

Presented at

AMS Designer Migration, Usability, and
Performance Improvements

Cadence Design Systems
Indu Jain, Tina Najibi, Lei Song, Junwei Hou,

Vijay Setia, Poonam Singhal

AMS Designer from SpectreVerilog: Migration and Usability Improvements

Indu Jain Tina Najibi Lei Song Junwei Hou Vijay Setia Poonam Singhal

ABSTRACT

Virtuoso ® AMS Designer (AMSD) contains a
wide breadth of state of the art features
exceeding those of other solutions such as
SpectreVerilog. In spite of this, many customers
continue to use SpectreVerilog, as the migration
path from SpectreVerilog to AMSD contains a
number of barriers and ease of use issues. This
paper will discuss the solutions to barriers such
as PDK conversion, design modifications and
verilog text usage. Additionally, this session will
present performance gains as well as usability
and debugability improvements. The
introduction of a new netlister in the AMSD flow
(the OSS netlister) and a new simulator flow
makes these solutions possible. Additionally
there have been key performance improvements
in the AMSD simulator itself. The final section
of the paper will walk the participants through
the greatly simplified migration process and will
present the specific performance improvements
compared to SpectreVerilog. This new
methodology will enable customers to quickly
move to the feature and language rich AMSD
with minimal effort, thereby greatly increasing
designer productivity. Depending on a number of
factors, defined in the paper, the migration to
AMSD can be cut down from a month to less
than a day. Designer productivity is further
bolstered by the improvements in usability,
debugability and performance. All of these will
be presented in the paper along with a
performance comparison.

INTRODUCTION

SpectreVerilog has been widely used since the
early 1990s and for the most part, it performs the
tasks an Analog designer needs. However,
SpectreVerilog is starting to run out of steam.
SpectreVerilog does not support the new
languages such as Verilog-AMS and VHDL-
AMS and does not support key functionality
such as bi-directional ports. Verilog-XL does
not support the latest Verilog 2001 standard,

which is becoming critical as more and more
digital IP adheres to that standard. Furthermore,
whereas in the 90s almost all mixed-signal
design was created by Analog designers in the
Virtuoso ® Analog Design Environment (ADE),
today an increasing number of digital designers
and verification engineers are required to run
mixed-signal full chip simulations on the
command line. This is an area where
SpectreVerilog is rarely, if ever, used and in fact
was not created to meet this need.

AMS Designer (AMSD), on the other hand, was
created to meet the demands of full chip
simulations on the command line as well as the
demands of Analog designers in ADE. AMSD is
a feature and language rich simulator, built on
the NC technology using the latest language
standards.

So why are some customers still using
SpectreVerilog and not the acknowledged better
solution, AMSD? There are a number of
migration barriers that makes it difficult for a
designer to migrate to AMSD. This paper will
walk through the issues and solutions. The paper
will also discuss another important topic –
usability and debugability and how these issues
are solved. In the final section an example will
be presented using SpectreVerilog and then
AMSD, demonstrating the greatly simplified
path to using AMSD.

PDK ISSUES

The first task a new AMSD user faces is PDK
conversion. AMSD’s cell based netlister
(amsdirect) requires that specific AMSD
information (ams simInfos and ams specific
netlist procedures) be created in the PDK. A
conversion toolbox is available to convert the
spectre views in a PDK to ams simInfos. For the
most part this tool works fine, although there
could be cases that require manual intervention.
All spectre-specific netlist procedures need to be
manually rewritten for AMSD. This can take
time, especially if the original author of the
spectre netlist procedures is no longer available.

Debugging the ams simInfos and netlist
procedures can also be time consuming,
especially if the issue is not discovered until the
elaborator or simulator either fails or gets
incorrect results. Once the ams simInfos and
netlist procedures have been added and
debugged, the designer is ready to use AMSD.
However, the amount of time to complete the
PDK conversion can often take days to rarely
months depending on a number of factors
ranging from the number of custom netlist
procedures that need to be written to something
as simple as lack of write access to the PDK.
The PDK conversion step can therefore be a
migration barrier for some customers.

To address this issue, an OSS netlister for
AMSD was created. The OSS netlister uses the
standard spectre views and netlist procedures and
is the same netlister used for Virtuoso ® Spectre
® Circuit Simulator, Virtuoso ® UltraSim Full-
chip Simulator or SpectreVerilog.. If the PDK
works for Spectre or SpectreVerilog, it will work
for AMS. The OSS netlister completely
eliminates the PDK conversion step thereby
eliminating much of the initial setup and debug
time.

LIBRARY SETUP ISSUES

The AMSD cell based netlister creates the netlist
for each cell within the 5X library structure.
Often, the library is read only and the designer
can not write into it. This can be resolved by
using temporary (explicit TMP, AllLibs, implicit
TMP) directories. Using explicit TMP or
AllLibs requires modification of the cds.lib file
and is another step needed for AMS that is not
needed for SpectreVerilog.

The OSS netlister does not write into the library,
instead the netlist is written as one file in the
netlist directory, and therefore does not need
TMP directories of any kind. This results in one
less minor setup step.

NETLISTING DIFFERENCES

In addition to PDK conversion and minor
changes to the cds.lib to account for TMP
directories, there are a few netlisting differences
that the designer may need to resolve when using
the cell based netlister for AMSD. The first
difference is the config itself. A designer needs
to create a new config for AMSD, as the

SpectreVerilog config will not work for AMSD
with the cell based netlister. This issue is solved
with OSS, as the same SpectreVerilog config
works for AMSD without requiring any changes.

A second difference is in the netlisted line itself.
The Spectre netlister ignores the CDF parameter
type. Regardless of whether a parameter type is
string or float, it is printed as a number without
quotes. The AMSD cell based netlister prints
the values according to the CDF parameter type.
Floats are printed without quotes and strings are
printed with quotes. This presents another
migration issue as many CDF parameter types
are strings, which works for Spectre, but then
fails for AMS, as the cell based netlister prints
these numbers in quotes. This problem has two
issues. The first issue is the fact that there may
be no warning when this happens. The AMSD
simulator can take the value of the quoted string
to be the parameter value. For example,
depending on how it is used, a quoted zero (“0”)
has the value of 560. So the AMSD simulator
could use the value of 560 when the designer
intended the value to be 0. Depending on where
that value is used, this can result in hard to
debug, incorrect results. The second issue is the
task of correcting all the parameter types once
the problem is discovered. This problem is fixed
with the OSS netlister, in that it will not place
quotes around numbers, ignoring the CDF
parameter type, as does the Spectre netlister.

The goal of the OSS netlister is to ensure that the
same PDK, cds.lib, config, CDF and design that
works for Spectre or SpectreVerilog will work
for AMS without any design or library changes.

INCLUDING VERILOG

Including Verilog text libraries or directories is
another area that makes it difficult to migrate to
AMSD. Verilog is included in the
SpectreVerilog flow using the library file (-v)
and library directory (-y) options. This works
fine with Verilog-XL, but does not work
efficiently with the ncvlog, ncelab and ncsim (3-
step) flow. There are several ways in which text
can be included in the 3-step flow, but these
differ with how text is included in the
SpectreVerilog flow.

This problem is solved with the integration of the
NC-Verilog ® Simulator (1 step) that works with

the OSS netlister. Ncverilog uses the –y/-v
options as does SpectreVerilog.

DEBUGGING

When everything works, it usually does not
matter where the files are located or what format
they are in. It doesn’t matter if there is one netlist
file or hundreds of netlist files. However, when
there is an problem, and the designer feels he
needs to look at the netlist file to debug that
problem, these factors all become important.

With the cell based netlister, the actual netlists
(one netlist per cell) (vams files) are created
within the lib/cell/view structure itself. If
something goes wrong, there is no ‘one place’ to
check the netlist file. This is somewhat made
easier in ADE with the fact that all these separate
netlist files are concatenated into one file –
however, this is not the file that is actually
simulated and it may contain name clashes
making it a little harder to go through if there is
an issue.

With the OSS netlister, the netlist is created in
essentially one main file in the netlist directory.
(VerilogA files are included via ahdl_include,
similar to Spectre, and VHDL files are in a
separate file in the netlist directory as well.)
This makes debugging from files almost as
simple as it is for Spectre – as there is essentially
one place to look for issues.

The file that can be used to re-run the simulation
on the command line (runSimulation) is also
considerably simpler, with just one NC-Verilog
command followed by the command line
arguments. This makes it much easier to see
what is used in a given simulation, as well as
makes it easier to run from the command line. It
is now considerably simpler to just ‘vi’ the
netlist.vams file, make a simple change, and
rerun the simulation on the command line in
order to quickly try out a change or a fix or hand
off the design to a designer who will run on the
command line (digital, verification).

ERROR MESSAGES

In addition to an easier way to view the netlist
file and rerun the simulation, error messages are
an important aspect of debugability. There are
several areas of improvement related to error
messages.

First, there is a concentrated effort within the
AMSD simulator itself to improve error
messages to more clearly explain the issue and
what can be done to fix it. Second, ADE now
contains an ‘Error Explanation’ GUI. This GUI
will provide additional information for most
error mnemonics. For a group of mnemonics
more information for an ADE designer is
presented followed by the ‘nchelp’ output. For
other mnemonics, the ‘nchelp’ output is
provided. Along the same lines, another benefit
of the OSS netlister is the fact that since it is the
same netlister that is used for SpectreVerilog, the
messages that it prints should be familiar.

PERFORMANCE
IMPROVEMENTS

AMSD uses Verilog-AMS connect modules for
more flexible and accurate analog-digital
interface modeling. The Verilog-AMS connect
modules in previous AMSD releases are often
slower than the SpectreVerilog a2d and d2a
built-in devices. This usually affects high level
designs that have a relatively high number of
A/D interface elements, and the analog models
are mainly in Verilog-A. In such worst cases
AMSD could be 3X slower than SpectreVerilog.

AMSD is now enhanced with the following
features for better performance:

1. Fast cross: This approach reduces
unnecessary analog time steps thereby
speeding up the whole simulation.

2. C-interface Verilog-AMS connect
modules: In AMSD, C-interface built-
in functions are automatically
generated from the Verilog-AMS
connect module description. This
approach retains the advantage of
Verilog-AMS modeling of connect
modules and matches the speed of
build-in devices.

3. Verilog-A Compiled-C model: The
Verilog-A modules in the ahdl_include
flow are compiled into C code devices
by the Verilog-A model compiler in
AMSD as well as in Spectre and
UltraSim, and this greatly improves the
speed of Verilog-A model computation
in simulation.

The fast cross approach achieves about a 3X
speed up in some AMS customer test cases in the

AMS-Ultra flow when bi-directional connect
modules are used and when there are high
frequency signals at the D/A boundary. For the
worst case examples where AMSD was slower
by 3X, now AMSD is on par with or faster than
SpectreVerilog.

TESTCASE EXAMPLE

In order to demonstrate how easy it is to run a
previous mixed-signal design (run in
UltraSimVerilog) in AMSD, an example PLL
will be used in this paper to show the necessary
migration steps. This PLL has a 25 M input
signal and a 160 M output signal. The design has
305 mosfets, 97 resistors, 35 capacitors and more
than 30 behavioral modules. (Fig. 1)

Fig. 1 Top Testbench

Figure 2 shows more details about the PLL
block: the PLL_160MHZ_PDIV(I23) outputs a
5 MHz reference signal for the loop.
PLL_160MHZ_MDIV(I24) outputs a 160 MHz
signal and a 5 MHz feedback signal for
PLL_FPD. When the two PD input signals are
out-of-sync, the PD generates corrective pulses
(UP, DN) to adjust the charge pump output
voltages (vCNTL), which controls the frequency
of the VCO. Whenever the PLL is locked, the
FBCLK and 5MHZ_CLK signals are in phase
and the VCO control signals v(vCNTL) are
stable.

Fig. 2 PLL Block

To run this example, IC611ISR,
MMSIM61USR1 and IUS61u1 will be used.
The UltraSim solver will be used
(UltraSimVerilog and AMS/Ultra), however, the
same flow applies to the Spectre solver.

1. UltraSimVerilog Run

This testcase runs in UltraSimVerilog, and the
config view is generated from the
UltraSimVerilog template (Fig. 3).

Fig. 3 Hierarchy Editor

Interface Element (IE) setup is quite simple for
UltraSimVerilog because UltraSimVerilog only
supports signal direction connect modules.
Figure 4 shows the IE setup form for a
UltraSimVerilog simulation. The designer only
needs to set parameters for the a2d and d2a IEs.

Fig. 4 IE Setup Form

Figure 5 shows the ADE (ADE-L) window. Note
the reference frequency is defined as a design
variable.

Fig. 5 ADE-L

Figure 6 and Figure 7 are the Analog Option and
Digital Option forms. For the UltraSimVerilog
run, sim_mode=ms, speed=3 and analog=2 are
defined to achieve best performance and also
accurate simulation result. Note that in the
Digital Option form, text verilog files are
included using the –v option.

Fig. 6 Analog Option Form

Fig. 7 Digital Option Form

Click on the Netlist and Run button to kick off
the simulation.

After the simulation is done, the waveforms of
the selected signals will pop up. (Fig. 8).

Fig. 8 UltraSimVerilog Simulation Results

2. AMSD Run

As already discussed in this paper, AMSD is a
very powerful mixed-signal simulation tool but
there are some barriers for designers to migrate
to AMSD. The OSS netlister and NC-Verilog
flow is designed to work through these barriers.
Next we will run the same case in AMSD with
OSS and NC-Verilog. It will be shown that only
a few setup steps will be required to run this case
in AMSD.

Since OSS uses the spectre view for netlisting,
there is no work needed to modify the PDK and
the same config will be used. (Fig. 3). No CDF
or design changes are needed.

AMSD has one simulator kernel but includes the
choice of one of two analog solvers: Spectre or
UltraSim. They are designed for different type of
usage. After choosing AMS as the simulator in
ADE, set the Analog solver to UltraSim. (Fig. 9).

Fig. 9 Analog Solver Form

After selecting the analog solver, specify the
OSS Netlister and NC-Verilog flow on the Run
Options form (Fig 10). This will allow the run of
the UltraSimVerilog testcase in AMSD while
taking advantage of the advanced features of
AMSD.

Fig. 10 Choose OSS + NC-Verilog

Setup and configuration of connect rules is
different between AMSD and UltraSimVerilog.
AMSD uses Verilog-AMS to describe the
connect rules which support single direction and
bi-direction interface elements. AMSD connect
rules are more powerful allowing modelers and
designers to characterize the analog-digital
interface accurately in standard Verilog-AMS.
They also support advanced features like driver-
receiver segregation for the automatic calculation
of a delay on a digital signal path due to analog
loading effects.

During the migration from UltraSimVerilog to
AMSD the designer needs to set the appropriate
connect rule. There are several built-in connect
rules that the user can choose from (Fig. 11), and

then customize the threshold values (Fig. 12) to
fit the design. Various templates for connect
rules for different voltages are provided along
with an easy way to use or modified them for
different designs. In this example,
connectLib_ConnRules_3V_basic is modified to
a 2.5V voltage supply to fit the design. In
addition to built-in connect rules, the user can
also create his own connect rule files for the
simulation.

Fig. 11 Select Connect Rule

Fig. 12 Customize the Built-in CR

The last modification is to set appropriate
options in the AMSD option form. As with the
UltraSimVerilog simulation, the same –v feature
is used to include the text verilog modules (Fig.
13).

Fig. 13 NC-Verilog Option Form

The only difference between the
UltraSimVerilog and AMS/Ultra setup in this
example is the interface elements versus connect
rules setup. In a future release, an interface
element like GUI will be available, so that it will
appear that the same simple setup can also be
used in AMSD. The Connect Rules form will
continue to exist for those users who want to
take full advantage of the power of AMSD. After
the setup, the simulation is run. The results are
shown in Figure 14 and are identical to the
UltraSimVerilog results (Fig. 8).

Fig. 14 AMSD Simulation Results

UltraSimVerilog uses two simulators (UltraSim
and Verilog-XL) that communicate to each other
through an IPC channel. AMSD uses only one

kernel and all the new features that were
mentioned previously to improve performance
and capacity. In fact for this case, from Table 1
below we can see AMS/Ultra can save up to
22.42% simulation time compared to
UltraSimVerilog.

 UltraSim
Verilog

AMSD
(UltraSim) change

run
time 598.06s 463.95s 22.42%

Table 1 Performance Comparison

FUTURE WORK

In addition to the work already completed, there
are a few more areas where usability and ease of
use can be improved to help ease the migration
to AMSD.

In the current solution, mixed-signal options are
stored in a file called props.cfg that exists within
the config. The fact that this file is in some other
location (the config) makes it again harder to
debug issues, as everything that influences the
simulation is not in the same place. In a future
release, the information stored in the props.cfg
file will be included within the analog control
file in the netlist directory.

Interface elements, are less powerful, but easier
to setup and understand than disciplines and
connect rules. Therefore a simplified IE-like
GUI will be created for the users who are new to
AMS. It will resemble the very simple
UltraSimVerilog a2d/d2a GUI. The current
disciplines and connect rules GUI will continue
to exist as they are very useful for the power
users.

While the OSS netlister contains the features
required for SpectreVerilog migration, it does
not contain all the features of the cell based
netlister. For example, text used within dfII
needs to be imported using Verilog-In. These
types of issues (feature compatibility with the
cell based netlister) are planned to be resolved in
future releases.

Other specific projects related to performance
and usability are also planned.

SUMMARY

The OSS netlister and NC-Verilog integration
provides a smooth migration path from
SpectreVerilog. No PDK changes are needed
and the same config, cds.lib and design works
without changes. Much needed features such as
the –y/-v Verilog library and file text inclusion
work as they did for SpectreVerilog.

AMSD performance has been improved with the
fast cross and c-interface for connect modules,
and the Verilog-A compile-C features. For those
worst cases where AMSD was 3X slower,
AMSD is now on par with or faster than
SpectreVerilog.

AMSD provides many state of the art advanced
features and languages over that offered by
SpectreVerilog. It supports Verilog-2001 and
System-Verilog, etc. It provides capabilities of
mixed-signal behavioral modeling in Verilog-
AMS and VHDL-AMS. It also supports high
performance modeling features such as discrete
time real number modeling and its direct
conversion with analog real signals. Now with
the migration barriers lifted, this is all more
easily within reach

