
 
Use of System Link Design for 

Multi-board systems 
 

IBM 
 

Samuel Yang 
 

Session # 8.6 
 
 
 
 
 
 

Presented at

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abstract 
Today’s complex system architecture calls for a design process that can manage an entire 
system from processor card to backplanes to I/O cards. Bus specifications need to be met 
across the entire path of the net, not only on a single board file. Limitations of the current 
tool include constraint management—so far, constraints can only be managed one board 
at a time. A dynamic solution is needed so constraints can be changed and updated in real 
time across all the board files. This gives the session a high level control over the system 
constraints. The session created scripts to extract the information from a system link. This 
information was analyzed and new constraints were created and imported back to the 
Allegro board file. Further enhancements to the import/export routine will significantly 
improve efficiency. The session can save hours a day using an automated extract, 
import/export routine in conjunction with the system link. The session can work the 
system design in one sitting, versus working on each board individually which easily 
double or triples the amount of time spent in a design, based on the number of boards in 
the design. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Introduction 
In the engineering industry today, the card design process is extremely complex. There 
are usually many circuit cards that come together to form one major system. The Cadence 
environment allows users to manage the electrical constraints using Allegro Constraint 
Manager. However, the current software is limited to a board by board analysis. Cadence 
utilizes a system design link to analyze an entire system. This gives the user an overall 
view of the system, but does not allow constraint management over the entire system. 
This paper explores using automated scripts to extract information from the system link, 
analyze it, and import changes back to the Allegro board. The new method can easily cut 
the amount of time it takes to analyze and create new constraints in half. 
 
Prior Art 
Often in the design process, the system is broken up into different cards: backplane, 
processor card, I/O cards, etc. This is done so that multiple groups can work on separate 
cards in parallel. Constraints taken from published specifications are usually meant for 
the full length of the signal path. The full path includes the length from the backplane + 



processor card + I/O card + etc. Since the system is broken up into those different cards, 
the constraints need to be sized on a per board system. 
 
A complete solution for the problem does not exist today. Allegro’s system link allows 
the user to take a snap shot of the entire system. It provides net names, their constraints, 
and any associated errors. Yet, there is no way to edit each card in the system from the 
system link view. New constraints must be manually entered in each independent board. 
This can be difficult when there are multiple designers working on the separate cards. 
 
The current process has a “trial and error” feel to it. Each card is worked on 
independently and the result can be improper skew on certain nets. The problem occurs 
when the engineer designs his or her board to the specification, but over looks the fact 
that the specification is in reference to the entire path of the net, not only on one card. As 
a result, communication needs improvement over different teams to make sure the 
specification is met as a whole (over the entire system). Teams need to have a process to 
make sure the constraints are in sync. The skew for each net needs to be divided up into 
different boards. When the physical placement of the nets is done, the engineer may find 
out that there is a lot of slack in the constraints. On the other hand, a different team may 
be in need of more skew in their design. A decision is made to cut back length on one 
board and give more length to the other board. Next, the constraints need to be updated 
for each board and imported back into their respective designs. Then the constraints need 
to be rechecked and the board rewired to fit the new parameters. The “trial and error” 
portion of this method resides with the constant back and forth between different teams in 
order to reach the best compromise net lengths across the system. 
 
There is a lot of churn in the process. Although the system link provides an overall view 
of the constraints in the system, the user cannot change the constraints as needed. The 
constraints must be divided among all the board files and implemented again, after which 
the design link must be refreshed in order to see the new results. 
 
The biggest disadvantage to the current method is time. Even though the teams are 
working in parallel, the same task (updating the constraints) is repeated as many times as 
the number of boards in the system. (Eg. The entire system includes 1 backplane, 1 
processor card, and 2 I/O cards. Therefore, the constraints need to be updated 4 times.) 
 
Another disadvantage is readability. Each board file may have different naming 
conventions for net names. There is no easy way to tell which net on Board 1 continues to 
which net on Board 2. Constraint Manager gives the user a generic net name and the total 
etch of the net, but does not show each individual net lengths per board. 
 
All of these things make the system link difficult to manage. 
 
New Method 
The proposed method uses a series of scripts to automate the process of analyzing an 
entire system, finding the problem areas, and inputting new constraints. It builds upon the 
current system link process and provides improvement. From there, the user can chose 



which nets he or she wants to change. The script will automatically adjust the topology 
file for the user. Then, with a simple update, the new rules are applied to the design. The 
scripts use a combination of Allegro Skill[1] code and Perl code[2]. 
 
The first step follows the old method: create a system link using Cadence Allegro. Then, 
the first script is executed. The design link is analyzed and a net list of the entire design is 
formed. The list is broken up into different columns, showing all nets within each board 
file and the nets’ associated etch length. The end columns keep a cumulative total the 
individual boards’ net lengths. 
 
As shown in Figure 1 below, the spreadsheet includes all the nets in each board file, as 
well as their lengths, connector pin lengths, and the total length. 
 
Figure 1. An example spreadsheet with a 2 board design. 

 
 
A given board design usually has hundreds or thousands of nets. The user may only be 
concerned with a certain bus, or group of nets. The second script prompts the user for 
which bus he or she is interested in. A file is generated, deleting unwanted nets from the 
spreadsheet, and leaving the user only information that pertains to his or her needs. At 
this point, the engineer can decide whether the specification was broken or not. If so, the 
user has the option of changing values in the spreadsheet. Finally, the third script is 
executed and the new constraints are updated to their respective topology files as shown 
in Figure 2 below. 
 
Figure 2. Before and after pictures of the changes the script made. In this case, the 
user inputted a different max-delay value of 700 mils. 

 
 



 
 
At this point, the new topology files can be imported to their respective board files and 
the process is complete. 
 
The greatest benefit by far is obviously the automation. Creating a spreadsheet of all the 
nets in the system by hand would be tedious and time consuming. The best time saver is 
automating the constraint updates. Anyone with experience creating constraints knows 
that updating each constraint by hand could take hours—especially if you have thousands 
of constraints to update. This automation process is incredibly faster than the traditional 
“by hand” method (see Figure 3 below). 
 
Figure 3. Comparison of old versus new method. 

3600 times faster!!! 
 

Better readability is also addressed in the new method. The first script creates an easy to 
read spreadsheet that lines up each net’s entire path. Every board in the entire system is 
listed and the net names fall under each one in alphabetical order. The net names are also 
paired with their etch lengths. 
 
There are, however, a few weaknesses in the new method. One weakness is that there are 
multiple scripts that need to be executed. This can provide the user with problems if he or 
she doesn’t have the latest version of the script, of if the user loses track of where the 
scripts are stored. 
 
Another weakness is the process is not fully automated. The user has to change the values 
of the constraints when a problem arises. The user also has to import the new topology 
files into the board file. But by far, the advantages outweigh any weaknesses in the 
proposed method. 
 
Conclusions and Future Work 



This method greatly enhances the system link process and saves a lot of time by 
automating many steps. All the time spent on data gathering and constraint updating is 
basically gone. The user also has an easy to read spreadsheet of the net list. 
 
Work still needs to be done in order to fully automate the process. The Session is already 
working on converting all the scripts into Allegro Skill. This way, the entire process can 
live within the Cadence environment providing a better flow. 
 
Additionally, introducing a mathematical algorithm can take out the human portion of the 
problem. As mentioned above, there is a human step involved with figuring out how 
much length to distribute among the board files. If there was a smart auto-algorithm, the 
calculations for determining the length for each board could be automated as well. 
 
Finally, the overall system link software can be improved. Currently in the system link 
setup, the user can only view the system configuration. There is no option to modify 
constraints across all boards, and DRC errors are not updated in real time. 
 
The ultimate goal is for a complete automated system link flow. The Session is confident 
that with these added features, the goal can be met. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Acknowledgements 
[1] Allegro Skill code created by Larry Bowman, Cadence Application Engineer 
[2] Perl Code created by Daniel Rodriguez and Samuel Yang, IBM Signal Integrity 
Engineers 


