracted Gate Level Netlist : Full SOC Chip





# **Results**



#### **Proper Clock Sequence from Clock Generator Module**

# Timing and Functionality Closure between analog and digital signal interfaces

### Challenge

- Verify Proper Voltage levels and timing for interface signals from Digital to Analog
- Verify Proper Voltage levels and timing for interface signals from Analog to Digital

#### Blocks

- Analog Blocks : POR, BGR, Regul Core, PLL, DFD, CAMP, CMON, Level Shifters
- Digital Blocks : Full SOC Chip





# Level shifting from digital to analog







# Timing and Functionality closure between analog and digital signal interfaces









•Use usim\_vr option was used to simulate power switches to reduce partitioning nodes

•Use .usim\_da|df and speed=6|7 for appropriate speed and accuracy depending upon the testcase

•Limit number of saved signals e.g. probe v(\*) depth=2

•Use '-disres none' to disable discipline resolution

•Declaring in\_port and out\_port for spice ports in prop.cfg file to limit bidir CMs





- Floating nodes inside memories were detected.
- IR drop through the DVFS switch was not meeting 5mV specs.
- On some of the interfacing signals, level shifter was not there which gave improper results
- Voltage regulator output not ramping up because of issues in start-up circuit of band gap reference
- Power On Reset signal not ramping up because of voltage regulator output not ramping





# **Bugs Reported in AMS-Ultra**

| Description of Issue                                  | PCR / SR<br>number      |
|-------------------------------------------------------|-------------------------|
| Wrong port name generated when >1 bus delimiter       | PCR-922720              |
| System virtual memory limit exceeded.                 | PCR-922736              |
| Verilog+SPICE: Fix strict AMSIPC err for -disres none | PCR925239               |
| Elaboration fails due to gwm_xcleanup internal error  | PCR925211               |
| Digital nets connected to IE should remain expanded   | PCR925536               |
| AMSVF 64Bit Support.                                  | SR40427716<br>PCR927825 |





| Description of Issue                                      | PCR / SR<br>number          |
|-----------------------------------------------------------|-----------------------------|
| Setup ncverilog flow instead of 3 steps approach.         | SR: 40345720                |
| Power calculation on Spice block for VDD net.             | SR: 40352404                |
| AMSUltra_vf doesn't allow reg to spice connection         | SR: 40352416<br>PCR: 915798 |
| ncelab internal error: cu_get_ots_entry ()                | SR: 40352416<br>PCR: 915820 |
| Different timescale precision results in different result | PCR-919556                  |
| Implicit parameter pass issue in AMSVF                    | PCR-921106                  |
| Support wildcard for in_port out_port in sourcefile_opts  | PCR925079                   |





Dynamically Switching Between Spice and verilog behavior model or c model

• CFG file requires in, out port information, Tool should take verilog and extract the in, out, inout information

• Intermediate Database creation, so as to start simulation from the saved database.

•Simplified testcase creation for sending database to Cadence for debugging

Support for \$monitor to access spice signals

-Improve messaging while tool crash with an 'internal error'

•OOMR into spice





- AMS-Ultra provide good solution for mixed signal verification and SRPG verification, but for big design SRPG verification is not possible because of number of interconnect modules.
- Simulation run time is fast for timing but inaccurate for power estimation.





# Thanks to Irshad, Ram Kumar, Prabal, Vincent for helping us on the AMS-Ultra Flow





# Thank You Q&A .....



