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Abstract 
Quality assurance in modern mixed-signal 
designs provides opportunities not only for 
above-average products but mostly for 
substantial savings due to increased yields and 
improved reliability of the products. 

In the case of fully custom designs such as 
ASIC, the pre-layout validation plays especially 
important role due to costly redesign and limited 
automation. Such validation is performed on 
many levels starting with mathematical or 
behavioral models and ending on such effects 
as electro-migration (EM), electro static 
discharge (ESD), or hot carrier injection (HCI). 

As elimination of device stress became one of 
the highest priorities in design verification flow, 
special methods such as safe operating area 
(SOA) checks were introduced in many 
simulators on the market. 

However, due to the lack of a standard, which 
would be implemented across different EDA 
solutions, designers are left with incompatible 
implementations and often unsupported options. 

The presented schematic debugging framework 
tries to address these problems by providing 
technology device-driven solution with a support 
for multiple simulators and analysis types. The 
tool has been integrated into Cadence Analog 
Design Environment (ADE) and binds design, 
simulation, SOA checks and waveform analysis 
into a single environment. It combines minimal 

setup overhead with flexibility of sophisticated 
checks. 

During the session the implementation of tool 
infrastructure, encountered problems and 
successful approaches will be discussed. In 
addition, advantages of the tool recognized by 
designers as well as proposed future extensions 
will be covered. 

Introduction 
Validation of analog and mixed signal circuits 
can be performed in many phases of the design. 
Depending on the aspect of operation being 
evaluated such as SOA, ESD or HCI, designers 
are presented with various levels of automation.  

Manual analysis of operating points of each of 
the devices requires significant amount of time 
and is particularly error prone. In effect, most of 
the devices are NOT checked for their nominal 
operating conditions thus inviting common bugs, 
circuit malfunction, physical damage or even 
destruction. Debugging such problems on 
already manufactured circuit is costly, time 
consuming and can better be described as 
a guesswork. 

Yield related analysis and verification of proper 
operation of the circuit – involving numerous 
simulation for several  process corners – is often 
overwhelming and any additional checks (for 
example for SOA conditions) are often not 
performed. This quite often is due to 
an extensive setup and lack of standards 
between simulators especially when the 
simulators come from different vendors. Lack of 

 

mailto:Sylwester.Warecki@freescale.com


portable and matching checks as well as 
a limited syntax of specific simulator is also 
a reason for simplified or even non existent 
validation process. 

Removal of the uncertainty before the integrated 
circuit is manufactured, and decreasing the 
project cost usually caused by re-spins and 
missed schedules was a primary driver for 
development of circuit quality validation tool - 
Schematic Debugging Framework (SDF). The 
first version of SDF was presented in June 2003.  

The SDF combines device characterization 
knowledge with the unified multi simulator 
environment. It has been incorporated into 
Freescale internal Cadence tools environment 
and together with technology specific files 
provides straightforward and yet sophisticated 
framework for circuit validation and debugging.  

The analyses performed by the tool are based 
on simulation results of a given circuit with 
specific rules provided for each of the devices in 
a particular technology. Higher flexibility of 
checks is accomplished by a specialized rule 
editor, which allows for user-defined expressions 
for an arbitrary device in any library. The editor 
will be presented in point 3. 

SDF is used as a final step in the schematic 
analysis flow for its pre-layout validation. SDF 
can significantly reduce cost of the IC 
development by decreasing the number of re-
spins and very costly silicon debugging. In turn it 
allows for a reduction of ' time-to-market of the 

manufactured parts. As a final benefit, designs 
verified with SDF demonstrate an increased 
durability and an extended time-to-failure (TTF) 
due to the reduction of stress on the device. This 
particular feature is especially important for 
automotive products, lifetime pf which has to 
reach minimum of 10 years. 

Outline 
The following paragraphs will introduce the SDF 
utility. They will cover basic tool operation 
together with technology and user requirements. 
Integration into Analog Design Environment 
(ADE) for analog and mixed signal analysis will 
be presented. In addition several benefits of 
incorporating the tool into the standard design 
flow together with simple steps required for tool 
deployment, configuration and customization 
including user private rules, filters and setup files 
will be discussed. 

Project Development Flow 
Figure 1 presents a typical project development 
flow. Starting with a concept, a design goes 
through its implementation in form of high level 
description (blocks) later turned into either 
schematics or some sort of hardware description 
language (HDL). The RTL blocks are often 
delivered separately.  

The design is translated into layout either 
through compilation or (for analog and mixed 
signal designs) with manual effort. 
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Figure 1: Example of Product Development Flow. Red arrows represent a request to modify design. 



GDS files are produced for mask preparation 
step.  Manufactured wafers are then scored and 
sent for packaging and testing. The final product 
in this case is an integrated chip. 

For high return on investment (ROI) consecutive 
steps (especially transitions marked here with 
arrows) should be smooth (no delays) and 
should not be repeated. Each step has to be 
carefully executed with minimum amount of 
problems.  

In reality, the full project cycle is a repetitive 
process with the design modifications being 
introduced on almost every stage. 

One rule however prevails – if the modifications 
have to be done towards the end of the process, 
then they become very costly diminishing this 
way the ROI.  

Anticipation of the problems in manufacturing, 
stands behind specialized tools for Layout 
validation : design rule checks (DRC) layout 
versus schematic (LVS) and layout parasitic 
extraction (LPE). Modern DRC engines also 
support design for manufacturing (DFM) rules 
which are directly effecting yield. 

At the same time DRC style validation of device 
operations is limited and not supported by all 
simulators. 

Validation Problem 
From the designers' perspective, partial 
solutions to the design validation were already 
available. Several simulators had partial checks 
of operating conditions already available either 
through models (like warnings in Spectre) or 
through specific checks (like dchecks 
statements in UltraSim® or assertions in 
Spectre®). Simulators of other EDA vendors 
also include some form of checks. 

Unification of these checks became a necessity 
as a single and uniform solution was necessary 
for a company providing models and technology 
support for more than a single simulator. 

A tool that would furnish the validation needs of 
the designers through a well integrated interface 
together with a reliable setup and minimal effort 
from the designer's point of view became 
a necessity. Some of the reasons presented by 
designers are discussed below. 

Known design cycle problems 

Design reuse 
A typical problem found in various designs is an 
existence of numerous errors caused by design 
reuse. Reusing schematics from similar 
technologies or even from previous version of 
the same technology's library  without detailed 
verification of all imported devices often 
becomes a major reason of problems that go 
undetected until manufacturing stage.  

For example leaving an isolation settings from 
high voltage technology in a default off-state 
(typically it is a CDF parameter translated to 
later on to PCELL dimensions) while migrating 
to the low voltage technology results in an 
undetected isolation violation. The problem will 
not show up in any simulation of the circuit 
containing the device as the isolation rules are 
most often not included in the model. 

Such a mistake left unnoticed is very costly 
because it cannot be simply modified by a metal 
mask fix. The faulty device's dimensions require 
new layout as they are physically too small and 
therefore all masks have to be re-done. 

Electro-Static Discharge 
Another problem which has to be addressed in 
all top level designs is the Electro-Static 
Discharge. The ESD does not belong to the 
typical circuit operation conditions. In many 
cases no simulations checking top-level for ESD 
are performed as the designs rely on the ESD 
protection circuits built into the pads. However 
verification of the circuit behavior in the stressed 
conditions is necessary as it can detect 
vulnerabilities not seen during regular 
simulation.  

In addition, the ESD protection circuits also need 
to be verified themselves in a systematic way to 
resolve possible bugs between ESD library 
revisions.  

Operating Region 
Some of the instances are scheduled to operate 
only in the specific state – for example 
saturation. Leaving saturation state may indicate 
problem in the design, which can cause damage 
or for example increased power consumption. 
The latter case became recently a problem in 



portable devices which need to minimize power 
dissipation. 

Hot Carrier Injection 
Hot carrier injection (used in flash memories [1]) 
is a problem of NMOS device operating under 
specific conditions in which 'hot carriers' become 
trapped in the insulation layer (the thin oxide 
THX). These conditions involve high speed 
electrons colliding with the silicone lattice of the 
drain. 

Hot Carrier Injection, electrons hit the lattice and 
get deflected to the thin oxide. This causes 
a shift in device operating point (V

T
 shift) and 

therefore decreases its conformance to nominal 
values. Over time the changes in device 
characteristics are irreversible and  ultimately 
damage the device. Figure 3 depicts the HCI 
process. 

In case of high concentration of electrons 
trapped in thin oxide, a gate leakage can also 
occur. The process of hot carrier injection is well 
described in the  literature. More information 
about it can be found in (see [2]). 

Detection of the HCI is an example of a complex 
rule which does not fall into simple cross probed 
voltage check.  

Operating Conditions 
Any manufactured IC is exposed to various 
environmental conditions which will either 
change its operation, cause malfunction or even 
cause physical damage. Most common factors 
are temperature, radiation, humidity, pressure 
and vibration. Other sources of failure include 
stress (mechanical and electrical) fatigue (often 
due to thermal expansion) and typical diffusion 
process that is present in any silicon based chip. 

Not all of these conditions can be included in the 
simulation of the device, however introduction of 
stress checks (SOA), which include reliability 
information, can improve device performance in 
the field. 

In most cases safe operation is recognized as 
voltage limitation which increases reliability and 
mean TTF. However, not always limiting of 
device operating conditions is necessary. 
Increasing voltage range, for example, can 
broaden the sensitivity or increase device 
power.  In some circumstances, the device's real 
operating time can be calculated in seconds or 
even milliseconds (for example airbags) making 
the more stringent assumptions (lower voltage) 
for a given technology too limiting. 
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Figure 2: Hot Carrier Injection, electrons hit the 
lattice and get deflected to the thin oxide. 

On the other hand, devices going through 
heating-cooling cycles (near car's engine) must 
be extremely resilient to stress, and their 

reliability limits have to be set in much stricter 
way. 
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Figure 3: SDF Tool Flow 

Integration of SDF Flow  
Both aspects presented above can be 
addressed by providing a specific set of rules 
describing device operation. Incorporation of 



these rules into a standard design flow, makes 
the products cheaper, better designed and 
protects company from unnecessary recalls. 
Figure 3 presents a desired flow integration that 
could fill the gap in the pre-layout validation 
stage with utilization of the existing mechanisms: 
design hierarchical schematics, simulations and 
saved states. The OA2.2 marked in yellow was 
a later addition to the project. 

Figure 4 presents the GUI realization of SDF 
tool with 3 distinctive steps involving ADE setup, 
SDF setup and the SDF alarm browser.  

The control of the SDF engine and specific 
techniques used for optimized execution are 
done through SDF setup involving several 
tabbed dialogs. 

 ADE Session SDF Setup SDF Alarms 

Figure 4: SDF Tool Main Components 

SDF Setup 
As it is presented in Figure 4 the SDF tool is 
integrated into ADE from which it obtains all 
necessary for the execution parameters. Since 
the tool is invoked from the ADE window its 
integration with ADE was a necessary step in 
development. 

Integration with ADE 
SDF tool gathers the information about the 
simulated circuit directly from the ADE. The 
information shown in Figure 5 includes  

 Top cell,  

 Selected simulator, 

 Used PSF/SST2 directory, 

 The Simulation type   

The bottom section of the dialog is used for the 
progress updates. It provides details about 
number of checks done so far and expected 
time to finish the current validation process. The 
run time estimate helps designers to better plan 
their own time.  

Figure 5: Main SDF Run dialog  

Simulator support 
Currently the standard version as well as   
Verilog counterpart of both commercial 
(including Spectre™ and UltraSim™ ) and in-
house simulators are supported by the tool. 

Verilog support 
Verilog and VerilogA are supported only up to 
the port level of the design blocks. The internal 
variables of Verilog blocks are inaccessible to 
the tool as these are not stored in the PSF file in 
the acceptable form.  



Although the Verilog data is not retrievable, the 
design can still be checked up to the port level, 
which means that the Verilog block is treated as 
a black box with wires attached. Currents and 
voltages on these ports can still be measured 
from the outside and therefore they can be used 
in the expressions. a special technique had to 
be used for mapping of the Verilog block ports. 

Design Hierarchy support 
The SDF tool was designed to support both 
Analog and Mixed signal simulations. The first 
style of simulation is purely schematic based 
and requires only top level schematic (Top-
Design) and two lists :  

 switch view list 

 stop view list 

the stop view list ends the hierarchy search 
while the schematic view list, shows the views 
which the search engine should not descent 
into. The mechanism is identical with the ADE 
hierarchy search. 

In case of Mixed signal simulation, which 
includes Verilog/VerilogA blocks – a config view 
is necessary to describe the hierarchy. The SDF  
is able to parse the config views and extract the 
hierarchy from these, thus enabling the mixed 
signal simulation and its further analysis. 

The selection of the hierarchical parser is 
automatic and does not require user's input. The 
information is extracted from the ADE session, 
and therefore it follows the setup already 
prepared by the user. 

All names in the filter fields (both the setup and 
the result browser) support standard “slash” 
notation. Such notation is kept common between 
different simulators and the translation to 
specific notation used inside the PSF file is done 
again automatically by the tool. 

Simulation types 
The SDF tool concentrates on 4 simulation 
types: 

 Transient 

 DC-OP 

 DC-Sweep 

 AC-Sweep 

The support of the given type of simulation is 
dependent on the simulator used. For example 
Ultrasim(TM) provides only transient option 
(DC-OP still has unresolved problems). 

Speed Considerations, Filter Options 
Since the SDF tool needs to parse large PSF 
files, to speed up the process, a designer can 
narrow the evaluation of the circuit only to its 
specific sections. Both cellview name filters and  
block hierarchical path filters are available. 
Figure 6 shows the example of available filters. 
Multiple blocks and Multiple cellviews can be 
specified. 

Figure 6: Filtering options of the SDF 

The time window is another enhancements that 
provided a way to narrow down the analysis to 
the portion of simulation which is interesting to 
the designer. a typical example is the problem of 
charge pumps that achieve full operating 
conditions only towards the last 5% of the 
simulation. By default the time window shows 
the time limits selected in ADE so that they can 
be easily updated. 

Running the engine 
The SDF tool can be run in one of 3 modes. 
Run, Netlist and Run and Check. 

First and second option invoke simulation and  
netlisting and simulation respectively Third 
option is most often used as it utilizes the results 
already stored in the PSF directory. Selecting 
that option brings the PSF results selection 
dialog which shows only valid results.  



Additional efficiency related options (including 
cache) are available in the SDF Options dialog 
(not presented here). 

SDF Alarm Editor 
The next important element of the SDF Setup is 
the SDF alarm editor. The editor provides 
means of generating the SDF Alarm files or 
editing existing ones. 

Multiple Setups 

Figure 7: Multiple Setup for multiple libraries 

Alarm Expressions Generation 
By default SDF Alarm files are delivered with the 
technology library and are available to the user 
without any special selections. To verify the 
alarm conditions or to select only special cases, 
user can open the Alarm Editor dialog. Figure 8 
presents the SDF Alarm Editor with the standard 
Cadence analogLib library as a reference. 

The dialog was designed to provide further 
automation and better integration with the rest of 
SDF framework. Both for user libraries and for 
the technology library, user can create arbitrary 
number of expressions. Each expression 
belongs to 1 of 3 categories: warnings, infos and 
errors (marked yellow). To accommodate more 
sophisticated needs the expression evaluation 
can be gated through a timing window (Min 
Time) – this option is available in some of the 
simulators (for example Spectre). For more 
complex conditions additional attribute can be 
set (Time Ratio), which allows for duty cycle 
type checks. That option is not available as 
a check in other solutions.  

Figure 7 illustrates multiple setups, which can be 
simultaneously used by designer for description 
of several libraries and even the same library 
elements. In this example 3 setup files are 
utilized each of which can be assigned to the 
specific library and turn on/off at will. The 
multiple setup files can contain different set of 
rules that correspond to more or less stringent 
conditions. The setup file can represent original 
library setup or a shadow setup.   

 

 

 
Figure 8 Example of SDF Alarm Editor. 



Utilization of the dialog instead of text editing the 
setup files provides one more advantage to the 
user, it verifies the syntax of the expressions 
and saves the setup file always in a correct 
format. This way, unnecessary mistakes are 
reduced to minimum, allowing both designers 
and developers to concentrate on the issues at 
hand and not complexities of the setup files 
syntax. 

Figure 11: Resulting Violation Space 

Figure 9: violation space 

Utilization of the time window gating function 
with the time ratio, allows for very accurate 
examination of the phenomenon mentioned 
before - the HCI conditions. 
 

 

Complex Rules 
The SDF Alarm editor allows for creation of 
complex dependencies between parameters and 
simulated values of the sub-circuit. These 
complex relations are often described in 2-D or 
3D space. Figure 9 presents the violation space 
described for a 2D case. Figure 10 shows the 
simulation results for the given pair of variables 
(2-variable DC-sweep), while Figure 11 shows 
the effective alarm space.  

It is important to understand that in the course of 
the transient simulation for example, only a few 
of the nodes of the violation graph can be 
reached as the transitions will be represented by 
a line rather than surface. 

Figure 10: violation 

An example of a complex alarm - HCI 
HCI rules belong the non-trivial expressions. 
Trivial expressions can be described with 
following formula: 

 VXY>V0 

where V0 is a constant and X and Y represent 
terminals of the device. 

The HCI conditions require equations that verify 
relations between 3 or more terminals of a given 
device. 

Methods describing the device HCI are complex 
(see [4]) and the degradation evaluation 
methods became subject of several US patents .  



A simplified analysis of the HCI process of the 
electron injection into the oxide space can 
provide a model of that phenomenon based on 
just 2 major factors: 

 the source-drain voltage, which is 
responsible for the electric field 
accelerating  the electrons to the speeds 
resulting in high energy collisions with 
the lattice 

 the gate potential which, attracts the 
electrons, towards the gate and traps 
them in the oxide. 

The force (proportional to the potential of the 
gate) helps electrons, which effectively land in 
one of three regions: 

 close to substrate – a shallow 
penetration 

 in the middle of oxide – oxide 
degradation or memory function (in case 
of flash) 

 crossing the oxide – leakage current 

As the HCI damage is considered mostly in the 
second case (degrading Vth) when electrons 
become trapped, the formula defining the 
forbidden region of operation can be 
represented as follows: 
 VGB≈a+b*VDS 

which results in the expression: 
(v[g]-v[b]>a+b0*(v[d]-v[s]))&& 
(v[g]-v[b]<a+b1*(v[d]-v[s])) 

where a, b0 and b1 represent appropriate 
coefficients for a given technology.  

The conditions can also be subjected to timing 
gating (for example tD>200ns). Figure 13 shows 
how time gating can be achieved.  

Alarm Expression syntax 
Below an example of simple rules used in the 
notation of the alarm expressions is presented:  

 Terminal names are accessed through 
square brackets : example v[s] is 
a voltage of the source terminal with the 
reference to 0-gnd. 

 Cdf parameters are accessed with dollar 
sign : for example $iso_105V represents 
isolation rule 105 volts. At the same time 
$l refers to a length. 

 Simulation parameters and variables are 
accessed through a @ symbol : for 
example @temp represents the 
temperature (note: in some simulators 
temp cannot be used as a variable). 

 Conditional expressions are available 
with “and“ && and “or” || support. 

 Calculator functions (sin, atan etc) are 
available. 

An Example Circuit. 
 
 

Figure 12: example circuit 

Figure 13: Example of time dependent violation

Example of a violation detected by the SDF is 
shown in Figure 13. The violation will not trigger 
the cap_MAX_TIME from Figure 13, however it 
will trigger the cap_Time_Ratio10 as the time 



spent in the offending region crosses 10% of the 
total time of the simulation. 

 

Figure 14: Example of SDF Alarm Results Browser 

SDF Alarm Developer Support 
To minimize the time needed for development of 
the Alarm file, special wizard has been provided. 
The wizard can generate all basic checks for all 
devices in the library, which have a symbol view.  

It is important to use wizard especially in case of 
devices which have numerous inputs. The 
wizard can generate all combinations of inputs 
reducing manual overload for minimum. In most 
cases (which are simple voltage checks) what is 
left for the SDF Alarm file developer, is to fill in 
the actual values for limiting voltages 

Result Browser  

Violation Debugging 
As in any other aspect of design, the debugging 
of encountered problem (in this case SDF 
violation) must be clear, precise and fast. All 
these aspects were taken into account during 
development of the main debugging window of 
the SDF tool. Designer is able to narrow down 
the problem by using a set of filters and then 
follow the problem to its source.  

Filters 
Filter fields are marked in Figure 14 with yellow 
and red frames. The first set of filters (red 
section) due to a limited dialog space has been 
compacted to a set of single letter shorts. 

Meanings of these abbreviations are explained 
in a separate dialog accessed through the SET 
button. The filtering options in this section refer 
to a type of results, errors, warnings, unfinished 
checks, evaluation errors, syntax errors, used 
file and suspicious conditions such as for 
example always fails, and never fails. The last 
two conditions are especially useful during 
debugging of the SDF Alarm files, the always 
and never conditions can show when the rules 
are not correctly defined. For example the 
following rule: 

abs(v[s]-v[d])==0.6  

seems to be a valid expression however in 
practice it will never fail. The reason is the 
representation of the floating point numbers. 
This is because the values often become 
truncated and direct comparison of 2 floating 
point numbers cannot result in true statement 
(see [6]). Most likely the desired formula needs 
one more abs(): 

abs(abs(v[s]-v[d])-0.6)<1e-5  

Here the comparison is done correctly as it 
allows for a margin of error. Thanks to the 
mentioned special category of results : Never 
Fails – the designer is able to catch not obvious 
problems and modify the expressions 
accordingly. 

The second filter (yellow section) allows for 
extraction of results for only specific sub-cells in 
the design.  



Providing the instance partial hierarchical name 
in the Inst box allows the browser to filter out the 
names which do not contain such string. In  the 
presented example only 8 violations for 4 
instances are shown out of total of 38. The 
section marked blue, shows the matching 
portion of the instance names. The reported 
alarms can be also filtered by device library, cell 
and view names independently. Finally they can 
be filtered with the Rule Name. All filtering is 
turned off by default. 

In addition internally developed Form Messaging 
System speeds up multiple selections in case of 
large result arrays. This helps to keep the speed 
of the tools GUI with the pace of a designer. 

Alarm Details 

The simple True/False information about the 
existing violation might not be enough for 
designer to make an informed decision about 
fixing the cell. To quickly find out how the 
specified condition is violated, a plot of the result 
can be  accessed by double clicking on the 
result. Figure 16 shows such a waveform 
generated for the failing condition marked in 
Figure 8.  

Another important feature of the SDF Alarm 
Results Browser is the access to the schematic 
design also directly from the Results window. In 
this case pressing Zoom to instance opens 
a schematic with focus on the violating instance.  

The bottom portion (marked green) of the 
Results dialog is used for clarification of 
obtained results. It shows the original equations, 
the translated expression and the reason for 

error. The Reason field is especially useful in 
case of calculation problems. Most common are 
the problems in the formulas containing wrong 
terminal name.  

Figure 16: Example of Violation plot 

SDF Tool Extra Freatures 

Notifications 

Figure 17: Notification - messaging system 

Figure 15: Example of complex violation regions

The messaging system provides further 
improvements to designers experience with the 
tool. The SDF framework can notify multiple 
receivers about several stages of the check 
completion. In case of the checks which require 
overnight run, it is important to be able to stop or 
restart the tool if running it ends with failure (for 
example in case of an unsuccessful simulation 
of a block any further analysis requires 
designer's manual intervention). 

Components of the SDF 
The tool components of the SDF are presented 
in Figure 18. Each of these components has to 



realize a specific function inside the Cadence 
Design Environment.  

Summary 
The issues  presented in this session represent 
only a part of numerous design validation 
issues. Many of them can be accurately 
addressed by providing appropriate 
methodology with strict design flow steps. As it 
has been shown, incorporating the SDF tool into 
such flow, can enhance the flow and increase 
designer's productivity. 

Support of CDF parameters, design variables, 
terminal currents and voltages, provides a way 
of generating both simple and complex 
expressions, which can cater different design 
needs. At the same time a helper mechanism in 
form of several wizards turns the chore of writing 
the SDF Alarm files into a quick and yet highly 
reliable task. 

In addition unification of the approach to 
different simulators allows for simplification of 
validation steps in case of design migration. 

All mentioned features make the SDF a great 
choice for designers as it complements existing 
flows and allows for reuse of already generated 

test cases, minimizing this way the setup 
overhead. 
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Figure 18: Components of the SDF 

The key reason for success of the SDF utility is 
partitioning of the configuration process into two 
separate tasks. The first, realized by a team of 
experts (the device characterization group), 
gave solid and reliable set of SDF Alarm rules, 
the second, performed by designers, allowed for 
full flexibility in selecting checks and 
minimization of unnecessary overhead. Due to 
this division, the designers get a full product, 
which is ready to work out of the box with 
minimum effort on their side.  

Providing such infrastructure makes sure that  
batteries are included. 
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