CDNLIve! Paper — Signal Integrity (Sl)
for Dual Data Rate (DDR) Interface

Prithi Ramakrishnan
IDEN Subscriber Group
Plantation, Fl

Presented at

cadence designer network

cidin]
LI

Silicon Valley 2007

Introduction

The need for Signal Integrity (SI) analysis for printed circuit board (PCB) design has become essential to ensure
first time success of high-speed, high-density digital designs. This paper will cover the usage of Cadence’s
Allegro PCB Sl tool for the design of a dual data rate (DDR) memory interface in one of Motorola’s products.
Specifically, this paper will describe the following key phases of the high-speed design process:

Design set-up

Pre-route Sl analysis
Constraint-driven routing
Post-route Sl analysis

DDR interfaces, being source synchronous in nature, feature skew as the fundamental parameter to manage in
order to meet setup and hold timing margins. A brief overview of source synchronous signaling and its
challenges is also presented to provide context.

Project Background

This paper is based on the design of a DDR interface in an iDEN Subscriber Group phone that uses the mobile
Linux Java platform. The phone is currently in the final stages of system and factory testing, and is due to be
released in the market at the end of August 2007 for Nextel international customers. The phone has a dual-core
custom processor with an application processor (ARM 11) and a baseband processor (StarCore) running at
400MHz and 208MHz respectively. The processor has a NAND and DDR controller, both supporting 16-bit
interfaces. The memory device used is a multi-chip package (MCP) with stacked NAND (512Mb) and DDR
(512Mb) parts. The NAND device is run at 22MHz and the DDR at 133MHz. The interface had to be
supported over several memory vendors, and consequently had to account for the difference in timing margins,
input capacitances, and buffer drive strengths between different dies and packages.

As customer preference for smaller and thinner phones grows, the design and placement of critical components
and modules has become more challenging. In addition to incorporating various sections such as Radio
Frequency (RF), Power Management, DC, Audio, Digital ICs, and sub-circuits of these modules, design
engineers must simultaneously satisfy the rigid placement requirements for components such as speakers,
antennas, displays, and cameras. As such, there are very few options and little flexibility in terms of placement
of the components. This problem was further accentuated by the fact that several layers of the 10 layer board
(3-4-3 structure with one ground plane and no power planes) were reserved for power, audio, and other high
frequency (RF) nets, leaving engineers with few layers to choose from for digital circuitry.

Figure 1. Memory Interface routes

With the DDR interface data switching at 266MHz, we had very tight margins — 600ps for data/DQS lines,
280ps for the address lines, and 180ps for control lines. However, with the NAND interface we had larger
margins that were on the order of a few tens of nanoseconds. In these situations, choosing a higher drive
strength and using terminators of appropriate values (to meet rise times and avoid overshoot/undershoot) has
become a common practice in DDR designs. However, due to the lack of space on the board, we were not in a
position to use terminators. Therefore, we used programmable buffers on our processor, and with the help of
Cadence Sl tools were able to fine-tune the design.

Our group migrated from using Mentor Graphics to Cadence Sl during this project. As one might expect, this
made the task of designing a high speed DDR interface even more challenging. To help overcome this, we
worked extensively with Cadence Services, where Ken Willis supported us on the Sl portion of the design.

The Source Synchronous Design Challenge

Before discussing the specifics of the Motorola DDR interface, a brief overview of source synchronous
signaling is provided here for context. Historically, digital interfaces have utilized “common clock” signaling,
as shown in the figure below.

Clock
Driver
TCO

A 4

Interconnect Delay
DO DO
D1 D1
D2 D2
Drive Receive

Figure 2. Common clock design

With common clock interfaces, the clock signal is provided to the driving and receiving components from an
external component. The magnitude of the driver’s Tco (time from clock to output valid) and the interconnect
delay between the driving and receiving components becomes a limiting factor in the timing of the interface.
From a practical standpoint, it becomes increasingly challenging to implement interfaces of this type above
several hundred megahertz.

In order to accommodate requirements for faster data rates, source synchronous signaling emerged as the new
paradigm. This is illustrated in the figure below.

Strobe b

— Oo 0O
— Oo 0O

Drive Receive

Figure 3. Source synchronous design.

In a source synchronous interface, the “clock” is provided locally by the driving component, and is generally
called a “strobe” signal. The relationship between the strobe and its associated data bits is known as it leaves the
driving component, with setup and hold margins pre-established as the signals are put onto the bus.

v

<
<«
>

|
!

Tsetup Thold
Figure 4. Timing diagram.

This essentially takes the driver’s Tco as well as the magnitude of the interconnect delay between the driving
and receiving chip out of the timing equation altogether. The timing challenge then becomes to manage the
skew between the data and strobe signals such that the setup and hold requirements at the receiving end are still
met.

Technical Approach
The general technical approach used in this project can be broken down into the following key phases of the
high-speed design process:

Design set-up

Pre-route Sl analysis
Constraint-driven routing
Post-route Sl analysis

First the PCB design database is set up to enable analysis with Allegro PCB SI. Before routing is performed,
initial trade-offs are examined at the placement stage, and constraints are captured to facilitate constraint-driven
routing. When routing is completed, detailed analysis is performed, interconnect delays extracted, and
setup/hold margins are computed. Any adjustments required are fed back to the layout designer, and the post-
route analysis is repeated. This basic process is diagrammed below.

&80 |4 ("1)

Setup

W Pre-Route

Analysis

Routing

A
Post-Route
Analysis

no yes

Figure 5. Sl design process flow.

Detail on the major design phases are provided in the subsequent sections.

Design Setup
By virtue of its direct integration with the Allegro PCB layout database, Allegro Sl analysis requires that the

design be set up to facilitate the automated extraction, circuit building, netlisting, simulation, and analysis that it
performs. This essentially means adding the needed intelligence to the physical Allegro database that allows the
tool to do its job. This setup involves the following:

Cross section

DC nets

Device definitions

SI models

By definition, SI analysis involves the modeling of interconnect parasitics. In order to do this accurately, the
tool needs to know the properties and characteristics of the materials used in the PCB stack-up. This
information is defined in the Cross Section form, as shown below.

Layout Cross Section H =]

Crozs Section |
Subclazs Mame Type Thickness | Dielectic Loss Shield | 'width | Impedance| Coupling Type | Spacing| Diff20
[kAbdA] Constant Tangent [hARA] [ohm] [hBA] [okim]

1 SURFACE -

2 DIELECTRIC 0.019] 3300000 0.02

3 TOF CONDUCTOR - 0.037| 3300000 0 0,100 11611 MNOME b e

4 DIELECTRIC d 0.07] 3.900000 0.m

5 LAYER_2 COMDUCTOR - 0.037] 3900000 0 0100 99.827 MNOME -l e e

5 DIELECTRIC d 0.07] 3.900000 0.m

7 LAYER_3 COMDUCTOR - 0.037] 3900000 0 0100 87.123] MNOME -l e e

g DIELECTRIC © 0.07] 3.900000 0.m

g LAYER_4 COMDUCTOR - 0.017] 3900000 0 0100 73.511 NONE - e e
10 DIELECTRIC © 0.1] 4.400000 0.m

11 LAYER_S COMDUCTOR - 0.017] 4.200000 0 0100 56.951 NONE - e e
12 DIELECTRIC © 0.1] 4.200000 0.m

13 LAYER_B - 0.017] 4.200000 0 [

14 DIELECTRIC © 0.1] 4.400000 0.m

15 LAYER_7 COMDUCTOR - 0.017] 3.900000 0 0.100 57168 EDGE -| 0100 88758
16 DIELECTRIC © 0.08] 3.900000 0.m -
: D

Total Thickness: Initialize Conductive Layer Dielectric: Dielectric Constant: Loss Tangent: [v Differential Mode

I[Custom Yalues | j | |D v Autosolve Made

ak. | Apply | Cancel | Refresh Materials -» | Help |

It is crucial to get this data correct, as it will be fed to the 2D field solver to model interconnect parasitics during
the extraction process. The best source for this detailed information is generally from the PCB fabricator. Layer
thickness, dielectric constant, and loss tangent are all critical parameters for the cross section definition.

In order for circuit extraction to be done properly, the tool needs to know about DC nets in the design, and what
their associated voltage levels are. This accomplishes two main things in the setup; a) enables voltage sources to
be injected properly in the extracted circuits, and b) avoids having the tool needlessly trying to extract
extremely large DC nets, and hanging up the analysis process. Take the example of a parallel resistor
termination. Allegro SI will encounter the resistor as it walks the signal net to be extracted. The tool will look
up the SI model assigned to this resistor, splice in the resistor subcircuit, and continue extracting whatever is on
the other side of the resistor. If this is a large DC net (ex. VTT), the desire is for the tool to put a voltage source
at the 2" resistor pin, complete the circuit, and simulate the signal. To do this properly, the tool relies on a
VOLTAGE property to exist on the DC net, with a numeric value defined. In the absence of the VOLTAGE
property, the tool will simply continue to extract, which in the case of a 2000 pin ground net, would be a large
waste of computational time.

To identify DC nets, clicking “Logic > Identify DC Nets” will spawn the following form.

Identify DC Mets

= 1o) x]

FILT _BATTI
FILT BFLIS

HT S5T Wil P
4

Hone
Hone

HALL_EFFECT_SWI%CH Hone

]H MA Hrmne

Het filter: I*
Het VYoltage
EMU_ViC Hone ~Het selected

E_FUSE_REGULATOR_CONTROL HDnE:I

sl

Hame : GHD

HDltagE:ID W
Delete |

Fin= in net

C1001.
c1003.

Voltage =ource pins

C1006.
c1o07 .
C1o08.
c1009.
1010,
C1012.

|

e e T =

i
Apply |

Cancel | Help |

All DC nets in the design should be identified, to fully optimize Sl analysis. These can be identified up front in
the schematic, as well as in the physical layout as shown here.

The next step in the design set-up process is to verify that the logical “CLASS” and “PINUSE” attributes for the
devices in the design are defined appropriately. These attributes originate from the schematic symbol libraries
and are passed into the Allegro physical layout environment. In an ideal methodology, these libraries would be
defined properly and would require no edits. However, this is not always the case, and as these attributes have a
bearing on the behavior of the Sl analysis, it is worth mention here.

The “CLASS” attribute is used to distinguish between different types of components in the PCB design. Legal
values of “CLASS” are listed below:

e |C - This is used for digital integrated circuits, which contain drivers and/or receivers. These types of
components are modeled with an SI model of the type “lbisDevice”. When the automated circuit
building algorithms in Allegro PCB SI encounter a model of this type, it looks up the buffer model
(driver, receiver, or bidirectional) assigned to the pin in question, and inserts it into the circuit along with
its associated package parasitics.

e |0 - A component with CLASS =10 is intended for components that connect off-card to other physical
layout designs, such as connectors. These components can be associated with a “DesignLink”, which
provides netlisting to other physical designs and enables multi-board Sl analysis. So circuit building
algorithms expect to jump from a device of CLASS=10 to a similar device on a different physical
layout.

e DISCRETE - For devices of this class, circuit building algorithms expect to traverse “through” the
component, from one pin to another, inserting a subcircuit in-between. A good example of this would be
a series resistor.

If CLASS attributes are not set up properly in the source schematic libraries, they can be edited in the physical
layout database for analysis by using the form shown below, launched from the “Logic > Parts List” menu pick.

=
rPart Selection Area

RefDes Filter: IE* Device Filter: I* Sort By: Device (Refdes

Oty Device Value Tol Package Refdes

001 061395ZRGE6 0 RES0402-HT EB56

ooz Ye05821Z02 INDOBOS-HT E703.E901

025 FEE5Z6BE0L TND1005-HT E331-332 E601.E659 E701-702 EV04.E771

SPARK GAFD B35H0 2 SPARK GAFPD ES01,E801, E804—805
001 TPSHO_S0 TPSHO_SCAT EMU_CHRG_FWE
0oz TPSH1_00 TPSH1CAT_H EARE_MIN. EAE_PLUS

4 |

rBrowsers— | [Part Hodification Area

Schematic Components Qty: nod4 Pin Count: |2 PR
Physical Devices Refdes: [ES01.ES01.ES04-805 Value: | —
Physical Packages Device: [SPARK_GAF0_635E0_2 Tolerance: | —
SI Components Cla=z=s: - Package: ISPARK_GAPD_S-’iXEI_ZE
[1C]

10
o | e— e | |

The “PINUSE” attribute also impacts the behavior of the Sl analysis, as the tool uses this information to
determine if a pin is a driver, receiver, bidirectional, or passive pin. As with the “CLASS” attribute, in an ideal
methodology this is defined properly in the schematic libraries, and no editing is required in physical layout.

“PINUSE” can be modified in two main ways for SI purposes. The most straightforward way is to ensure that
the 10Cell models used in the IbisDevice models assigned to components have the appropriate Model Type for
the signals they are associated to. When SI models are assigned to components, the tool will check for conflicts
between the model and the PINUSE it finds for the component in the design, and will use the SI model to
automatically override the PINUSE found in the drawing. So if the correct pin types are found in the SI models,
the layout will automatically inherit those settings. For components not explicitly modeled, their PINUSE can
be set using the form shown below, launched from the “Logic > Pin Type” menu pick.

R=IEY

rSelection Area

Component Selection:

Select By: § Het i* Component g 7E25252E01
. E332 7e8L5268E01
Fefde=s Filter: IE* ESO1l SPARE_GAFO_F
: . . Ec0l 7e8L5268E01
Device Filter: [EGSE 0613952RE6
FrREQ FRELZRAFRIN l
Sort: i+ Refdes i Device 4? _Pl_l

rPin Tvpe Assignment

Clear | Clear |

Type Filter: I* ;I Hew FPin Tvpe:
Fefde= . Fin Type Fefde=.Fin
E331.1 THSFEC Howve:

E331 .2 THSFPEC
All —= |
«—— All |

soply | _cancen |

Signal Integrity (SI) models can be assigned using the “Signal Model Assignment” form, shown below.

=]

Dewvices I BondWires | RefDesPins

DevType Valus-Refdes Signal Hodel Source Library

R 5199206K04 TY30009000BMGE CurrentDesign :]

L g 2164 TY90009000BMGEF CurrentDesign

{i] CBB7694113

{i] 7605821702

{i] 76B85268E01

{i] 9175634401

{i] CONTACTZ_ ORD-2FIN

& £ KEYPADZ_1X4_0-2FIN

& £ SPARK_GAPO_635E0_254-2PIN-GOLD . ..

&£ TPSMO_S0 o

-3 TESH1_00 TestPoint CurrentDesign -
« »
Signal Model: iTY‘BDDD‘BDDDBMGF LI Auto Setup |

Create Model. .. | Find Model... | Edit Model,.. |

Aszsignment Map File: Save. . . I Load. . . |

T Include ORIGINAL Hodel Path in Map File

Clear A4l1 Hodel As=ignments |

CE I Cancel I Freferences. . . | Help |

Upon clicking “OK” the selected models will be assigned to the components and saved directly in the layout
database. As mentioned previously, “PINUSE” attributes will be synced up, with the SI models superseding
attributes in the original layout drawing.

Pre-Route SI Analysis

Performing pre-route analysis is a key part of the high-speed design process. Once critical component
placement has been done, Manhattan distances can be used to estimate trace lengths, and can provide a realistic
picture of how routed interconnect will potentially perform.

Before simulations are run for critical signals, the timing of the interface must be well understood. To
accomplish this, we will first sketch timing diagrams for each signal group and then extract a representative
signal for analysis. Next, we will explore Z,, layer assignments, drive strength, route lengths, spacing, and
terminations for these nets.

To sketch the timing diagrams, we first analyze the memory interface. The memory interface consists of both
DDR and NAND signals and has around seventy nets. To simplify the analysis of the interface, we first divide
these nets based on function and then simulate one net from each group. Accordingly, we select one signal
from each of the following groups — clock_ddr, strobe_ddr , data_ddr, control_ddr, address_ddr, control_nand,
and data_nand — for our pre-route simulations.

To understand the timing relations in the interface, we should look at the following operations between the
memory device and the processor — read, write, address write, and control operations. Next, we identify the
nets involved and the clocking reference signal for each of these operations. We then calculate the worst case
slack available from the setup and hold numbers available in the data sheets. In particular, we adopted the
worst case numbers across four different memory vendors, to ensure robustness of the manfactured system in
the field..

1. Read

Memory Strobe Proc

A 4

\ 4

data

Figure 6. Read operation at memory interface.

During the read operation, the memory drives the data and DQS lines. The processor has a delay line (a series
of buffers which can be tapped at different points), which is used to delay the DQS signal so that it samples the
data at quarter of the cycle. The processor also offers programming options that allow us to apply an offset to
the quarter cycle, enabling us to meet our setup and hold times. Hence, the processor self-corrects for
strobe/data skew using this delay line. The granularity of this delay line is 30 ps; that is, each of the buffers of
the delay line contributes 30 ps of delay. The data lines 0-7 are clocked with respect to the DQSO strobe signal,
and the data lines 8-15 are clocked with respect to DQS1. Data and strobe lines should be clustered, with the
matching constraints determined by the write cycle.

2. Write

Proc

strobe

Memory

clk

A 4

A 4

data

-

|
|
|
I
|

hold = 1.7ns S€tup = 0.9ns

X

X

—_—
|

— T

hold = 0.9ns

Figure 7. Write operation at memory interface.

During the write operation, both data and DQS are driven by the processor. Data is latched at both the positive
and the negative edges of the DQS signals. Here again, data bits 0-7 are clocked by DQSO0 and data bits 8-15
are clocked by DQS1. The setup and hold times available as these signals come out of the DDR controller are
1.58ns and 1.7ns respectively and the corresponding times required at the memory to ensure correct operation is
0.9ns. Hence, the slack available for routing is the lesser of 1.58ns — 0.9ns or 1.7ns — 0.9ns, which comes out to
be 0.68ns. This amounts to an allowable ~85mm mismatch between the data lines. In addition, we need to
make sure that length of the DQS lines is around the average of all the data lines. The data mask signals DQMO
and DQML also come into play during the write operation and we should group them along with the respective

data lines.

3. Address bus

Proc Memory
clk

A 4

address

A 4

X XTI X

—— _ ——
Setup = 1.78ns | hold = 4.22 nsetup 1.5ns |
I — 1 | hold =
L I l'1.5ns

Figure 8. Address bus operation at memory interface.

Both address and clock lines are driven by the processor. The address bits 0-12 are clocked by the differential
clock and latched at the positive edge of the clock. The setup and hold times available for these signals from
the DDR controller are 1.78ns and 4.22ns respectively and the corresponding times required at the memory to
ensure correct operation is 1.5ns for both. Hence the worst case slack for routing is 0.28ns and we have to try to
match our signals to meet these numbers. The 0.28ns slack amounts to ~14mm mismatch between the address
lines and the clock.

4. Control lines

Proc Memory
clk

A 4

cntrl

\ 4

! T
! T
XX X[X

= T hotd = = T hold =

Setup = 1.64ns hold = 4.04 Setup o
— —+
' ' | |
! [}

Figure 9. Control lines at memory interface.

The control signals are clocked by the differential clock and latched at the positive edge of the clock. The setup
and hold times coming out of the DDR controller are 1.64ns and 4.04ns respectively. The setup and hold times
required at the memory to ensure correct operation is 1.5ns. Hence, the worst case slack for routing is 0.14ns
and we have to try and match our signals to meet these numbers. The 0.14 ns slack amounts to ~7mm
mismatch between the control lines and the clock.

In addition, CLK to DQS skew is around 600 ps. With regards to the NAND lines, setup and hold numbers are
in the order of tens of ns and hence routing them as short as possible based on their Manhattan lengths would
suffice.

To complete pre-route analysis, SigXplorer must be setup for these tasks:

a. Extract a topology file for single net analysis. To bring up the net in SigXplorer, it is essential that the
models are assigned, as described in Section 2, to each of the drivers, receivers, and components in the
signal path.

b. Set up parameters for extraction and simulate using SigXplorer.

c. Perform measurements using SigWave

The following screenshots of SigXplorer show this process in detail.

Analyze = SI/EMI Sim => Preferences Sets the default
length
for unrouted
transmission
Units | EMI | lines
DevicesModels Interconnecti odels irnulation
r Urrouted Interconnect Models
Percent Mankattan 100
Default Impedance |EDohm
Default Prop YWelocity |1.41 42E+DDBM.-"S\
Default Diff-I mpedance {1005k N\
Default Diff\elociy [1.4142e+008M /5 \

The speed at which the signal
travels in the trace, where C
is 3 x 108 m/s and E,esr IS the
effective dielectric constant
seen in the interconnect

Figure 10. SigXplorer screenshots.

Since at this point none of the nets in the design are routed we need to set the percent Manhattan section for
unrouted interconnect models. We should then select the net, as shown in the next screenshot, for analysis.

Analyze—> SI/EMI Sim > probe

Met Ix LI List of Hets... I Met Broveser... I

~ Mets

SDRAM_CTRL<T4>
SDRAM_CTRL<Z L2164 L
SDRAM_CTRL<3

SDRAM_CTRL< 4>

SDRAKM_CTRL<E>

SDCLE

SDRAKM_CTRL<E>

SOCLE_B

SDRAM_CTRL<T>

SDRAM_CTRL<S:

UNMAMED_EB_512MBMNAMDFLASHS1

SDRAM_CTRL<S>

SR DATA 0

(S DEARM DA T AT
SDRAM_DATac1T >
SDRAM_DATA<1Z2:
SDRAM_DATA<13>
SDRAM_DATA<14>
SDRAM_DATA<1S>
SDRAM_DATA<T>
SDRAM_DAT A2
SDRAM_DAT A3
SDRAM_DAT A< 4>
SDRAKM_DAT A5
SDRAM_DATA<E>

SDRAM_DATACT \ Make sure you check you

ad Hins — Other Pinz—

SDRAM_DATA<S

SDRAM_DATA<S = -
e ?F;> J;I driver and load pins
4 »

Cloze I Feports... I Whaveforms. .. ; Wigw Topologyil Wiewy Geometry I -

N\

SigXplorer

At this point, it is important to check if your driver and receiver pins are set correctly. The net chosen in the
above example is a data net, it is bi-directional, hence it can be driven both by the memory device as well as the
processor. The view topology icon can be clicked to export this net in SigXplorer.

The tool extracts the net along with drivers, receivers and strip lines on various layers of the board. Before you
start the simulation, you must set the stimulus frequency, pulse step offset, and cycle count. This can be set in
the following GUI.

Analyze = Preferences

=10l

Sinulation Hodes | Heasurement Hodes | EMI

Pulse Stimulus | Simulation Paraneters
Measurenent Cycle: 1
Syitching Frequency: 133MHz
Dty Cycle: 0.5
Offeet: o=

Both the memory device al 2 strengths. The buffer model can be

changed to pick up the various arive strenguns tnat are avaiiadie in tne dml models of the devices till we observe
satisfactory waveforms in SigWave.

Set Parameter: length

 Single Yalue

"~ Single Yalue Walue I
i Line
@ L Start Yalue |2.12]
Stop Walue |2.58 bdbd
Count |3
Step Size ID.23MM
r~ kultiple Values
" Multiple Yalues I
Insert Yalue
Name Delete Wl
o CIRCUIT &I
tlineDelayMode length TENED
userRevision 1.0
= BOARD
g Ms1
d1Constant 417778 i
d1LossTangent 0.01 Expression
d1Thickness 0.20 MM " Expression I
d2Constant 3.8283
‘ariables: [MST.d1Constant =d| | Appenddy. |
d2Lo§sTangent 0.011195 I Y d“r‘:"_”fTi’;nFr = ppznd A
d2Thickness 0.23 MM 1 l » et
length ERE [deedt |
traceConductivity 343000 mhoicm
traceLayerMame LAYER_8 ok | Cancel | Help |

traceThickness

0.04 MM

SigXplorer allows you to sweep any of the parameters such as the thickness, length, drive strengths and displays
corresponding settle/switch delays, monotonicity, and glitch tolerance for the corresponding simulation. It also
allows adding components such as resistors and capacitors and let’s us sweep their values. We added a resistor
in series with our clock in or to get rid of ringing in the rising edge. The tool let us determine what values were
suitable for this resistor. As shown in the next figure the waveform corresponding to our simulation can be

brought up on SigWave.

7 Untitled - SigWawve =10 x|

File Edit Zoom Graph Tools View Help |
GH]E|RRQ&RRRQ| [t -+ |[FEERE |2 2 |

7 55 5 7 BT ||awe um e ew o e e T[S R R R

----- Eiererno G2 BOARD U2164 L8) BOARD U2164 L8 Pulse Typ Re

§|

Grid Qutline
EH Legend casel - Thu Mar 08 153444 2007

£33 FFT Mode Display 2 ""I""|""I""|""I""'"'I""|""I""|""I""|""I'"'|""I""|""I""|“"I""|""I'"'|""I""

E Bus Mode Display L J— _— =

. £33 Eye Diagram Mode [F —

E1-[R] Waveform Library L
E1-(FR) sim1: (BOARD U216

E@ Simulation Parar R e B S e e S S S e e s I S B S e e e S S S S S S S e o]

-# Case: case | F 1 1.260V
-f [Case Desc: Default Settipgs|= +
- & Fast Typical ul

Stimulus: F L]
- & Simulation T e 1 At S
- & SimMName: = C 540,000 mV]
- &, Simulation F o N B
-2 Time Simula: 0 O k__ _ B

B~ BOARD U800 Pe
- @ Pin Propertit
B2 Vih
E- 2 vil
=45} BOARD US00 PE
@ Pin Properti

E-AE) vih -1 Lonlidvdun it

Vaoltage [V]

olelol 1 1 18l 18])
OOO...0.0ﬂ

| L}

.I....l....I....|....I....|....I....|....I....|....I....|....I....|....I....|....I....:
T

=5 0 5 6 7 8 o 10 11 12
-1 BOARD U2164 L i
-2} Pin Propertii P
-4 Vmeas rj-é?fglllve r
=-65) BOARD U2164 | ——— BOARD U800 P6 BOARD U2164 L8
K - o
Ready X | T v

You can observe the rise/fall times, look for noise margins, overshoot/undershoot of the receiver waveform.

The constraints we develop in the pre-route simulation will be used by the routing tool to ensure correct first
time results. This leads to our next section; Constraint-driven routing.

Constraint-driven routing

Once pre-route analysis has been done, and trade-offs have been examined, signal wiring constraints need to be
developed to drive the constraint-driven routing process. With the DDR interface being point-to-point between
the processor and memory, we translated our timing requirements into length constraints to make the routing as
straightforward as possible. We also assigned layer constraints for our DDR signals. Both the length and the
layer constraints can be directly applied to the constraint manager before the routing process starts.

For our particular design, we determined the following layer assignments from the results of the pre-route
simulations, taking into account the layer’s characteristic impedance per our stack-up:

Layer 6 - ground plane
Layer 7 - clock, add, ctrl
Layer 8 - data, strobe
Layer 9 - NAND interface

Before we set up our design for auto-routing, we routed the differential clock lines manually on the layers
closest to the ground plane. For the rest of the nets, the layer constraints can be created as shown in the
following snapshots of the constraint manager.

Electrical Constraint Set > Wiring
Right click on board - Create new constraint
Name the constraint (ex. ECSET1)

£ Allegro Constraint Manager {connected to Allegro PCB SI XL 15.7) - [Electrical Constraint Sets: Routing [board]]

= File Edit Objects Column View Anpalyze Audit Tools Window Help

= o|5| « || =(m(E| =| @) v[%[%| 2|
I

Copy the selection and put it on the Clipboard

Define LayerSets.
0K I

Cancel |

Help

6

]

T
Topology Stuby . Max
@ Reflection/Ed: Objects Verify Length I.|Cax\.:r Exposed Max Parallel —
M ing Mode oul Laye!

?ﬂiﬁfw SSN S Schedule| m = s

a . [board

B Switch/Settls [

5 Fouing EcseTd = P
E wiring
EH Impedance Available Laper Sels ¥ Auto mave Assigned Laver Sets
BEE fzonl N
| b Wiring Min/Max Prop:

We choose one layer with horizontal orientation and one with vertical for each of our layer sets. You can form
groups from the available layer sets and create a new constraint. This constraint, which we define as ECSET]1,
can be easily read back in the constraint manager and applied to the relevant net group, as shown in the
following snapshot.

@ﬁalleg ro Constraint Manager (connected to Allegro PCB SI XL 15.7) - [Nets: Routing [board]]
= File Edit Objects Column View Anpalyze Audit Tools Window Help

w|E|&| #|m=|2] 8 [aneo

= eS| |2 EEE =| B /%[2

board |
i ?% lecg;;:;ﬁi?:;;? == ; Reference Total Etch Length Total Etch Length Ur
B Reflection/Edc Objects dElectrical Min | Actual | Margin Max | Actual | Margin
BB talksssn 1 EE mm mm mm mm mm mm
= Timing [=] board -11.999 0.000
- LEH switch/Settie [EIMHARDICT
E‘E Fiouting NAND_CTL<0> 34300
"B wirng NAND_CTL<1> 34.300
BB Ipedance NAND_CTL<2> 34.300
EEH Min/Max Prop: NAND_CTL=3> 34.300
B Total Etch Len NAND_CTL<4> g— 34.300
B Differential Pai NAND_CTL <5> N\ 34.300
- EH Relative Propa NAND_CTL<6> 34.300
Il Constraints] SDRAM_ADD 12 -11.899 18.000
@ Signal Integrity SDRAM_ADD<0> ECSET1 =11, 17.384 |5.385 18.001 17.384
EEE UserDiefined SDRAM_ADD<1> 14599 [13.647 |1.648 18.001 [13.647
25 et SDRAM_ADD<2> 999 [13.537 |1.538 18.001 |13.637
£-FE Signal Interity SDRAM_ADD<3> 11999 [13.015 [1.016 18.001 [13.015
EE Electical Props SDRAM_ADD<4> 11,999 |15.936 |3.936 18.001 |15.935
ES Refiection SDRAM_ADD<E> 11,999 |12.080 |0.081 18.001 |12.080
@ Edge Distortior SDRAM_ADD<6> 11.999 (15445 |3.446 18.001 15.445
@ E stimated *talt SDRAM_ADD<7> 11.999 (17.341 5.342 18.001 17.341
I == = B T SDRAM ADD<8> 11.999 [12.080 10.081 18.001 12.080

We determined from pre-route analysis the slack available for each of our net groups; however, before we
translate these into length constraints it is important to get a report of the Manhattan lengths of each of these
signals. To illustrate this, we will focus on the address signals. The Manhattan report of the address lines
showed that the shortest lines were 6mm and the longest were 17mm. Accordingly, the minimum length
constraint must be longer than 6mm and the maximum length constraint must be longer than 17mm.
Additionally, from our timing diagrams, we determined that the maximum spread can be no more than 14mm.
Following these restrictions, we set the minimum and maximum length limits for the address line are 11.99 mm

to 18.99 mm (shown in the constraint editor window below). Based on the layout designer's recommendations,
we were able to constrain a bit tighter (7mm margin) and produce better margins.

To enter the length constraint, we open the Net = Routing = Total etch length section of the constrain
manager. We followed this procedure for all the other net groups. The snapshot that follows shows length
constraints associated with the address lines. Here, the key is to not to over-constrain your design, but at the
same time have enough constraints so the timing and signal integrity parameters are met. Over-constraining the
design severely inhibits the auto-router and may leave large portions of the design (as much as 90%) un-routed.

T Allegro Constraint Manager (connected to Allegro PCB SI XL 15.7) - [Nets: Routing [board]]

= File Edit Objects Column View Anslyze Audit Tools Window Help

w|E|g| #|m[e] % [Lane % e|S| ¢ || BE(m =| B [2|
board |
-89 Electrical Constraint 5
7 X - Reference| Total Etch Length Total Etch Length Unrouted Net
% ?:fn?:;nteg"w Objects d Elce?elt'ical Min_| Actual | Margin | Max | Actual | Margin Length
- LB Switch/Settle i | v | v s | i | i
: i E board -11.999 0.000
% Routing
% All Constraints £ NAND_CTL
B Het NAND_CTL<0> 34.300
% Signal Integrity NAND_CTL<1> 4500
- EE Timing NAND_CTL<Z> 34.300
-5 Routing NAND_CTL<3> 34.300
B wiing NAND_CTL<4> 34.300
EH Impedance NAND_CTL<5> 34.300
o NAND_CTL<6> 34.300
E o Etc}lq L; & SHRAM_ADD 12.000 41999 [18.000
B Diftererta TS = SDRAN_ADD<0> 11999 [17.384 |5.385 18001 |17.384
_____ EH Relative Frop. SDRAM_ADD<1> 11999 [13.647 |1.648 18.001_|13.647
BE Custon Measuren SDRAM_ADD<Z> 11999 [13.537 |1.538 18.001 [13.537
4 EE General Fropertet SDRAM_ADD<3> 11999 [13.015 [1.016 18001 [13.015
szt SDRAM_ADD<4> 11999 [15935 |3.936 18001 [15.935
B Electical SDRAM_ADD<5> 11999 [12.080 |0.081 18.001_ |12.080
EE Spacing SDRAM_ADD<6> 11999 [15445 |3.445 18001 |15.445
EE Physica SDRAM_ADD<7> 11999 [17.341 |5.342 18.001_[17.341
EE Design SDRAM_ADD<8> 11999 [12.080 |0.081 18.001_ |12.080
SDRAM_ADD<g> 11.999 1232
SDRAM_ADD<10> 11.999
SDRAM_ADD<11> 11.999
SDRAM_ADD<12> 11.999 !] 12.973
SDRAM_ADD<13> 11999 (0000 |-11.999 [0.000 [0.000 |0.000
El SDRAM_CTRL 20.000
CS3_B_CSD1_B 20.000
SDRAM_CTRL<Z 20.000
SDRAM CTRL<3> 20.000

Post-Route SI Analysis

Once the design is fully routed, detailed simulations can be run for post-route verification. The goal at this
phase is to determine final margins over all corners, and find and correct any Sl or timing-related issues before
the board is released for fabrication. Before starting simulation, it is important to verify that the design is
properly routed and that it meets the specifications/constraints. In particular, it is essential to verify that the
design does not include dangling and partially-routed/un-routed nets. We must also verify that all the nets meet
the length constraints assigned to them. The Constraint Manager window helps identify nets that are in
violation (shown in red) and nets that are in compliance (in green). For convenience and clarity, the Constraint
Manager also reports the actual route length and the Manhattan lengths for each net.

The next step is to bring up the physical layout and visually inspect the nets to ensure that each net is routed in
its appropriate layer, or run DRCs if the signals were explicitly limited to specific layers in Physical Constraint
Sets. When test points are associated with a net, we must manually verify that the points are in line with the
nets (and are not stubs hanging off the nets). Note that when using the simpler Total_Etch_Length constraint,
the auto-router can meet routing length constraints for the net, even when there are stubs in the design. These
stubs can produce undesirable effects such as reflections and hence this step is important. If there are too many

critical signals to check manually on larger designs, this check can be automated by using an explicit topology
and stub length constraints. After manual inspection, we begin post—route simulation and generate reports to
analyze the design. We then export the reports to an Excel spreadsheet to facilitate analysis.

We generated both delay and reflection reports. The delay report provides information on timing parameters
such as propagation delay, switch and settle rise and fall times. The reflection report presents data on signal
integrity parameters such as overshoot, undershoot, noise margin, monotonicity, and glitch. Preparing the
design for post-route simulation involves the selection of various options in the SNEMI Sim preferences list.
The following screen display describes this process.

Analyze - SI/EMI Sim - preferences

i 7 Analysis A] [|
LI hit= I E kAl I Powvuer Integrity I
DevicestModels I Interconnecttdodels Simulation
— Standard Preferences

Pulse cycle count |1

Pulse Clock Frequency |1 33kH=

Fulze Duty Cycle IEI,E
: FPulze/Step Offzet Oz
: [T Fixed Duration |25n3
1 “whavelform Fesolution [Time] 0.0 s - I
I
| FMeasure Delayps At Wrneas - I
1 Crriver Pin Measurement Location: todel Defined vI
1 =
H Feceiver Pin Measzurement Location: b odel D efined vI

Adwvanced Measurements Settings. .. I
I Bun Simulations in Debug Maode

I Report Source Sampling D ata

[+ Frefer fastest aggressor on wictim component

Fazt/Tppical/Slow Definitions... I

Simulator ITIsim vI Set Simnulatan Preferences. | I
Ok I Cancel I Help I

In the form above, we set up the frequency of the stimulus and the duty cycle. We also set up Veas as the
reference for delay calculations. Choosing the reference as Vmeas, rather than V4 and V,., makes analysis much
easier and is in accordance with the memory datasheet. We chose Vieas as 0.9V which is half of the peak-to-
peak voltage swing (1.8V).

Now that the design is routed, we need to set the parameters for routed interconnects. Here you can specify the
minimum coupling distance for nets for the tool to recognize it as a differential pair. This can be done by
invoking Analyze - SI > Pref - Interconnect Models.

= Aaonahysis Preferences

| EbAl |
Interconnectkd odesl=

ks
D eviceskModel=s

— =

FPovaer | nkegriky
Simulation

— Urnrouted Interconnect Models

Fercent kM anhattan |1 oo

D efault Impedance IEDDhm

D efault Prop “Welacity |1 A1 A42e+0028 A=
Oy =fault Diff-lmpedance |1 O0okhm

D =fFault DVifF-w elocibyp |1 A1 42e+0028 A=

Fouted Interconnect HModels

Cutoff Frequency |1 OGH=
Shape=e Mesh Size ISEI.S?EI‘l il
Criffpair Coupling W indoss |1 OC0mil

G eomekry wWwrirndoes |1 Crnil

tdin Coupled Length | L

FAirm M eighbor Capacitance IDpF

“Wia kodeling IFaSI: Clo=e=ed Form

T arget Frequency

— Topology E =traction

I~ Differential E=xtraction HMode

I~ iDiffpair T opology Simplificatior:

SIS

] Flan=s FMaodelling

— |x

Cancel

Help

Standard Reporthustgm Repgrtl

rCase Selection

Current Case :Icasedl cased4l + nev change: =signal probe _:J

~Report Tvpes
¥ REeflection Summary

¥ Delaw
[~ Ringing
[T Single Het EMI

[T Parasitics [T Segment Crosstalk
[~ SSH

[T SDF Wire Delaw

[T Crosstallk Summary
[T Crosstalk Detailed

Fast- -Typical-Slow Hode

v Fa=st ¥ Typical v Slow [T Fast-Slow [Slow-Fast

~FPrimarv Het

Het Seslection: IAll Selected Hets

IAll inet Driwvers

[
[

Driver Selection:

rAggressor
Switch Mode:

|Odd/Even 'I

IEaDh Neighbor

|Fastest Driver

Het Selection:

Driver Selection:

rReflection Data Simulation

Type: (* Reflection Measurement

" Comprehensiwve Odd

" Comprehensive Ewven

" Comprehensive Static

@+ Pulse
" Fize-Fall

 Custom Stimulus bosdgrn. ..

[T Use Timing Windows

[T Sawe Circuit Files

¥ Save Waveforms

Create Report |

=101 =]

The preceding screenshot shows the option that allows us to select the delay and reflection reports. In this form,
we also choose all three simulation modes — fast, typical, and slow — to cover all corner cases. In our
experience, running typical mode simulations were not enough to determine final timing margins over process,
voltage, and temperature. So, we exported the reports to an Excel spread sheet and analyzed the results.
Reflection and delay reports simulate only a primary net and none of its neighbors. As a result, these reports do
not take into consideration the parasitics of the power and ground pins.

Timing > Control typ

Note: All timings in ns unless labelled otherwise.

Component Timing

driving to Memory
Tsetup 1.64 Tsetup 15
Thold 4.04 Thold 15

Skew_max = 1.64 - 1.5 = 140ps between clock and control
Skew_max= 0.14

Clock/Strobe Relationships

Sdram_Ctrl<6:7> is differential clock

Interconnect Timing

XNet Drvr Revr PropDly SettleRise SettleFall AvgSettle
SDRAM_CTRL<6> U800 V2_LU2164 C7_U21€ 0.142029 1.13851 1.20538 1172

XNet Drvr Revr PropDly SettleRise SettleFall MinSettle MaxSettle MinSettleSkew MaxSettleSkew MaxSkew Margin
SDRAM_CTRL<0> U800 U2164 0.1118 1.191 1.235 1.104 1.235 0.068 0.063 0.068 0.072
SDRAM_CTRL<10> U800 u2164 0.1254 1.165 1.207

SDRAM_CTRL<11> U800 u2164 0.1114 1141 1.187

SDRAM_CTRL<12> U800 u2164 0.1217 1.178 1221

SDRAM_CTRL<13> U800 u2164 0.1067 1114 1.153

SDRAM_CTRL<14> U800 u2164 0.09823 1.104 1.143

SDRAM_CTRL<2> U800 u2164 0.1274 1.163 1.205

SDRAM_CTRL<3> U800 u2164 0.09163 1.108 1.153

SDRAM_CTRL<8> U800 u2164 0.1081 1.137 1.182

SDRAM_CTRL<4> U800 u2164 0.06959 1.143 1.247

SDRAM_CTRL<5> U800 U2164 0.0862 1.169 1.285

The preceding spreadsheet was created with data from delay reports and was used to analyze the control lines
with respect to the clock. The clock signal in our design is called SDRAM_CTRL<6>. The sheet also lists the
driver (U800, the processor), receiver (U2164, memory device), propagation delay (0.142029 ns), settle rise
(1.13851 ns), and settle fall (1.20538 ns) values. The average settle delay (1.172 ns) is calculated by averaging
the settle rise and settle fall numbers.

The control nets SDRAM<0> to SDRAM_CTRL <14> are listed next to the corresponding drivers, receivers,
propagation delays, settle rise and settle fall delays. We then look for the minimum and maximum delays of all
the settle rise and settle fall delays. These are listed under maximum settle delay (1.235 ns) and minimum settle
delay (1.104 ns) respectively. Using these numbers, we calculate the maximum settle skew (0.063 ns), which is
the difference between the maximum settle delay (1.235ns) and the average settle time (1.172 ns) of the clock
signal. We also calculate the minimum settle skew (0.063 ns), which is the difference between the minimum
settle delay (1.104ns) and the average settle time (1.172 ns) of the clock signal. Subtracting the maximum of
these two skews, which in our case is 0.068 ns, from the total skew available (0.140 ns) gives the margin (0.072
ns) for these nets.

We repeated this analysis for both the fast and slow modes and calculated the available margins. In this design,
we identified two control nets that met length constraints, but did not have positive margins in the slow mode.
We worked with the PCB engineers to reroute these nets and made them shorter to meet the skew margins.

A | B [C [D = F [G [H [
46
47 [NAND SIGNALS - TYP MODE |
48
EM Drur Revr NMHigh HNMLow OShootHigh OShootl ow Monotonic Glitch
50 [NAND_CTL=0= UJB00 L13 U2164 K3 3469 3497 1911 -147.2|PASS PASS
51 [NAND_CTL=1> U800 B13 2164 L3 355 3573 1858 -91.98| PASS PASS
62 |NAND_CTL<2> U800 G13 U2164 G3 330 INnsg 1923 -186.2| PASS PASS
53 [NAND_CTL=3> 800 B12 U2164 F3 3195 1947 -170.2| PASS PASS
54 |NAND_CTL=4> JB00 H12 2164 M3 3042 1985 -236.1|PASS PASS
65 |NAND_CTL<5 oo c12 2164 N3 2977 2019 -242 4| PASS PASS
56 [WEMI_DATA=0= U800 L12 U2164 P10 1201 2461 -264 3|PASS PASS
57 [WEMI_DATA=0> U2164 P10 1800 L12 308.3 2055 -194.2| PASS PASS
68 |WEMI_DATA=1= U800 c11 U2164 N10 1200 2460 -216.4| PASS PASS
59 [WEMI_DATA=1> U2164 N10 oo c11 3221 2005 -139.5|PASS PASS
60 |WEMI_DATA=10> U800 H10 U2164 L1 1200 2460 -185.7|PASS PASS
_B1 [WEMI_DATA<10= U2164 L1 U800 H10 360 1939 -16.79 PASS PASS
62 [WEMI_DATA=11= LJB00 B3 U2164 K11 1201 2461 -123.4|PASS PASS
63 |WEMI_DATA=11= U2164 K11 U300 B9 3426 1916 -711.52| PASS PASS
B4 [WEMI_DATA=12= U800 Co U2164 G11 1201 2461 -80.01|PASS PASS
65 [WEMI_DATA=12= U2164 G JB00 C9 356.5 1842 -18.11|PASS PASS
66 |WEMI_DATA=13> U800 BA U2164 F11 1201 2461 -138.4 PASS PASS
BT [WEMI_DATA<13= U2164 F11 U800 B 3373 1928 -89.06 PASS PASS
68 [WEMI_DATA=14= 1JB00 Ca U2164 EN 1200 2461 -97.18| PASS PASS
69 |WEMI_DATA=14: U2164 ENM U800 Cs 3709 1835 -21.24 PASS PASS
70 [WEMI_DATA<15 oo B7 U2164 D11 1201 2461 -117.6|PASS PASS
71 [WEMI_DATA=15 U2164 D11 Jsoo 7 364.5 1870 49.3 PASS PASS
12 |WEMI_DATA=2= U800 F11 U2164 M10 1200 2460 -219.6| PASS PASS
73 [WEMI_DATA=2> U2164 M10 JB00 F11 3545 1959 -101.4|PASS PASS
74 |WEMI_DATA=3> JB00 B11 U2164 L10 1200 2460 -286.9 PASS PASS
75 [WEMI_DATA=3> U2164 L10 UJB00 B11 3301 2007 -130.9/PASS PASS
76 [WEMI_DATA=<4> UJB00 C10 U2164 F10 1200 2460 -149.9|PASS PASS
_TT |WEMI_DATA=4> U2164 F10 800 C10 3267 1936 -61.69 PASS PASS
78 [WEMI_DATA=5> UB00 A10 U2164 E10 1200 2461 -166 PASS PASS
79 [WEMI_DATA<5> U2164 E10 00 A10 3379 1933 -96.84| PASS PASS
80 |WEMI_DATA=6=> U800 G11 U2164 D10 1201 2461 -174 3| PASS PASS
81 WEMI_DATA=6> U2164 D10 U800 G11 3422 1942 -95.78 PASS PASS
B2 [WEMI_DATA=T> 800 B10 2164 C10 1201 2461 -186.1|PASS PASS
_83 |WEMI_DATA=T= U2164 C10 U800 B10 3499 1918 -94.22 PASS PASS
B4 [WEMI_DATA<8> UJB00 F10 2164 N11 1200 2460 -175.4|PASS PASS
85 |WEMI_DATA=8> U2164 N11 U800 F10 3381 1983 -83.1 PASS PASS
_86 |WEMI_DATA=9=> U2164 M11 U800 A9 1200 2460 -227 4| PASS PASS
_B7 |WEMI_DATA=<9> UJB00 A9 U2164 M11 345 1981 -109.8|PASS PASS

The preceding spreadsheet was generated from the reflection report. Noise margins were calculated from the
overshoot and undershoot values. The spread sheet is formatted to indicate all the passing signals in green (as
long as overshoot and undershoot is less than 0.7V the signal passes). The report also checks for monotonicity
and glitches. This check was completed on all the other net groups in the design.

In addition to looking at the single-line (i.e. uncoupled) reflections and resulting interconnect delays for the
memory interface signals, it is also to be able to quantify the crosstalk these signals are subjected to, and the
impact of that coupling on signal integrity and timing. First, the impacts on timing were examined. A topology
was built in SigXplorer for 3 coupled data signals, with conductor spacing set to the minimum value, and
lengths representing 150% Manhattan distance between the controller and memory chips. Stimuli in this

topology were varied to quantify the “push out” and “pull in” seen on the victim data signal due to the activity
on the coupled neighbors. Even mode stimulus (neighbors switching in the same direction as the victim) tends
to exhibit push out, while odd mode stimulus tends to do the opposite. This general effect is illustrated below.

DO D1 D2

/

Even Mode

1

Reference

O oo

1™~ 0dd Mode

s

Figure 11. Even and odd mode crosstalk

Through these exploratory simulations, it was determined that on the small PCB being designed, neighbor
coupling had a very small effect on the interconnect delays. While this is not generally true in all cases, it was
found that the relatively short interconnect paths on this particular design caused minimal push out and pull in
effect. This being determined, it was decided that intra-bus coupling could safely be disregarded on this design,
which helped to avoid over-constraining the layout. Bus routing could be done using the minimum line-to-line
spacing for manufacturability.

The next coupling effect that was addressed was that of inter-bus crosstalk. Here the main concern was whether
the voltage level of a steady-state signal could be pushed out of its desired voltage level during sampling, due to
coupling from aggressors outside the bus. Assuming the design is setup properly, the first step for crosstalk
analysis is to set up the Analysis Preferences appropriately. The Interconnect Models tab of this form is shown
below.

B Analysis Preferences M= E3 |

[tz I Edl | Powier [nkegrity
Devicestodelz Interconnectidodels | Sirmulation

— nrouted Interconnect Models

Fercent M anhattan 100

Default Impedance |5EI|:|hm

Default Prop Welocity I'I A142e+008M /2
Default Diff-lmpedance I'I O0ohm

Drefault Diff-'elocity I'I A142e+008M /2

— Routed Interconnect Models

Cutaff Frequency IDGHE

Shape Mesh Size D

Diffpair Coupling *indaw I'I 0l

Geometmy YWindow I'I Zmil

Min Coupled Length | 40ril

Min Meighbor Capacitance IEIpF

Yia Maodeling IFast Clazed Farm j

T arget Frequency I
~ Topology Estraction

[v Differential Extraction Mode

[+ Diffpair Topology Simplification

—55H
[~ Plane Modeling

k. I Cancel | Help |

There is some judgment to apply here. The goal is to screen out any significant xtalk issues in the design,
without spending excessive computational time. The key items to consider here from a crosstalk standpoint are:

e Geometry Window - how far to look for aggressors
e Min Coupled Length — minimum run you model as coupled; segments shorter than this are modeled as
uncoupled

For the initial run, the Geometry Window was set to pull in the nearest neighbor on each side of the victim net,
and to ignore coupled segments smaller than 40 mils in length. Once a baseline is established, the user can
expand these quantities to increase the crosstalk coverage in the design.

It is also important to set up default models for any driver/receiver pins that are not explicitly modeled. As this
design used primarily 3.3V logic, 3.3V default driver models were specified for any pins not explicitly modeled,
as shown below in the “Device Models” tab.

B Analysis Preferences M= E3 |

|tz | Endl I Puowwer [nkegrity
Devicestodels | Interconnectidodels I Sirnulation

— Default [DCell Models

[+ Use Defaults Far Mizzing Components Models

Pin Use: Default Model
I | CDSDefaultinput_3p3v
ouT | CDSDefaultOutput_3p3v

Bl |CDSDefaulll_dp3v

TR |CDSDefaultTristate

ocL | CDSDefaultOpenDrain

OCA IED SDefaultd penSource

Browsze Maodels... |

— Buffer Delay Selection
Bufter Delays From Librany j

k. I Cancel | Help |

The next step is to set up Crosstalk Timing Windows to ignore intra-bus xtalk, focusing the analysis on inter-
bus xtalk effects. An example of how to set this up in Constraint Manager as shown below for the 5 buses found
in this design.

% Allegro Constraint Manager {connected to Allegro PCB 51 GXL 15.7) - [Nets: Signal Integrity [taos]]
= File Edit Chjects Column iiew Apalyze Audit Tools Mindow Help ;lilil
@|d|a| %|E|®] @R s % eS|« || EmEE| =| B «|%[%| 2
#-[Electrical Constraint Set taosl
-89 Nat R Senit =]
EE Signal Integrity Objects Active Window 'l.:li-l:dcll:f Ignore Hets |
B Electiical Propertie e
@ Reflection -] taos
--Eg3 Edge Distartions HAND_CTL 1 2.5
B3 Estimated xtalk SDRAM_ADD 2 1,35
g Simulated Rtalk SDRAM_CTRL 3 12,46
..EH 55N SDRAM_DATA 4 13,5
e-EEE Timing WEMI_DATA 5 14
[-EEE Routing DP_EAR
E Customn b easurement OP_GPS_LHA_OUT
[]—-E General Froperties DP_JAH_TX_IH
-3 DRC DP_LHA_QUT_MIX_IH
DP_RXl
DP_RXI_WBP
DP_RX0Q
DP_RXQ_WEP
DP_SDRAM_CTRL<E>
DP_TXI
DP_TXQ
« [¥ DP_USB. _ . - |
4] I\ Electrical Properties ;(Reflection A EdgEH 4 | | _PI_
[Clack cvcleis) when net is actively switching and creating noise |SvMC [MMET 2

Crosstalk timing windows enable intelligent summing to be applied to crosstalk DRCs, and intelligent stimuli to
be applied to neighboring XNets for crosstalk simulations. With no crosstalk timing windows defined, Allegro
Sl will assume that the victim is always sensitive to crosstalk and aggressors are always active, i.e. crosstalk is
always generated by all present neighbor XNets. This can be overly pessimistic in many cases, and can cause
very conservative layout, sacrificing density. The following crosstalk timing windows parameters can be
defined to control which neighbors are to be considered as aggressors for crosstalk analysis:

e Active Window — time slots in which aggressor XNets can switch, and cause crosstalk (ex. 1)

e Sensitive Window — time slots in which victim XNets are sensitive to crosstalk from aggressors (ex. 1-2,
4-5)

e Ignore Nets — nets for a victim to ignore as sources of crosstalk (can specify nets or Electrical Constraint
Sets)

As an example, consider the following case:
e victim XNet “SDRAM_ADDL1” has the attributes:
e Active Window = 2, Sensitive Window =1, 3-5

e aggressor XNet “SDRAM_ADD2” has the attributes:
e Active Window = 2, Sensitive Window =1, 3-5

e aggressor XNet “WEMI_DATAS” has the attributes:
e Active Window = 5, Sensitive Window = 1-4

When crosstalk analysis is run for the victim SDRAM_ADDJ, its sensitive window (1, 3-5) will be compared
with the active window for aggressors SDRAM_ADD? (2) and WEMI_DATAS (5). Since SDRAM_ADD?2’s
active window does NOT overlap with the victim’s sensitive window, its crosstalk contributions will not be
considered during analysis. But since WEMI_DATAJ5’s active window DOES overlap with the victim’s
sensitive window (5 overlaps with 1, 3-5), its crosstalk contributions WILL be considered during analysis.

So Crosstalk Timing Windows give a simple means for controlling whether or not a signal (or group of signals)
is a valid source of crosstalk for another signal (or group of signals). Using this control wisely can significantly
decrease the amount of analysis required, eliminate false crosstalk DRCs, and improve routing density on the
PCB.

Once Crosstalk Timing Windows were defined in the Constraint Manager, simulations were run using the
“Probe” functionality. An example of the setup for the crosstalk analysis run is shown below.

Analysis Report Generator {case3) M= B |

Standard Report | Custom Report |

~Caze Selection

Current Case ZIDELSE3 . caze? + unknown change in 'IZ\VIE—?—-'-IE\Sth

~Report Types

[Reflection Summary [Parasitics [T Segment Crosstall
[T Delay [S5H [¥ Crosstall Summary
[T Ringing [T SDF Wire Delay [Crosstallk Detailed

[Single Het EMI

~Fazt-Typical-Slow Mode

[Fast v Twpical [Slow [Fast~Slow [Slow-Fast
~Primarvy Het
Het Selection: IAll Selected Hets j
Driver Selection: IFastest Driver j
~Aggressor
Switch Mode: |odd =l
Het Selection: IAll/GrDup Heighbor= j
Driver Selection: IFastest Driver j
~REeflection Data Simulation
Tvpe: * Reflection Heazurement :
" Comprehensive Odd v Pul=e
" Comprehensive Ewven " Rise~Fall
" Comprehensive Static) Custom Stimulus bssign. .

v U=e Timing Windows [Sawe Circuit Files [v Save laveforns

Create Eeport I

(0] I Cancel | Freferences. . . | Help |

A couple of key points should be made for this initial “screening pass”:

e Specify “Fastest Driver” for both Primary and Aggressor initially. This will typically produce worst case
results, and will minimize the number of simulations that will be run.

o “All/Group Neighbors” will stimulate all valid aggressor signals simultaneously, again for worst case.

e Turnon “Use Timing Windows”, to skip intra-bus xtalk cases (which also saves computational time).

Once the initial crosstalk report has been generated, it can be desirable to determine, for the worst signals,
which are the main culprits are so that they can be addressed at layout. To do this, these “outliers” can be re-
analyzed with slightly different settings. The key item here is to set “Net Selection” to “Each Neighbor” in the
“Aggressor” section of the form. As opposed to the previous analysis, where all aggressors to a net were
stimulated simultaneously, in this run each aggressor neighbor will be stimulated individually, so that you get a
breakdown of the contributions from each individual aggressor, which can be used to guide layout edits.

Results

The following results were noted from the SI work performed on this card:

1. All the signals in the DDR memory interface met timing margins in typical, slow and fast cases in
simulation

2. All the nets met overshoot and undershoot specifications under fast, typical and slow cases in simulation

3. Once hardware came into the lab, the interface passed functional, signal integrity and timing
specifications under hot (85°C), cold (-30°C) and room temperature in the actual design.

4. The interface was robust across different software loads and mechanical life tests.

In summary, as a result of the SI simulation work done on this design, we were able to achieve first pass
results with our hardware. No re-spins or re-work were required due to timing or Sl issues. Eliminating
unnecessary re-spins saves significant time and money in terms of materials, fabrication, assembly, test,
verification, and manpower. It also enables us to get to market faster, with higher quality product for our
customers.

Recommendations

For new users of the Allegro SI tool, the authors have a number of recommendations that can help to make their
initial experiences run smoothly.

e Central Sl library — Establish a central Sl library that the entire engineering community in your
organization can use. Having multiple pockets of redundant models not only wastes time and resources,
it produces inconsistent results. This is a must if SI analysis is to be an efficient part of your flow.

e Invest in setup — Taking the time to set up the layout database properly up front pays back many times
during the design and analysis process. Get the stack-up completely defined in the master layout
database, so any versions of the database that get analyzed later all benefit. The same goes for voltage
properties, pinuse, and SI model assignments. If you can get this all set up from the beginning, it saves
time throughout the rest of the process and eliminates mistakes.

e Signal naming conventions — When working with groups of signals in a design, such as those found in a
memory interface, it is much easier to digest reports, set properties and constraints, and review feedback
in the Constraint Manager when the signal names are intuitive. Take care in naming all the relevant
signals in your design to make them easy to work with. Using the same naming conventions over again
on subsequent designs will speed up the analysis process.

e Partner with the layout designer — For critical signals with tight timing margins, it is beneficial to get
them routed as a first priority. Work with your layout designer to make sure the optimum route priority
is identified. And there will almost always be some give-and-take from a constraint standpoint. The
layout designer is often in the best position to determine if the routing constraints you are requesting are
realistic or not, especially on dense designs. Work with the layout designer to make the design

physically realizable, and agree to re-simulate signals that can’t be routed exactly as specified. Let the
timing margins be the final judge as to whether or not a signal is acceptably routed.

e Fast and slow corners — When timing margins are tight, it is critical to simulate the Fast and Slow
corners as well as Typical. Often Fast or Slow results turn out to produce the worst case margins, and
the design needs to be robust enough to meet requirements under these tough conditions.

e When comparing results for the same signals in the SigXplorer (topology) and SpecctraQuest (physical
layout) environments, be aware that some simplifying assumptions are made in the case of SigXplorer
from a usability standpoint. There will always be more detailed input directly from the physical layout,
so when minor differences appear, let the results from simulations in the layout take precedence.

Future Work

Some of the future work expected to be done on the high speed flow at Motorola is expected to include the
following:

e Automated bus-level Sl analysis (introduced in 15.7) — This capability automates a number of things for
source synchronous bus analysis, including custom bit patterns, automated handling of on-die
termination, and automated setup and hold margin measurements. These items and others are expected
to be requirements for DDR2 designs with higher data rates.

e Crosstalk-driven routing — It is possible to enable crosstalk DRCs during automatic and interactive
routing. This would enable the layout designer to get immediate feedback on coupling during the routing
process, and facilitate crosstalk avoidance.

e IR drop analysis (introduced in 16.0) — This is a critical item for many portable and/or battery-operated
designs. Without this automation, calculating IR drop in the design is a very tedious and error-prone
process.

e Decoupling cap analysis (Power Integrity option) — With density, real estate, cost, and shrinking voltage
ripple specifications, this becomes an important part of the design process.

About the Authors

Prithi Ramakishnan is a Senior electrical engineer with Motorola’s iDEN subscriber group specializing in
digital design. She has her bachelor’s degree in Electrical Engineering from V.J.T.I, Mumbai, India and her
Masters degree in Electrical Engineering from Pennsylvania State University, State College, PA.

Ken Willis is a Sr. Staff Services Application Engineer for Cadence Design Systems, providing high-speed
design and consulting services in the Silicon-Package-Board Services group. Ken was the original Signal
Integrity (SI) Applications Engineer with Cadence, where he also served as Technical Marketing Director and
Engineering Director for SI product development for over 8 years. Ken then worked for Sirocco
Systems/Sycamore Networks, where he was a lead SI Engineer and used Cadence Sl tools on many high speed
PCB designs. Prior to joining Cadence, Ken worked as a Process Engineer in PCB fabrication with the Tyco
Printed Circuit Group, and as an Sl Engineer with Compaq Computer Corporation. Ken received a BSEE from
Worcester Polytechnic Institute in 1988.

