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Introduction 
The need for Signal Integrity (SI) analysis for printed circuit board (PCB) design has become essential to ensure 
first time success of high-speed, high-density digital designs. This paper will cover the usage of Cadence’s 
Allegro PCB SI tool for the design of a dual data rate (DDR) memory interface in one of Motorola’s products. 
Specifically, this paper will describe the following key phases of the high-speed design process: 
 

• Design set-up 
• Pre-route SI analysis 
• Constraint-driven routing 
• Post-route SI analysis 

 
DDR interfaces, being source synchronous in nature, feature skew as the fundamental parameter to manage in 
order to meet setup and hold timing margins. A brief overview of source synchronous signaling and its 
challenges is also presented to provide context. 
 
Project Background 
This paper is based on the design of a DDR interface in an iDEN Subscriber Group phone that uses the mobile 
Linux Java platform.  The phone is currently in the final stages of system and factory testing, and is due to be 
released in the market at the end of August 2007 for Nextel international customers.  The phone has a dual-core 
custom processor with an application processor (ARM 11) and a baseband processor (StarCore) running at 
400MHz and 208MHz respectively.  The processor has a NAND and DDR controller, both supporting 16-bit 
interfaces.  The memory device used is a multi-chip package (MCP) with stacked NAND (512Mb) and DDR 
(512Mb) parts.  The NAND device is run at 22MHz and the DDR at 133MHz.  The interface had to be 
supported over several memory vendors, and consequently had to account for the difference in timing margins, 
input capacitances, and buffer drive strengths between different dies and packages.   

 
As customer preference for smaller and thinner phones grows, the design and placement of critical components 
and modules has become more challenging.  In addition to incorporating various sections such as Radio 
Frequency (RF), Power Management, DC, Audio, Digital ICs, and sub-circuits of these modules, design 
engineers must simultaneously satisfy the rigid placement requirements for components such as speakers, 
antennas, displays, and cameras.  As such, there are very few options and little flexibility in terms of placement 
of the components.  This problem was further accentuated by the fact that several layers of the 10 layer board 
(3-4-3 structure with one ground plane and no power planes) were reserved for power, audio, and other high 
frequency (RF) nets, leaving engineers with few layers to choose from for digital circuitry.  
 



 
Figure 1.  Memory Interface routes 

 
With the DDR interface data switching at 266MHz, we had very tight margins — 600ps for data/DQS lines, 
280ps for the address lines, and 180ps for control lines.  However, with the NAND interface we had larger 
margins that were on the order of a few tens of nanoseconds.  In these situations, choosing a higher drive 
strength and using terminators of appropriate values (to meet rise times and avoid overshoot/undershoot) has 
become a common practice in DDR designs.  However, due to the lack of space on the board, we were not in a 
position to use terminators.  Therefore, we used programmable buffers on our processor, and with the help of 
Cadence SI tools were able to fine-tune the design. 

 
Our group migrated from using Mentor Graphics to Cadence SI during this project. As one might expect, this 
made the task of designing a high speed DDR interface even more challenging. To help overcome this, we 
worked extensively with Cadence Services, where Ken Willis supported us on the SI portion of the design. 
 
The Source Synchronous Design Challenge 
Before discussing the specifics of the Motorola DDR interface, a brief overview of source synchronous 
signaling is provided here for context. Historically, digital interfaces have utilized “common clock” signaling, 
as shown in the figure below. 
 



 
Figure 2.  Common clock design 

 
With common clock interfaces, the clock signal is provided to the driving and receiving components from an 
external component. The magnitude of the driver’s Tco (time from clock to output valid) and the interconnect 
delay between the driving and receiving components becomes a limiting factor in the timing of the interface. 
From a practical standpoint, it becomes increasingly challenging to implement interfaces of this type above 
several hundred megahertz. 
 
In order to accommodate requirements for faster data rates, source synchronous signaling emerged as the new 
paradigm. This is illustrated in the figure below. 
 

 
Figure 3.  Source synchronous design. 
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In a source synchronous interface, the “clock” is provided locally by the driving component, and is generally 
called a “strobe” signal. The relationship between the strobe and its associated data bits is known as it leaves the 
driving component, with setup and hold margins pre-established as the signals are put onto the bus. 
 

 
Figure 4.  Timing diagram. 

 
This essentially takes the driver’s Tco as well as the magnitude of the interconnect delay between the driving 
and receiving chip out of the timing equation altogether. The timing challenge then becomes to manage the 
skew between the data and strobe signals such that the setup and hold requirements at the receiving end are still 
met. 
 
Technical Approach 
The general technical approach used in this project can be broken down into the following key phases of the 
high-speed design process: 
 

• Design set-up 
• Pre-route SI analysis 
• Constraint-driven routing 
• Post-route SI analysis 

 
First the PCB design database is set up to enable analysis with Allegro PCB SI. Before routing is performed, 
initial trade-offs are examined at the placement stage, and constraints are captured to facilitate constraint-driven 
routing. When routing is completed, detailed analysis is performed, interconnect delays extracted, and 
setup/hold margins are computed. Any adjustments required are fed back to the layout designer, and the post-
route analysis is repeated. This basic process is diagrammed below. 
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Figure 5.  SI design process flow. 

 
Detail on the major design phases are provided in the subsequent sections. 
 
Design Setup 
By virtue of its direct integration with the Allegro PCB layout database, Allegro SI analysis requires that the 
design be set up to facilitate the automated extraction, circuit building, netlisting, simulation, and analysis that it 
performs. This essentially means adding the needed intelligence to the physical Allegro database that allows the 
tool to do its job. This setup involves the following: 

• Cross section 
• DC nets 
• Device definitions 
• SI models 

 
By definition, SI analysis involves the modeling of interconnect parasitics. In order to do this accurately, the 
tool needs to know the properties and characteristics of the materials used in the PCB stack-up. This 
information is defined in the Cross Section form, as shown below. 
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It is crucial to get this data correct, as it will be fed to the 2D field solver to model interconnect parasitics during 
the extraction process. The best source for this detailed information is generally from the PCB fabricator. Layer 
thickness, dielectric constant, and loss tangent are all critical parameters for the cross section definition. 
 
In order for circuit extraction to be done properly, the tool needs to know about DC nets in the design, and what 
their associated voltage levels are. This accomplishes two main things in the setup; a) enables voltage sources to 
be injected properly in the extracted circuits, and b) avoids having the tool needlessly trying to extract 
extremely large DC nets, and hanging up the analysis process. Take the example of a parallel resistor 
termination. Allegro SI will encounter the resistor as it walks the signal net to be extracted. The tool will look 
up the SI model assigned to this resistor, splice in the resistor subcircuit, and continue extracting whatever is on 
the other side of the resistor. If this is a large DC net (ex. VTT), the desire is for the tool to put a voltage source 
at the 2nd resistor pin, complete the circuit, and simulate the signal. To do this properly, the tool relies on a 
VOLTAGE property to exist on the DC net, with a numeric value defined. In the absence of the VOLTAGE 
property, the tool will simply continue to extract, which in the case of a 2000 pin ground net, would be a large 
waste of computational time. 
 
To identify DC nets, clicking “Logic > Identify DC Nets” will spawn the following form. 
 



 
 
All DC nets in the design should be identified, to fully optimize SI analysis. These can be identified up front in 
the schematic, as well as in the physical layout as shown here. 
 
The next step in the design set-up process is to verify that the logical “CLASS” and “PINUSE” attributes for the 
devices in the design are defined appropriately. These attributes originate from the schematic symbol libraries 
and are passed into the Allegro physical layout environment. In an ideal methodology, these libraries would be 
defined properly and would require no edits. However, this is not always the case, and as these attributes have a 
bearing on the behavior of the SI analysis, it is worth mention here. 
 
The “CLASS” attribute is used to distinguish between different types of components in the PCB design. Legal 
values of “CLASS” are listed below: 
 

• IC – This is used for digital integrated circuits, which contain drivers and/or receivers. These types of 
components are modeled with an SI model of the type “IbisDevice”. When the automated circuit 
building algorithms in Allegro PCB SI encounter a model of this type, it looks up the buffer model 
(driver, receiver, or bidirectional) assigned to the pin in question, and inserts it into the circuit along with 
its associated package parasitics. 

• IO – A component with CLASS = IO is intended for components that connect off-card to other physical 
layout designs, such as connectors. These components can be associated with a “DesignLink”, which 
provides netlisting to other physical designs and enables multi-board SI analysis. So circuit building 
algorithms expect to jump from a device of CLASS=IO to a similar device on a different physical 
layout. 

• DISCRETE – For devices of this class, circuit building algorithms expect to traverse “through” the 
component, from one pin to another, inserting a subcircuit in-between. A good example of this would be 
a series resistor. 

 



If CLASS attributes are not set up properly in the source schematic libraries, they can be edited in the physical 
layout database for analysis by using the form shown below, launched from the “Logic > Parts List” menu pick. 
 

 
 
The “PINUSE” attribute also impacts the behavior of the SI analysis, as the tool uses this information to 
determine if a pin is a driver, receiver, bidirectional, or passive pin. As with the “CLASS” attribute, in an ideal 
methodology this is defined properly in the schematic libraries, and no editing is required in physical layout. 
 
“PINUSE” can be modified in two main ways for SI purposes. The most straightforward way is to ensure that 
the IOCell models used in the IbisDevice models assigned to components have the appropriate Model Type for 
the signals they are associated to. When SI models are assigned to components, the tool will check for conflicts 
between the model and the PINUSE it finds for the component in the design, and will use the SI model to 
automatically override the PINUSE found in the drawing. So if the correct pin types are found in the SI models, 
the layout will automatically inherit those settings. For components not explicitly modeled, their PINUSE can 
be set using the form shown below, launched from the “Logic > Pin Type” menu pick. 
 



 
   
Signal Integrity (SI) models can be assigned using the “Signal Model Assignment” form, shown below. 
 

 
 
Upon clicking “OK” the selected models will be assigned to the components and saved directly in the layout 
database. As mentioned previously, “PINUSE” attributes will be synced up, with the SI models superseding 
attributes in the original layout drawing. 
 
Pre-Route SI Analysis 



Performing pre-route analysis is a key part of the high-speed design process. Once critical component 
placement has been done, Manhattan distances can be used to estimate trace lengths, and can provide a realistic 
picture of how routed interconnect will potentially perform. 
 
Before simulations are run for critical signals, the timing of the interface must be well understood. To 
accomplish this, we will first sketch timing diagrams for each signal group and then extract a representative 
signal for analysis.  Next, we will explore Z0, layer assignments, drive strength, route lengths, spacing, and 
terminations for these nets. 
 
To sketch the timing diagrams, we first analyze the memory interface.  The memory interface consists of both 
DDR and NAND signals and has around seventy nets.  To simplify the analysis of the interface, we first divide 
these nets based on function and then simulate one net from each group.  Accordingly, we select one signal 
from each of the following groups — clock_ddr, strobe_ddr , data_ddr, control_ddr, address_ddr, control_nand, 
and data_nand — for our pre-route simulations. 
 
To understand the timing relations in the interface, we should look at the following operations between the 
memory device and the processor — read, write, address write, and control operations.  Next, we identify the 
nets involved and the clocking reference signal for each of these operations.  We then calculate the worst case 
slack available from the setup and hold numbers available in the data sheets.  In particular, we adopted the 
worst case numbers across four different memory vendors, to ensure robustness of the manfactured system in 
the field.. 
 
1. Read 
 

 
Figure 6.  Read operation at memory interface. 
 
During the read operation, the memory drives the data and DQS lines.  The processor has a delay line (a series 
of buffers which can be tapped at different points), which is used to delay the DQS signal so that it samples the 
data at quarter of the cycle.  The processor also offers programming options that allow us to apply an offset to 
the quarter cycle, enabling us to meet our setup and hold times.  Hence, the processor self-corrects for 
strobe/data skew using this delay line.  The granularity of this delay line is 30 ps; that is, each of the buffers of 
the delay line contributes 30 ps of delay.  The data lines 0-7 are clocked with respect to the DQS0 strobe signal, 
and the data lines 8-15 are clocked with respect to DQS1.  Data and strobe lines should be clustered, with the 
matching constraints determined by the write cycle. 
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2. Write 

 
Figure 7.  Write operation at memory interface. 

 
During the write operation, both data and DQS are driven by the processor.  Data is latched at both the positive 
and the negative edges of the DQS signals.  Here again, data bits 0-7 are clocked by DQS0 and data bits 8-15 
are clocked by DQS1.  The setup and hold times available as these signals come out of the DDR controller are 
1.58ns and 1.7ns respectively and the corresponding times required at the memory to ensure correct operation is 
0.9ns.  Hence, the slack available for routing is the lesser of 1.58ns – 0.9ns or 1.7ns – 0.9ns, which comes out to 
be 0.68ns. This amounts to an allowable ~85mm mismatch between the data lines.  In addition, we need to 
make sure that length of the DQS lines is around the average of all the data lines.  The data mask signals DQM0 
and DQM1 also come into play during the write operation and we should group them along with the respective 
data lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Address bus 
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Figure 8.  Address bus operation at memory interface. 

 
Both address and clock lines are driven by the processor.  The address bits 0-12 are clocked by the differential 
clock and latched at the positive edge of the clock.  The setup and hold times available for these signals from 
the DDR controller are 1.78ns and 4.22ns respectively and the corresponding times required at the memory to 
ensure correct operation is 1.5ns for both.  Hence the worst case slack for routing is 0.28ns and we have to try to 
match our signals to meet these numbers.  The 0.28ns slack amounts to ~14mm mismatch between the address 
lines and the clock.  
 
4. Control lines 
 

 
Figure 9.  Control lines at memory interface. 

 
The control signals are clocked by the differential clock and latched at the positive edge of the clock.  The setup 
and hold times coming out of the DDR controller are 1.64ns and 4.04ns respectively.  The setup and hold times 
required at the memory to ensure correct operation is 1.5ns.  Hence, the worst case slack for routing is 0.14ns 
and we have to try and match our signals to meet these numbers.  The 0.14 ns slack amounts to ~7mm 
mismatch between the control lines and the clock.  
 
In addition, CLK to DQS skew is around 600 ps.  With regards to the NAND lines,  setup and hold numbers are 
in the order of tens of ns and hence routing them as short as possible based on their Manhattan lengths would 
suffice. 
 
To complete pre-route analysis, SigXplorer must be setup for these tasks: 
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a. Extract a topology file for single net analysis.  To bring up the net in SigXplorer, it is essential that the 
models are assigned, as described in Section 2, to each of the drivers, receivers, and components in the 
signal path. 

b. Set up parameters for extraction and simulate using SigXplorer.   
c. Perform measurements using SigWave 
 
The following screenshots of SigXplorer show this process in detail. 
 

 
Figure 10.  SigXplorer screenshots. 
 
Since at this point none of the nets in the design are routed we need to set the percent Manhattan section for 
unrouted interconnect models.  We should then select the net, as shown in the next screenshot, for analysis.   
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At this point, it is important to check if your driver and receiver pins are set correctly.  The net chosen in the 
above example is a data net, it is bi-directional, hence it can be driven both by the memory device as well as the 
processor.  The view topology icon can be clicked to export this net in SigXplorer.  
 
The tool extracts the net along with drivers, receivers and strip lines on various layers of the board.  Before you 
start the simulation, you must set the stimulus frequency, pulse step offset, and cycle count.  This can be set in 
the following GUI. 
 
Analyze  Preferences 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Both the memory device and the processor have programmable drive strengths.  The buffer model can be 
changed to pick up the various drive strengths that are available in the dml models of the devices till we observe 
satisfactory waveforms in SigWave. 
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SigXplorer allows you to sweep any of the parameters such as the thickness, length, drive strengths and displays 
corresponding settle/switch delays, monotonicity, and glitch tolerance for the corresponding simulation. It also 
allows adding components such as resistors and capacitors and let’s us sweep their values. We added a resistor 
in series with our clock in or to get rid of ringing in the rising edge. The tool let us determine what values were 
suitable for this resistor.  As shown in the next figure the waveform corresponding to our simulation can be 
brought up on SigWave. 
 



 
You can observe the rise/fall times, look for noise margins, overshoot/undershoot of the receiver waveform.  
 
The constraints we develop in the pre-route simulation will be used by the routing tool to ensure correct first 
time results. This leads to our next section; Constraint-driven routing. 
Constraint-driven routing 
Once pre-route analysis has been done, and trade-offs have been examined, signal wiring constraints need to be 
developed to drive the constraint-driven routing process. With the DDR interface being point-to-point between 
the processor and memory, we translated our timing requirements into length constraints to make the routing as 
straightforward as possible. We also assigned layer constraints for our DDR signals.  Both the length and the 
layer constraints can be directly applied to the constraint manager before the routing process starts.   
 
For our particular design, we determined the following layer assignments from the results of the pre-route 
simulations, taking into account the layer’s characteristic impedance per our stack-up: 
   

 
Layer 6  ground plane 
Layer 7  clock, add, ctrl 
Layer 8  data, strobe 
Layer 9  NAND interface 

 
Before we set up our design for auto-routing, we routed the differential clock lines manually on the layers 
closest to the ground plane.  For the rest of the nets, the layer constraints can be created as shown in the 
following snapshots of the constraint manager.   
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We choose one layer with horizontal orientation and one with vertical for each of our layer sets.  You can form 
groups from the available layer sets and create a new constraint.   This constraint, which we define as ECSET1, 
can be easily read back in the constraint manager and applied to the relevant net group, as shown in the 
following snapshot.   
 

 
 
We determined from pre-route analysis the slack available for each of our net groups; however, before we 
translate these into length constraints it is important to get a report of the Manhattan lengths of each of these 
signals.  To illustrate this, we will focus on the address signals. The Manhattan report of the address lines 
showed that the shortest lines were 6mm and the longest were 17mm.  Accordingly, the minimum length 
constraint must be longer than 6mm and the maximum length constraint must be longer than 17mm.  
Additionally, from our timing diagrams, we determined that the maximum spread can be no more than 14mm.  
Following these restrictions, we set the minimum and maximum length limits for the address line are 11.99 mm 



to 18.99 mm (shown in the constraint editor window below).  Based on the layout designer's recommendations, 
we were able to constrain a bit tighter (7mm margin) and produce better margins. 
 
 
To enter the length constraint, we open the Net  Routing Total etch length section of the constrain 
manager.  We followed this procedure for all the other net groups.  The snapshot that follows shows length 
constraints associated with the address lines.  Here, the key is to not to over-constrain your design, but at the 
same time have enough constraints so the timing and signal integrity parameters are met.  Over-constraining the 
design severely inhibits the auto-router and may leave large portions of the design (as much as 90%) un-routed. 
 

 
 
 
 
Post-Route SI Analysis 
  
Once the design is fully routed, detailed simulations can be run for post-route verification. The goal at this 
phase is to determine final margins over all corners, and find and correct any SI or timing-related issues before 
the board is released for fabrication. Before starting simulation, it is important to verify that the design is 
properly routed and that it meets the specifications/constraints.  In particular, it is essential to verify that the 
design does not include dangling and partially-routed/un-routed nets.  We must also verify that all the nets meet 
the length constraints assigned to them.  The Constraint Manager window helps identify nets that are in 
violation (shown in red) and nets that are in compliance (in green).  For convenience and clarity, the Constraint 
Manager also reports the actual route length and the Manhattan lengths for each net.   
 
The next step is to bring up the physical layout and visually inspect the nets to ensure that each net is routed in 
its appropriate layer, or run DRCs if the signals were explicitly limited to specific layers in Physical Constraint 
Sets.  When test points are associated with a net, we must manually verify that the points are in line with the 
nets (and are not stubs hanging off the nets).  Note that when using the simpler Total_Etch_Length constraint, 
the auto-router can meet routing length constraints for the net, even when there are stubs in the design.  These 
stubs can produce undesirable effects such as reflections and hence this step is important.  If there are too many 



critical signals to check manually on larger designs, this check can be automated by using an explicit topology 
and stub length constraints. After manual inspection, we begin post–route simulation and generate reports to 
analyze the design.  We then export the reports to an Excel spreadsheet to facilitate analysis. 
 
We generated both delay and reflection reports.  The delay report provides information on timing parameters 
such as propagation delay, switch and settle rise and fall times.  The reflection report presents data on signal 
integrity parameters such as overshoot, undershoot, noise margin, monotonicity, and glitch.  Preparing the 
design for post-route simulation involves the selection of various options in the SI\EMI Sim preferences list.   
The following screen display describes this process.   
 

 

 
 
In the form above, we set up the frequency of the stimulus and the duty cycle.  We also set up Vmeas as the 
reference for delay calculations.  Choosing the reference as Vmeas, rather than VIH and VIL, makes analysis much 
easier and is in accordance with the memory datasheet.  We chose Vmeas as 0.9V which is half of the peak-to-
peak voltage swing (1.8V).   
 
Now that the design is routed, we need to set the parameters for routed interconnects.  Here you can specify the 
minimum coupling distance for nets for the tool to recognize it as a differential pair.  This can be done by 
invoking Analyze  SI Pref Interconnect Models. 
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The preceding screenshot shows the option that allows us to select the delay and reflection reports.  In this form, 
we also choose all three simulation modes — fast, typical, and slow — to cover all corner cases.  In our 
experience, running typical mode simulations were not enough to determine final timing margins over process, 
voltage, and temperature.  So, we exported the reports to an Excel spread sheet and analyzed the results.  
Reflection and delay reports simulate only a primary net and none of its neighbors.  As a result, these reports do 
not take into consideration the parasitics of the power and ground pins.   
 
  Timing > Control typ

Note: All timings in ns unless labelled otherwise.

Component Timing

 driving to Memory
Tsetup 1.64 Tsetup 1.5
Thold 4.04 Thold 1.5

Skew_max = 1.64 - 1.5 = 140ps between clock and control
Skew_max= 0.14

Clock/Strobe Relationships
Sdram_Ctrl<6:7> is differential clock

Interconnect Timing

XNet Drvr Rcvr PropDly SettleRise SettleFall AvgSettle
SDRAM_CTRL<6> U800 V2_UU2164 C7_U216 0.142029 1.13851 1.20538 1.172

XNet Drvr Rcvr PropDly SettleRise SettleFall MinSettle MaxSettle MinSettleSkew MaxSettleSkew MaxSkew Margin
SDRAM_CTRL<0> U800 U2164 0.1118 1.191 1.235 1.104 1.235 0.068 0.063 0.068 0.072
SDRAM_CTRL<10> U800 U2164 0.1254 1.165 1.207
SDRAM_CTRL<11> U800 U2164 0.1114 1.141 1.187
SDRAM_CTRL<12> U800 U2164 0.1217 1.178 1.221
SDRAM_CTRL<13> U800 U2164 0.1067 1.114 1.153
SDRAM_CTRL<14> U800 U2164 0.09823 1.104 1.143
SDRAM_CTRL<2> U800 U2164 0.1274 1.163 1.205
SDRAM_CTRL<3> U800 U2164 0.09163 1.108 1.153
SDRAM_CTRL<8> U800 U2164 0.1081 1.137 1.182

SDRAM_CTRL<4> U800 U2164 0.06959 1.143 1.247
SDRAM_CTRL<5> U800 U2164 0.0862 1.169 1.285  
 
The preceding spreadsheet was created with data from delay reports and was used to analyze the control lines 
with respect to the clock.  The clock signal in our design is called SDRAM_CTRL<6>.  The sheet also lists the 
driver (U800, the processor), receiver (U2164, memory device), propagation delay (0.142029 ns), settle rise 
(1.13851 ns), and settle fall (1.20538 ns) values.  The average settle delay (1.172 ns) is calculated by averaging 
the settle rise and settle fall numbers.  
 
The control nets SDRAM<0> to SDRAM_CTRL <14> are listed next to the corresponding drivers, receivers, 
propagation delays, settle rise and settle fall delays.  We then look for the minimum and maximum delays of all 
the settle rise and settle fall delays.  These are listed under maximum settle delay (1.235 ns) and minimum settle 
delay (1.104 ns) respectively.  Using these numbers, we calculate the maximum settle skew (0.063 ns), which is 
the difference between the maximum settle delay (1.235ns) and the average settle time (1.172 ns) of the clock 
signal.  We also calculate the minimum settle skew (0.063 ns), which is the difference between the minimum 
settle delay (1.104ns) and the average settle time (1.172 ns) of the clock signal.  Subtracting the maximum of 
these two skews, which in our case is 0.068 ns, from the total skew available (0.140 ns) gives the margin (0.072 
ns) for these nets. 
 



We repeated this analysis for both the fast and slow modes and calculated the available margins.  In this design, 
we identified two control nets that met length constraints, but did not have positive margins in the slow mode.  
We worked with the PCB engineers to reroute these nets and made them shorter to meet the skew margins. 
 

 
 
 
The preceding spreadsheet was generated from the reflection report. Noise margins were calculated from the 
overshoot and undershoot values.  The spread sheet is formatted to indicate all the passing signals in green (as 
long as overshoot and undershoot is less than 0.7V the signal passes).  The report also checks for monotonicity 
and glitches.  This check was completed on all the other net groups in the design. 
 
 
 
 
 
 
 
In addition to looking at the single-line (i.e. uncoupled) reflections and resulting interconnect delays for the 
memory interface signals, it is also to be able to quantify the crosstalk these signals are subjected to, and the 
impact of that coupling on signal integrity and timing. First, the impacts on timing were examined. A topology 
was built in SigXplorer for 3 coupled data signals, with conductor spacing set to the minimum value, and 
lengths representing 150% Manhattan distance between the controller and memory chips. Stimuli in this 



topology were varied to quantify the “push out” and “pull in” seen on the victim data signal due to the activity 
on the coupled neighbors. Even mode stimulus (neighbors switching in the same direction as the victim) tends 
to exhibit push out, while odd mode stimulus tends to do the opposite. This general effect is illustrated below. 
 

 
Figure 11. Even and odd mode crosstalk 

 
Through these exploratory simulations, it was determined that on the small PCB being designed, neighbor 
coupling had a very small effect on the interconnect delays. While this is not generally true in all cases, it was 
found that the relatively short interconnect paths on this particular design caused minimal push out and pull in 
effect. This being determined, it was decided that intra-bus coupling could safely be disregarded on this design, 
which helped to avoid over-constraining the layout. Bus routing could be done using the minimum line-to-line 
spacing for manufacturability. 
 
The next coupling effect that was addressed was that of inter-bus crosstalk. Here the main concern was whether 
the voltage level of a steady-state signal could be pushed out of its desired voltage level during sampling, due to 
coupling from aggressors outside the bus. Assuming the design is setup properly, the first step for crosstalk 
analysis is to set up the Analysis Preferences appropriately. The Interconnect Models tab of this form is shown 
below. 
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There is some judgment to apply here. The goal is to screen out any significant xtalk issues in the design, 
without spending excessive computational time. The key items to consider here from a crosstalk standpoint are: 
 

• Geometry Window - how far to look for aggressors 
• Min Coupled Length – minimum run you model as coupled; segments shorter than this are modeled as 

uncoupled 
  
For the initial run, the Geometry Window was set to pull in the nearest neighbor on each side of the victim net, 
and to ignore coupled segments smaller than 40 mils in length. Once a baseline is established, the user can 
expand these quantities to increase the crosstalk coverage in the design. 
 
It is also important to set up default models for any driver/receiver pins that are not explicitly modeled. As this 
design used primarily 3.3V logic, 3.3V default driver models were specified for any pins not explicitly modeled, 
as shown below in the “Device Models” tab.  
 



 
 
The next step is to set up Crosstalk Timing Windows to ignore intra-bus xtalk, focusing the analysis on inter-
bus xtalk effects. An example of how to set this up in Constraint Manager as shown below for the 5 buses found 
in this design. 
 



 
 
Crosstalk timing windows enable intelligent summing to be applied to crosstalk DRCs, and intelligent stimuli to 
be applied to neighboring XNets for crosstalk simulations. With no crosstalk timing windows defined, Allegro 
SI will assume that the victim is always sensitive to crosstalk and aggressors are always active, i.e. crosstalk is 
always generated by all present neighbor XNets. This can be overly pessimistic in many cases, and can cause 
very conservative layout, sacrificing density. The following crosstalk timing windows parameters can be 
defined to control which neighbors are to be considered as aggressors for crosstalk analysis: 
 

• Active Window – time slots in which aggressor XNets can switch, and cause crosstalk (ex. 1) 
• Sensitive Window – time slots in which victim XNets are sensitive to crosstalk from aggressors (ex. 1-2, 

4-5) 
• Ignore Nets – nets for a victim to ignore as sources of crosstalk (can specify nets or Electrical Constraint 

Sets) 
 
As an example, consider the following case: 

• victim XNet “SDRAM_ADD1” has the attributes: 
• Active Window = 2, Sensitive Window = 1, 3-5 
 

• aggressor XNet “SDRAM_ADD2” has the attributes: 
• Active Window = 2, Sensitive Window = 1, 3-5 
 

• aggressor XNet “WEMI_DATA5” has the attributes: 
• Active Window = 5, Sensitive Window = 1-4 

 
When crosstalk analysis is run for the victim SDRAM_ADD1, its sensitive window (1, 3-5) will be compared 
with the active window for aggressors SDRAM_ADD2 (2) and WEMI_DATA5 (5). Since SDRAM_ADD2’s 
active window does NOT overlap with the victim’s sensitive window, its crosstalk contributions will not be 
considered during analysis. But since WEMI_DATA5’s active window DOES overlap with the victim’s 
sensitive window (5 overlaps with 1, 3-5), its crosstalk contributions WILL be considered during analysis. 



 
So Crosstalk Timing Windows give a simple means for controlling whether or not a signal (or group of signals) 
is a valid source of crosstalk for another signal (or group of signals). Using this control wisely can significantly 
decrease the amount of analysis required, eliminate false crosstalk DRCs, and improve routing density on the 
PCB. 
 
Once Crosstalk Timing Windows were defined in the Constraint Manager, simulations were run using the 
“Probe” functionality. An example of the setup for the crosstalk analysis run is shown below. 
 

 
 
A couple of key points should be made for this initial “screening pass”: 
 

• Specify “Fastest Driver” for both Primary and Aggressor initially. This will typically produce worst case 
results, and will minimize the number of simulations that will be run. 

• “All/Group Neighbors” will stimulate all valid aggressor signals simultaneously, again for worst case. 
• Turn on “Use Timing Windows”, to skip intra-bus xtalk cases (which also saves computational time). 

  



Once the initial crosstalk report has been generated, it can be desirable to determine, for the worst signals, 
which are the main culprits are so that they can be addressed at layout. To do this, these “outliers” can be re-
analyzed with slightly different settings. The key item here is to set “Net Selection” to “Each Neighbor” in the 
“Aggressor” section of the form. As opposed to the previous analysis, where all aggressors to a net were 
stimulated simultaneously, in this run each aggressor neighbor will be stimulated individually, so that you get a 
breakdown of the contributions from each individual aggressor, which can be used to guide layout edits. 
 
Results 
 

The following results were noted from the SI work performed on this card: 
 
1. All the signals in the DDR memory interface met timing margins in typical, slow and fast cases in 

simulation 
2. All the nets met overshoot and undershoot specifications under fast, typical and slow cases in simulation 
3. Once hardware came into the lab, the interface passed functional, signal integrity and timing 

specifications under hot (85oC), cold (-30oC) and room temperature in the actual design. 
4. The interface was robust across different software loads and mechanical life tests. 
 
In summary, as a result of the SI simulation work done on this design, we were able to achieve first pass 
results with our hardware. No re-spins or re-work were required due to timing or SI issues. Eliminating 
unnecessary re-spins saves significant time and money in terms of materials, fabrication, assembly, test, 
verification, and manpower. It also enables us to get to market faster, with higher quality product for our 
customers. 

 
 
Recommendations 
 
For new users of the Allegro SI tool, the authors have a number of recommendations that can help to make their 
initial experiences run smoothly. 
 

• Central SI library – Establish a central SI library that the entire engineering community in your 
organization can use. Having multiple pockets of redundant models not only wastes time and resources, 
it produces inconsistent results. This is a must if SI analysis is to be an efficient part of your flow. 

• Invest in setup – Taking the time to set up the layout database properly up front pays back many times 
during the design and analysis process. Get the stack-up completely defined in the master layout 
database, so any versions of the database that get analyzed later all benefit. The same goes for voltage 
properties, pinuse, and SI model assignments. If you can get this all set up from the beginning, it saves 
time throughout the rest of the process and eliminates mistakes. 

• Signal naming conventions – When working with groups of signals in a design, such as those found in a 
memory interface, it is much easier to digest reports, set properties and constraints, and review feedback 
in the Constraint Manager when the signal names are intuitive. Take care in naming all the relevant 
signals in your design to make them easy to work with. Using the same naming conventions over again 
on subsequent designs will speed up the analysis process. 

• Partner with the layout designer – For critical signals with tight timing margins, it is beneficial to get 
them routed as a first priority. Work with your layout designer to make sure the optimum route priority 
is identified. And there will almost always be some give-and-take from a constraint standpoint. The 
layout designer is often in the best position to determine if the routing constraints you are requesting are 
realistic or not, especially on dense designs. Work with the layout designer to make the design 



physically realizable, and agree to re-simulate signals that can’t be routed exactly as specified. Let the 
timing margins be the final judge as to whether or not a signal is acceptably routed. 

• Fast and slow corners – When timing margins are tight, it is critical to simulate the Fast and Slow 
corners as well as Typical. Often Fast or Slow results turn out to produce the worst case margins, and 
the design needs to be robust enough to meet requirements under these tough conditions. 

• When comparing results for the same signals in the SigXplorer (topology) and SpecctraQuest (physical 
layout) environments, be aware that some simplifying assumptions are made in the case of SigXplorer 
from a usability standpoint. There will always be more detailed input directly from the physical layout, 
so when minor differences appear, let the results from simulations in the layout take precedence. 

 
Future Work 
 
Some of the future work expected to be done on the high speed flow at Motorola is expected to include the 
following: 
 

• Automated bus-level SI analysis (introduced in 15.7) – This capability automates a number of things for 
source synchronous bus analysis, including custom bit patterns, automated handling of on-die 
termination, and automated setup and hold margin measurements. These items and others are expected 
to be requirements for DDR2 designs with higher data rates. 

• Crosstalk-driven routing – It is possible to enable crosstalk DRCs during automatic and interactive 
routing. This would enable the layout designer to get immediate feedback on coupling during the routing 
process, and facilitate crosstalk avoidance. 

• IR drop analysis (introduced in 16.0) – This is a critical item for many portable and/or battery-operated 
designs. Without this automation, calculating IR drop in the design is a very tedious and error-prone 
process. 

• Decoupling cap analysis (Power Integrity option) – With density, real estate, cost, and shrinking voltage 
ripple specifications, this becomes an important part of the design process. 
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