

Presented at

Schematic Debugging Framework
for the Multi-Simulator based

Verification of the Mixed Signal Design

Freescale Semiconductor
Sylwester Warecki

Session 6.15

Schematic Debugging Framework
for the Multi-Simulator based Verification

of the Mixed Signal Design
Session: 6.15

Sylwester Warecki
Sylwester.Warecki@freescale.com

Freescale Semiconductor
Tempe Arizona, USA
CDNLIVE Conference
San Jose, California

10-12 September 2007

Abstract
Quality assurance in modern mixed-signal
designs provides opportunities not only for
above-average products but mostly for
substantial savings due to increased yields and
improved reliability of the products.

In the case of fully custom designs such as
ASIC, the pre-layout validation plays especially
important role due to costly redesign and limited
automation. Such validation is performed on
many levels starting with mathematical or
behavioral models and ending on such effects
as electro-migration (EM), electro static
discharge (ESD), or hot carrier injection (HCI).

As elimination of device stress became one of
the highest priorities in design verification flow,
special methods such as safe operating area
(SOA) checks were introduced in many
simulators on the market.

However, due to the lack of a standard, which
would be implemented across different EDA
solutions, designers are left with incompatible
implementations and often unsupported options.

The presented schematic debugging framework
tries to address these problems by providing
technology device-driven solution with a support
for multiple simulators and analysis types. The
tool has been integrated into Cadence Analog
Design Environment (ADE) and binds design,
simulation, SOA checks and waveform analysis
into a single environment. It combines minimal

setup overhead with flexibility of sophisticated
checks.

During the session the implementation of tool
infrastructure, encountered problems and
successful approaches will be discussed. In
addition, advantages of the tool recognized by
designers as well as proposed future extensions
will be covered.

Introduction
Validation of analog and mixed signal circuits
can be performed in many phases of the design.
Depending on the aspect of operation being
evaluated such as SOA, ESD or HCI, designers
are presented with various levels of automation.

Manual analysis of operating points of each of
the devices requires significant amount of time
and is particularly error prone. In effect, most of
the devices are NOT checked for their nominal
operating conditions thus inviting common bugs,
circuit malfunction, physical damage or even
destruction. Debugging such problems on
already manufactured circuit is costly, time
consuming and can better be described as
a guesswork.

Yield related analysis and verification of proper
operation of the circuit – involving numerous
simulation for several process corners – is often
overwhelming and any additional checks (for
example for SOA conditions) are often not
performed. This quite often is due to
an extensive setup and lack of standards
between simulators especially when the
simulators come from different vendors. Lack of

mailto:Sylwester.Warecki@freescale.com

portable and matching checks as well as
a limited syntax of specific simulator is also
a reason for simplified or even non existent
validation process.

Removal of the uncertainty before the integrated
circuit is manufactured, and decreasing the
project cost usually caused by re-spins and
missed schedules was a primary driver for
development of circuit quality validation tool -
Schematic Debugging Framework (SDF). The
first version of SDF was presented in June 2003.

The SDF combines device characterization
knowledge with the unified multi simulator
environment. It has been incorporated into
Freescale internal Cadence tools environment
and together with technology specific files
provides straightforward and yet sophisticated
framework for circuit validation and debugging.

The analyses performed by the tool are based
on simulation results of a given circuit with
specific rules provided for each of the devices in
a particular technology. Higher flexibility of
checks is accomplished by a specialized rule
editor, which allows for user-defined expressions
for an arbitrary device in any library. The editor
will be presented in point 3.

SDF is used as a final step in the schematic
analysis flow for its pre-layout validation. SDF
can significantly reduce cost of the IC
development by decreasing the number of re-
spins and very costly silicon debugging. In turn it
allows for a reduction of ' time-to-market of the

manufactured parts. As a final benefit, designs
verified with SDF demonstrate an increased
durability and an extended time-to-failure (TTF)
due to the reduction of stress on the device. This
particular feature is especially important for
automotive products, lifetime pf which has to
reach minimum of 10 years.

Outline
The following paragraphs will introduce the SDF
utility. They will cover basic tool operation
together with technology and user requirements.
Integration into Analog Design Environment
(ADE) for analog and mixed signal analysis will
be presented. In addition several benefits of
incorporating the tool into the standard design
flow together with simple steps required for tool
deployment, configuration and customization
including user private rules, filters and setup files
will be discussed.

Project Development Flow
Figure 1 presents a typical project development
flow. Starting with a concept, a design goes
through its implementation in form of high level
description (blocks) later turned into either
schematics or some sort of hardware description
language (HDL). The RTL blocks are often
delivered separately.

The design is translated into layout either
through compilation or (for analog and mixed
signal designs) with manual effort.

Design Layout

MASK Prep

Product

Packaging

R
.O

.I.

C
O

N
C

EP
T

Device
Models

RTL

Schematic GDS

Design Layout

MASK Prep

Product

Packaging

R
.O

.I.

C
O

N
C

EP
T

Device
Models

RTL

Schematic GDS

Figure 1: Example of Product Development Flow. Red arrows represent a request to modify design.

GDS files are produced for mask preparation
step. Manufactured wafers are then scored and
sent for packaging and testing. The final product
in this case is an integrated chip.

For high return on investment (ROI) consecutive
steps (especially transitions marked here with
arrows) should be smooth (no delays) and
should not be repeated. Each step has to be
carefully executed with minimum amount of
problems.

In reality, the full project cycle is a repetitive
process with the design modifications being
introduced on almost every stage.

One rule however prevails – if the modifications
have to be done towards the end of the process,
then they become very costly diminishing this
way the ROI.

Anticipation of the problems in manufacturing,
stands behind specialized tools for Layout
validation : design rule checks (DRC) layout
versus schematic (LVS) and layout parasitic
extraction (LPE). Modern DRC engines also
support design for manufacturing (DFM) rules
which are directly effecting yield.

At the same time DRC style validation of device
operations is limited and not supported by all
simulators.

Validation Problem
From the designers' perspective, partial
solutions to the design validation were already
available. Several simulators had partial checks
of operating conditions already available either
through models (like warnings in Spectre) or
through specific checks (like dchecks
statements in UltraSim® or assertions in
Spectre®). Simulators of other EDA vendors
also include some form of checks.

Unification of these checks became a necessity
as a single and uniform solution was necessary
for a company providing models and technology
support for more than a single simulator.

A tool that would furnish the validation needs of
the designers through a well integrated interface
together with a reliable setup and minimal effort
from the designer's point of view became
a necessity. Some of the reasons presented by
designers are discussed below.

Known design cycle problems

Design reuse
A typical problem found in various designs is an
existence of numerous errors caused by design
reuse. Reusing schematics from similar
technologies or even from previous version of
the same technology's library without detailed
verification of all imported devices often
becomes a major reason of problems that go
undetected until manufacturing stage.

For example leaving an isolation settings from
high voltage technology in a default off-state
(typically it is a CDF parameter translated to
later on to PCELL dimensions) while migrating
to the low voltage technology results in an
undetected isolation violation. The problem will
not show up in any simulation of the circuit
containing the device as the isolation rules are
most often not included in the model.

Such a mistake left unnoticed is very costly
because it cannot be simply modified by a metal
mask fix. The faulty device's dimensions require
new layout as they are physically too small and
therefore all masks have to be re-done.

Electro-Static Discharge
Another problem which has to be addressed in
all top level designs is the Electro-Static
Discharge. The ESD does not belong to the
typical circuit operation conditions. In many
cases no simulations checking top-level for ESD
are performed as the designs rely on the ESD
protection circuits built into the pads. However
verification of the circuit behavior in the stressed
conditions is necessary as it can detect
vulnerabilities not seen during regular
simulation.

In addition, the ESD protection circuits also need
to be verified themselves in a systematic way to
resolve possible bugs between ESD library
revisions.

Operating Region
Some of the instances are scheduled to operate
only in the specific state – for example
saturation. Leaving saturation state may indicate
problem in the design, which can cause damage
or for example increased power consumption.
The latter case became recently a problem in

portable devices which need to minimize power
dissipation.

Hot Carrier Injection
Hot carrier injection (used in flash memories [1])
is a problem of NMOS device operating under
specific conditions in which 'hot carriers' become
trapped in the insulation layer (the thin oxide
THX). These conditions involve high speed
electrons colliding with the silicone lattice of the
drain.

Hot Carrier Injection, electrons hit the lattice and
get deflected to the thin oxide. This causes
a shift in device operating point (V

T
 shift) and

therefore decreases its conformance to nominal
values. Over time the changes in device
characteristics are irreversible and ultimately
damage the device. Figure 3 depicts the HCI
process.

In case of high concentration of electrons
trapped in thin oxide, a gate leakage can also
occur. The process of hot carrier injection is well
described in the literature. More information
about it can be found in (see [2]).

Detection of the HCI is an example of a complex
rule which does not fall into simple cross probed
voltage check.

Operating Conditions
Any manufactured IC is exposed to various
environmental conditions which will either
change its operation, cause malfunction or even
cause physical damage. Most common factors
are temperature, radiation, humidity, pressure
and vibration. Other sources of failure include
stress (mechanical and electrical) fatigue (often
due to thermal expansion) and typical diffusion
process that is present in any silicon based chip.

Not all of these conditions can be included in the
simulation of the device, however introduction of
stress checks (SOA), which include reliability
information, can improve device performance in
the field.

In most cases safe operation is recognized as
voltage limitation which increases reliability and
mean TTF. However, not always limiting of
device operating conditions is necessary.
Increasing voltage range, for example, can
broaden the sensitivity or increase device
power. In some circumstances, the device's real
operating time can be calculated in seconds or
even milliseconds (for example airbags) making
the more stringent assumptions (lower voltage)
for a given technology too limiting.

p-substrate

thin oxide
gateS D

n+ n+

Lattice collision

p-substrate

thin oxide
gateS D

n+ n+

Lattice collision

Figure 2: Hot Carrier Injection, electrons hit the
lattice and get deflected to the thin oxide.

On the other hand, devices going through
heating-cooling cycles (near car's engine) must
be extremely resilient to stress, and their

reliability limits have to be set in much stricter
way.

Results
schematic/psf

simulation

Analog Design
Environment session

Safe operation region
Reliability verification

CADENCE
CDBA
OA 2.2

SDF
Alarms

Design/schematic

List of Failing
Devices

Results
schematic/psf

simulation

Analog Design
Environment session

Safe operation region
Reliability verification

CADENCE
CDBA
OA 2.2

SDF
Alarms

Design/schematic

List of Failing
Devices

Figure 3: SDF Tool Flow

Integration of SDF Flow
Both aspects presented above can be
addressed by providing a specific set of rules
describing device operation. Incorporation of

these rules into a standard design flow, makes
the products cheaper, better designed and
protects company from unnecessary recalls.
Figure 3 presents a desired flow integration that
could fill the gap in the pre-layout validation
stage with utilization of the existing mechanisms:
design hierarchical schematics, simulations and
saved states. The OA2.2 marked in yellow was
a later addition to the project.

Figure 4 presents the GUI realization of SDF
tool with 3 distinctive steps involving ADE setup,
SDF setup and the SDF alarm browser.

The control of the SDF engine and specific
techniques used for optimized execution are
done through SDF setup involving several
tabbed dialogs.

 ADE Session SDF Setup SDF Alarms

Figure 4: SDF Tool Main Components

SDF Setup
As it is presented in Figure 4 the SDF tool is
integrated into ADE from which it obtains all
necessary for the execution parameters. Since
the tool is invoked from the ADE window its
integration with ADE was a necessary step in
development.

Integration with ADE
SDF tool gathers the information about the
simulated circuit directly from the ADE. The
information shown in Figure 5 includes

 Top cell,

 Selected simulator,

 Used PSF/SST2 directory,

 The Simulation type

The bottom section of the dialog is used for the
progress updates. It provides details about
number of checks done so far and expected
time to finish the current validation process. The
run time estimate helps designers to better plan
their own time.

Figure 5: Main SDF Run dialog

Simulator support
Currently the standard version as well as
Verilog counterpart of both commercial
(including Spectre™ and UltraSim™) and in-
house simulators are supported by the tool.

Verilog support
Verilog and VerilogA are supported only up to
the port level of the design blocks. The internal
variables of Verilog blocks are inaccessible to
the tool as these are not stored in the PSF file in
the acceptable form.

Although the Verilog data is not retrievable, the
design can still be checked up to the port level,
which means that the Verilog block is treated as
a black box with wires attached. Currents and
voltages on these ports can still be measured
from the outside and therefore they can be used
in the expressions. a special technique had to
be used for mapping of the Verilog block ports.

Design Hierarchy support
The SDF tool was designed to support both
Analog and Mixed signal simulations. The first
style of simulation is purely schematic based
and requires only top level schematic (Top-
Design) and two lists :

 switch view list

 stop view list

the stop view list ends the hierarchy search
while the schematic view list, shows the views
which the search engine should not descent
into. The mechanism is identical with the ADE
hierarchy search.

In case of Mixed signal simulation, which
includes Verilog/VerilogA blocks – a config view
is necessary to describe the hierarchy. The SDF
is able to parse the config views and extract the
hierarchy from these, thus enabling the mixed
signal simulation and its further analysis.

The selection of the hierarchical parser is
automatic and does not require user's input. The
information is extracted from the ADE session,
and therefore it follows the setup already
prepared by the user.

All names in the filter fields (both the setup and
the result browser) support standard “slash”
notation. Such notation is kept common between
different simulators and the translation to
specific notation used inside the PSF file is done
again automatically by the tool.

Simulation types
The SDF tool concentrates on 4 simulation
types:

 Transient

 DC-OP

 DC-Sweep

 AC-Sweep

The support of the given type of simulation is
dependent on the simulator used. For example
Ultrasim(TM) provides only transient option
(DC-OP still has unresolved problems).

Speed Considerations, Filter Options
Since the SDF tool needs to parse large PSF
files, to speed up the process, a designer can
narrow the evaluation of the circuit only to its
specific sections. Both cellview name filters and
block hierarchical path filters are available.
Figure 6 shows the example of available filters.
Multiple blocks and Multiple cellviews can be
specified.

Figure 6: Filtering options of the SDF

The time window is another enhancements that
provided a way to narrow down the analysis to
the portion of simulation which is interesting to
the designer. a typical example is the problem of
charge pumps that achieve full operating
conditions only towards the last 5% of the
simulation. By default the time window shows
the time limits selected in ADE so that they can
be easily updated.

Running the engine
The SDF tool can be run in one of 3 modes.
Run, Netlist and Run and Check.

First and second option invoke simulation and
netlisting and simulation respectively Third
option is most often used as it utilizes the results
already stored in the PSF directory. Selecting
that option brings the PSF results selection
dialog which shows only valid results.

Additional efficiency related options (including
cache) are available in the SDF Options dialog
(not presented here).

SDF Alarm Editor
The next important element of the SDF Setup is
the SDF alarm editor. The editor provides
means of generating the SDF Alarm files or
editing existing ones.

Multiple Setups

Figure 7: Multiple Setup for multiple libraries

Alarm Expressions Generation
By default SDF Alarm files are delivered with the
technology library and are available to the user
without any special selections. To verify the
alarm conditions or to select only special cases,
user can open the Alarm Editor dialog. Figure 8
presents the SDF Alarm Editor with the standard
Cadence analogLib library as a reference.

The dialog was designed to provide further
automation and better integration with the rest of
SDF framework. Both for user libraries and for
the technology library, user can create arbitrary
number of expressions. Each expression
belongs to 1 of 3 categories: warnings, infos and
errors (marked yellow). To accommodate more
sophisticated needs the expression evaluation
can be gated through a timing window (Min
Time) – this option is available in some of the
simulators (for example Spectre). For more
complex conditions additional attribute can be
set (Time Ratio), which allows for duty cycle
type checks. That option is not available as
a check in other solutions.

Figure 7 illustrates multiple setups, which can be
simultaneously used by designer for description
of several libraries and even the same library
elements. In this example 3 setup files are
utilized each of which can be assigned to the
specific library and turn on/off at will. The
multiple setup files can contain different set of
rules that correspond to more or less stringent
conditions. The setup file can represent original
library setup or a shadow setup.

Figure 8 Example of SDF Alarm Editor.

Utilization of the dialog instead of text editing the
setup files provides one more advantage to the
user, it verifies the syntax of the expressions
and saves the setup file always in a correct
format. This way, unnecessary mistakes are
reduced to minimum, allowing both designers
and developers to concentrate on the issues at
hand and not complexities of the setup files
syntax.

Figure 11: Resulting Violation Space

Figure 9: violation space

Utilization of the time window gating function
with the time ratio, allows for very accurate
examination of the phenomenon mentioned
before - the HCI conditions.

Complex Rules
The SDF Alarm editor allows for creation of
complex dependencies between parameters and
simulated values of the sub-circuit. These
complex relations are often described in 2-D or
3D space. Figure 9 presents the violation space
described for a 2D case. Figure 10 shows the
simulation results for the given pair of variables
(2-variable DC-sweep), while Figure 11 shows
the effective alarm space.

It is important to understand that in the course of
the transient simulation for example, only a few
of the nodes of the violation graph can be
reached as the transitions will be represented by
a line rather than surface.

Figure 10: violation

An example of a complex alarm - HCI
HCI rules belong the non-trivial expressions.
Trivial expressions can be described with
following formula:

 VXY>V0

where V0 is a constant and X and Y represent
terminals of the device.

The HCI conditions require equations that verify
relations between 3 or more terminals of a given
device.

Methods describing the device HCI are complex
(see [4]) and the degradation evaluation
methods became subject of several US patents .

A simplified analysis of the HCI process of the
electron injection into the oxide space can
provide a model of that phenomenon based on
just 2 major factors:

 the source-drain voltage, which is
responsible for the electric field
accelerating the electrons to the speeds
resulting in high energy collisions with
the lattice

 the gate potential which, attracts the
electrons, towards the gate and traps
them in the oxide.

The force (proportional to the potential of the
gate) helps electrons, which effectively land in
one of three regions:

 close to substrate – a shallow
penetration

 in the middle of oxide – oxide
degradation or memory function (in case
of flash)

 crossing the oxide – leakage current

As the HCI damage is considered mostly in the
second case (degrading Vth) when electrons
become trapped, the formula defining the
forbidden region of operation can be
represented as follows:
 VGB≈a+b*VDS

which results in the expression:
(v[g]-v[b]>a+b0*(v[d]-v[s]))&&
(v[g]-v[b]<a+b1*(v[d]-v[s]))

where a, b0 and b1 represent appropriate
coefficients for a given technology.

The conditions can also be subjected to timing
gating (for example tD>200ns). Figure 13 shows
how time gating can be achieved.

Alarm Expression syntax
Below an example of simple rules used in the
notation of the alarm expressions is presented:

 Terminal names are accessed through
square brackets : example v[s] is
a voltage of the source terminal with the
reference to 0-gnd.

 Cdf parameters are accessed with dollar
sign : for example $iso_105V represents
isolation rule 105 volts. At the same time
$l refers to a length.

 Simulation parameters and variables are
accessed through a @ symbol : for
example @temp represents the
temperature (note: in some simulators
temp cannot be used as a variable).

 Conditional expressions are available
with “and“ && and “or” || support.

 Calculator functions (sin, atan etc) are
available.

An Example Circuit.

Figure 12: example circuit

Figure 13: Example of time dependent violation

Example of a violation detected by the SDF is
shown in Figure 13. The violation will not trigger
the cap_MAX_TIME from Figure 13, however it
will trigger the cap_Time_Ratio10 as the time

spent in the offending region crosses 10% of the
total time of the simulation.

Figure 14: Example of SDF Alarm Results Browser

SDF Alarm Developer Support
To minimize the time needed for development of
the Alarm file, special wizard has been provided.
The wizard can generate all basic checks for all
devices in the library, which have a symbol view.

It is important to use wizard especially in case of
devices which have numerous inputs. The
wizard can generate all combinations of inputs
reducing manual overload for minimum. In most
cases (which are simple voltage checks) what is
left for the SDF Alarm file developer, is to fill in
the actual values for limiting voltages

Result Browser

Violation Debugging
As in any other aspect of design, the debugging
of encountered problem (in this case SDF
violation) must be clear, precise and fast. All
these aspects were taken into account during
development of the main debugging window of
the SDF tool. Designer is able to narrow down
the problem by using a set of filters and then
follow the problem to its source.

Filters
Filter fields are marked in Figure 14 with yellow
and red frames. The first set of filters (red
section) due to a limited dialog space has been
compacted to a set of single letter shorts.

Meanings of these abbreviations are explained
in a separate dialog accessed through the SET
button. The filtering options in this section refer
to a type of results, errors, warnings, unfinished
checks, evaluation errors, syntax errors, used
file and suspicious conditions such as for
example always fails, and never fails. The last
two conditions are especially useful during
debugging of the SDF Alarm files, the always
and never conditions can show when the rules
are not correctly defined. For example the
following rule:

abs(v[s]-v[d])==0.6

seems to be a valid expression however in
practice it will never fail. The reason is the
representation of the floating point numbers.
This is because the values often become
truncated and direct comparison of 2 floating
point numbers cannot result in true statement
(see [6]). Most likely the desired formula needs
one more abs():

abs(abs(v[s]-v[d])-0.6)<1e-5

Here the comparison is done correctly as it
allows for a margin of error. Thanks to the
mentioned special category of results : Never
Fails – the designer is able to catch not obvious
problems and modify the expressions
accordingly.

The second filter (yellow section) allows for
extraction of results for only specific sub-cells in
the design.

Providing the instance partial hierarchical name
in the Inst box allows the browser to filter out the
names which do not contain such string. In the
presented example only 8 violations for 4
instances are shown out of total of 38. The
section marked blue, shows the matching
portion of the instance names. The reported
alarms can be also filtered by device library, cell
and view names independently. Finally they can
be filtered with the Rule Name. All filtering is
turned off by default.

In addition internally developed Form Messaging
System speeds up multiple selections in case of
large result arrays. This helps to keep the speed
of the tools GUI with the pace of a designer.

Alarm Details

The simple True/False information about the
existing violation might not be enough for
designer to make an informed decision about
fixing the cell. To quickly find out how the
specified condition is violated, a plot of the result
can be accessed by double clicking on the
result. Figure 16 shows such a waveform
generated for the failing condition marked in
Figure 8.

Another important feature of the SDF Alarm
Results Browser is the access to the schematic
design also directly from the Results window. In
this case pressing Zoom to instance opens
a schematic with focus on the violating instance.

The bottom portion (marked green) of the
Results dialog is used for clarification of
obtained results. It shows the original equations,
the translated expression and the reason for

error. The Reason field is especially useful in
case of calculation problems. Most common are
the problems in the formulas containing wrong
terminal name.

Figure 16: Example of Violation plot

SDF Tool Extra Freatures

Notifications

Figure 17: Notification - messaging system

Figure 15: Example of complex violation regions

The messaging system provides further
improvements to designers experience with the
tool. The SDF framework can notify multiple
receivers about several stages of the check
completion. In case of the checks which require
overnight run, it is important to be able to stop or
restart the tool if running it ends with failure (for
example in case of an unsuccessful simulation
of a block any further analysis requires
designer's manual intervention).

Components of the SDF
The tool components of the SDF are presented
in Figure 18. Each of these components has to

realize a specific function inside the Cadence
Design Environment.

Summary
The issues presented in this session represent
only a part of numerous design validation
issues. Many of them can be accurately
addressed by providing appropriate
methodology with strict design flow steps. As it
has been shown, incorporating the SDF tool into
such flow, can enhance the flow and increase
designer's productivity.

Support of CDF parameters, design variables,
terminal currents and voltages, provides a way
of generating both simple and complex
expressions, which can cater different design
needs. At the same time a helper mechanism in
form of several wizards turns the chore of writing
the SDF Alarm files into a quick and yet highly
reliable task.

In addition unification of the approach to
different simulators allows for simplification of
validation steps in case of design migration.

All mentioned features make the SDF a great
choice for designers as it complements existing
flows and allows for reuse of already generated

test cases, minimizing this way the setup
overhead.

 Schematic Debugging Framework

Schematic-HDL

Results

SDF Engine

Setup

ADE-Session

Device Models

RTL

Schematic-HDL

Notifications

monitoring

cache

filters

Configuration

Error Browser

technology

user

Schematic Debugging Framework

Schematic-HDL

Results

SDF Engine

Setup

ADE-Session

Device Models

RTL

Schematic-HDL

Notifications

monitoring

cache

filters

Configuration

Error Browser

technology

user

Figure 18: Components of the SDF

The key reason for success of the SDF utility is
partitioning of the configuration process into two
separate tasks. The first, realized by a team of
experts (the device characterization group),
gave solid and reliable set of SDF Alarm rules,
the second, performed by designers, allowed for
full flexibility in selecting checks and
minimization of unnecessary overhead. Due to
this division, the designers get a full product,
which is ready to work out of the box with
minimum effort on their side.

Providing such infrastructure makes sure that
batteries are included.

Bibliography
[1] “Constant-charge-injection programming for

10-MB/s multilevel AG-AND flash
memories”, Kurata, H.; Saeki, S.;
Kobayashi, T.; Sasago, Y.; Kawahara,
T.;Symposium on VLSI Circuits Digest of
Technical Papers, 2002.

[2] “Physical model of drain conductance, g
d
,

degradation of NMOSFET's due to interface
state generation by hot carrier injection”,
Kurachi, I.; Nam Hwang; Forbes, L.; IEEE
Transactions on Electron Devices, Volume
41, Issue 6, June 1994

[3] “Reliability effects on MOS transistors due to
hot-carrier injection”, Kueing-Long Chen;
Saller, S.A.; Groves, I.A.; Scott, D.B.;IEEE
Transactions on Electron Devices, 1885

[4] Virtuoso® UltraSim Simulator User Guide
version 6.1, November 2006, Cadence
Design Systems Inc.

[5] Virtuoso® Circuit Simulator User Guide
version 6.1, June 2006, Cadence Design
Systems Inc.

[6] “SKILL Language Reference”, Cadence
Design Systems, June 2004

[7] “SKILL Language User Guide”, Cadence
Design Systems, June 2004

[8] Virtuoso® Analog Design Environment
SKILL Reference, 2007, Cadence Design
Systems Inc.

	Abstract
	Introduction
	Outline

	Project Development Flow
	Validation Problem
	Known design cycle problems
	Design reuse
	Electro-Static Discharge
	Operating Region
	Hot Carrier Injection

	Operating Conditions

	Integration of SDF Flow
	SDF Setup
	Integration with ADE
	Simulator support
	Verilog support
	Design Hierarchy support
	Simulation types
	Speed Considerations, Filter Options

	Running the engine
	Multiple Setups

	SDF Alarm Editor
	Alarm Expressions Generation
	Complex Rules
	An example of a complex alarm - HCI
	Alarm Expression syntax
	An Example Circuit.
	SDF Alarm Developer Support

	Result Browser
	Violation Debugging
	Filters
	Alarm Details

	SDF Tool Extra Freatures
	Notifications
	Components of the SDF

	Summary

	Bibliography

